JPH0564358B2 - - Google Patents

Info

Publication number
JPH0564358B2
JPH0564358B2 JP59143175A JP14317584A JPH0564358B2 JP H0564358 B2 JPH0564358 B2 JP H0564358B2 JP 59143175 A JP59143175 A JP 59143175A JP 14317584 A JP14317584 A JP 14317584A JP H0564358 B2 JPH0564358 B2 JP H0564358B2
Authority
JP
Japan
Prior art keywords
liquid crystal
display
wall
crystal material
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59143175A
Other languages
Japanese (ja)
Other versions
JPS6052890A (en
Inventor
Hirusamu Shiriru
Edowaado Nikorasu Kaaru Kairu
Jeraado Makudooneru Deimian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Publication of JPS6052890A publication Critical patent/JPS6052890A/en
Publication of JPH0564358B2 publication Critical patent/JPH0564358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/132Thermal activation of liquid crystals exhibiting a thermo-optic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133377Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱変色性液晶デイスプレイに係る。こ
のようなデイスプレイは、コレステリツク液晶材
料の選択反射を使用する。観察される色はコレス
テリツク材料のピツチに依存し、一般に温度と共
に変化する。 熱変色性デイスプレイは多くの用途がある。例
えばデジタル式温度計のような温度測定、脈管系
障害診断のような医療用途、溶接きず検査のよう
な非破壊試験、サーマルイメージングのようなふ
く射センサ等に使用される。これらの全用途にお
いて、デイスプレイ素子は優れた化学的及び光化
学的安定性と物理的堅牢性とによる信頼性、反復
可能なカラーカリブレーシヨンによる精度、及び
観察色の純度と輝度とによる品質を備える必要が
ある。これらの要件のいくつかは化学的であり、
例えば英国特許第1556994号、1596012号、
1596013号、1596014号、1592161号に開示されて
いるような好適な液晶化合物を使用することによ
り解決されている。他の要件は物理的であり、従
つて場合によつては液晶材料に関する。 最もよく知られている素子は支持基板に液晶材
料を配置したものである。インクが調合され、基
板に印刷される。このインクは小滴状の液晶材料
を含んでいる。2種類の既知のインク形成方法は
マイクロカプセル化及びポリマ分散を使用してい
る。 マイクロカプセル化技術は米国特許第3585381
号に開示されている。この技術は、ゼラチン−ア
ラビアゴム系、ポリビニルアルコールベース系、
ゼエンベース系又はレソルシノール−フオルムア
ルデヒドのようなアムノブラスト縮合物から選択
された1個又はこれらの組合わせから形成された
ポリマシートに液晶滴(直径5〜50μm)を封入
するものである。水/ポリマ溶液にこれらのカプ
セルを懸濁させると「インク」が得られる。 ポリマ分散技術は、バインダポリマフイルムに
分散された液晶滴が初めにポリマシエルでプレコ
ートされないという点はあるが、前記技術と同様
である。滴は連続ポリママトリクス層内のキヤビ
テイに配置される。米国特許第1161039号及び
3872050号は異なる2種類のポリマ分散生成方法
を開示している。 マイクロカプセル化とポリマ分散とのいずれに
も問題がある。最適反射のために最適の配向のコ
レステリツクらせんに配置されるのは液晶材料の
一部に過ぎないので、観察色の純度と輝度は部分
的に低い。 カプセル化せずに色変化の可能な液晶材料が提
案されている。例えば米国特許第4251137号はネ
マチツク液晶材料層がセル壁間に包含されている
液晶セルを開示している。これらの壁の内側表面
は微細矩形波形パターン、即ち光格子状に形成さ
れる。層厚にわたつて電界が印加されると、液晶
の屈折率はゼロ電圧状態の屈折率から変化する。
液晶材料のオン又はオフの電圧状態に応じて2色
の異なる色が観察される。壁表面形状は観察され
る色を決定する。この素子は熱変色性ではなく、
従つて温度と共に色が変化することはない。 本発明によると、少なくとも一方が液晶分子に
配向する微細格子表面形状を有する2個の表面間
に短ピツチのコレステリツク液晶材料層から包含
させることにより色純度と低反射率との問題が解
決される。 本発明によるとコレステリツク液晶材料の層を
含む二つの壁を有する熱変色性液晶デイスプレイ
であつて、前記液晶材料が、0.2μmと0.7μmとの
間にあるコレステリツクピツチを有しており、該
ピツチの値が液晶材料の温度に伴つて変化しこれ
により前記温度に依存する異なつた色を選択的に
反射し、前記壁の少なくとも一つが0.05μmと
12μmとの間にある溝幅を有する格子及び隆起部
分の連続として形成された表面を有しておりこれ
により前記壁に接触する前記液晶材料の分子が、
前記溝によつて一様に配向されることを特徴とす
る熱変色性液晶デイスプレイが提供される。 壁は可撓性又は非可撓性であり得、厚形又は薄
形であり得、またこれらの組合わせであり得る。 コレステリツク材料の短ピツチは光を選択的に
反射するのに好適なピツトとして規定され、例え
ば好ましくは0.2μm乃至0.7μm又はそれ以上のピ
ツチである。 好ましくは、液晶材料層の厚さは10μm以上、
例えば10〜5μmである。 2個の壁はピツチ及び/又は形状が等しいか又
は異なる表面格子を有する。あるいは一方の壁が
格子を有しており、他方の壁はホメオトロピツク
配向となるように処理されないか又は処理されて
いる。表面格子はプラスチツク材料の薄形シート
をエンボスすることにより形成され得る。この格
子は矩形、正方形、鋸歯形、三角形、台形、正弦
波形、又は近接して離間された配向溝部列を形成
するに十分な前記形状に近似する形状であり得
る。 デイスプレイは後壁が吸収層に被覆されている
か又は吸収層として形成されている場合、反射に
よつて作動し得る。あるいはデイスプレイは、複
数のデイスプレイを光学的に直列に配列すること
により狭帯域伝達フイルタとして作動するように
配列され得る。 2個のデイスプレイの間に2分の1波長板を配
置して後部デイスプレイに吸収後部表面を備える
ことにより強化型反射デイスプレイが形成され得
る。 局部加熱の除後の分子再配向を阻止し得る非常
に強い表面配向を形成することにより、デイスプ
レイにメモリ効果が組込まれ得る。この時、初期
状態への復帰は例えば撓曲による局部形により達
せられ得る。 デイスプレイは、縁部を結合され且つプラスチ
ツクエンボスシート上に形成されたスペーサピラ
ーにより離間された大型のシート状に形成され得
る。あるいはデイスプレイは大型又は小径の種々
の形状であり得、大型のデイスプレイから打抜い
てもよく、打抜き加工は縁部を熱シールし得るよ
うに行なわれる。 使用される特定の液晶材料は所与の温度で所望
の色が得られるように選択される。これは所与の
温度で所望のピツチと屈折率とが得られるように
材科を混合することにより達せられ得る。反射光
の波長(λ)は屈折率の平均(n0+ne)/2とコ
レステリツクピツチpに比例する。ピツチpは温
度と共に変化する。 本発明は添付図面に関する具体例として以下に
記載される。 第1図及び第2図に示すように、熱変色性デイ
スプレイセル1は短ピツチコレステリツク液晶材
料5を封入すべく縁部4で結合された薄形可撓性
前壁2と薄形可撓性後壁2とを備えている。後壁
3の後部には例えばGold Blackから成る黒色吸
収層6が形成されるか又は壁自体が例えば黒色
Melinexから成る黒色不透明材から形成される。
両壁2,3は、エンボス可能なアモルフアス表面
層を有するポリエステル共押しフイルムである厚
さ30μmの透明プラスチツクシート例えば
Melinex301(I.C.I.材料)であり得る。アモ
ルフアス層の厚さは所望の形状の寸法に存する。
例えば層の厚さは3μm以上であり得る。 セルの後壁3は第2図に明示するように格子7
をエンボスされている。格子7は正方形又は長方
形断面を有し、一般に溝部幅0.05乃至12μm及び
深さ0.05乃至0.1μmである。図例では後壁3のみ
がエンボスされている。前壁2は平坦であり処理
されていないが、後部格子に非平行に配向された
格子をエンボスしてもよい。あるいは前壁2は例
えばホメオトロピツク配向を形成すべくレシチン
浸漬により処理され得る。 コレステリツク液晶材料5は格子7により壁
2,3に垂直なデイレクタのらせん軸に配向させ
られる。従つて実質的に全液晶分子は単一波長の
最大の反射のために理想的な配向に配列される。 液晶材料5はピツチpを有しており、例えば波
長3800乃至7800Åの可視光を選択的に反射する。
好適な材料の例は、B.D.H.カタログ番号TM
74A、TM 74B、TM 75A及びTM 75Bである。
これらの材料は所望の色及び温度範囲を得るべく
混合される。一例は、21乃至25.5℃の温度範囲で
赤−青の色作用をもたらす混合物である。これ
は、混合物A=TM 74A 30重量%+TM 75A
70重量%、混合物B=TM 74B 30重量%+TM
75B 70重量%とする時、混合物A40重量%+混
合物B60重量%により形成される。混合物A,
B,TM 74A又はTM 75Bを少量加えることに
より範囲及び色の微調整が可能である。 液晶材料は例えば厚さ10μmの薄層を一方の壁
の形状表面にスプレツドすることにより壁間に導
入される。他方の壁は、液晶及び、例えば必要に
応じて形状打抜き又は加工及び例えば100℃の加
熱によりシールされた縁部に被覆される。 好適な混合材料は以下に示すカイラルネマチツ
ク液晶である。
The present invention relates to thermochromic liquid crystal displays. Such displays use selective reflection of cholesteric liquid crystal materials. The observed color depends on the pitch of the cholesteric material and generally changes with temperature. Thermochromic displays have many uses. For example, they are used for temperature measurements such as digital thermometers, medical applications such as vascular system disorder diagnosis, non-destructive tests such as welding flaw inspection, and radiation sensors such as thermal imaging. In all of these applications, display elements have reliability through excellent chemical and photochemical stability and physical robustness, precision through repeatable color calibration, and quality through purity and brightness of the observed colors. There is a need. Some of these requirements are chemical and
For example, British Patent No. 1556994, 1596012,
This problem has been solved by using suitable liquid crystal compounds as disclosed in Nos. 1596013, 1596014 and 1592161. Other requirements are physical and therefore possibly related to the liquid crystal material. The most well-known devices have a liquid crystal material disposed on a supporting substrate. The ink is formulated and printed onto the substrate. This ink contains droplets of liquid crystal material. Two known methods of ink formation use microencapsulation and polymer dispersion. Microencapsulation technology is covered by US Patent No. 3585381
Disclosed in the issue. This technology uses gelatin-gum arabic-based, polyvinyl alcohol-based,
Liquid crystal droplets (5-50 μm in diameter) are encapsulated in a polymer sheet formed from one or a combination of zeene-based systems or amnoblast condensates such as resorcinol-formaldehyde. Suspending these capsules in a water/polymer solution yields an "ink." The polymer dispersion technique is similar to the previous technique, except that the liquid crystal droplets dispersed in the binder polymer film are not initially precoated with a polymer shell. The droplets are placed in cavities within the continuous polymeric matrix layer. U.S. Patent No. 1161039 and
No. 3,872,050 discloses two different methods for producing polymer dispersions. There are problems with both microencapsulation and polymer dispersion. Since only a portion of the liquid crystal material is arranged in an optimally oriented cholesteric helix for optimal reflection, the purity and brightness of the observed colors are partially low. Liquid crystal materials that can change color without encapsulation have been proposed. For example, U.S. Pat. No. 4,251,137 discloses a liquid crystal cell in which a layer of nematic liquid crystal material is contained between the cell walls. The inner surfaces of these walls are formed in a fine rectangular wave pattern, ie, a light grid. When an electric field is applied across the layer thickness, the refractive index of the liquid crystal changes from the refractive index of the zero voltage state.
Two different colors are observed depending on the on or off voltage state of the liquid crystal material. The wall surface shape determines the observed color. This element is not thermochromic,
Therefore, the color does not change with temperature. According to the present invention, the problem of color purity and low reflectance is solved by incorporating a layer of cholesteric liquid crystal material with short pitch between two surfaces, at least one of which has a fine lattice surface geometry oriented with liquid crystal molecules. . According to the invention, there is provided a two-walled thermochromic liquid crystal display comprising a layer of cholesteric liquid crystal material, said liquid crystal material having a cholesteric pitch of between 0.2 μm and 0.7 μm; The pitch value changes with the temperature of the liquid crystal material, thereby selectively reflecting different colors depending on the temperature, and at least one of the walls has a diameter of 0.05 μm.
having a surface formed as a series of gratings and raised portions with a groove width of between 12 μm, so that the molecules of the liquid crystal material in contact with the walls are
A thermochromic liquid crystal display is provided, characterized in that it is uniformly oriented by the grooves. The walls may be flexible or non-flexible, thick or thin, or combinations thereof. Short pitches of cholesteric material are defined as pits suitable for selectively reflecting light, such as preferably pitches of 0.2 μm to 0.7 μm or more. Preferably, the thickness of the liquid crystal material layer is 10 μm or more,
For example, it is 10-5 μm. The two walls have surface gratings that are equal or different in pitch and/or shape. Alternatively, one wall has a grid and the other wall is untreated or treated for homeotropic orientation. The surface grid may be formed by embossing a thin sheet of plastic material. The grating may be rectangular, square, sawtooth, triangular, trapezoidal, sinusoidal, or sufficiently approximate the above shape to form a series of closely spaced alignment grooves. The display can be activated by reflection if the rear wall is coated with an absorbing layer or is designed as an absorbing layer. Alternatively, the displays may be arranged to operate as a narrowband transmission filter by arranging multiple displays optically in series. An enhanced reflective display can be formed by placing a half wave plate between the two displays and providing the rear display with an absorbing rear surface. Memory effects can be incorporated into the display by creating very strong surface orientations that can prevent molecular reorientation after removal of localized heating. At this time, the return to the initial state can be achieved by local shaping, for example by bending. The display may be formed in large sheets joined at the edges and separated by spacer pillars formed on the plastic embossed sheet. Alternatively, the display may be of various shapes, large or small diameter, and may be stamped from a larger display, the stamping being such that the edges can be heat sealed. The particular liquid crystal material used is selected to provide the desired color at a given temperature. This can be accomplished by mixing materials to obtain the desired pitch and index of refraction at a given temperature. The wavelength (λ) of the reflected light is proportional to the average refractive index (n 0 + ne )/2 and the cholesteric pitch p. Pitch p changes with temperature. The invention will now be described by way of example with reference to the accompanying drawings, in which: FIG. As shown in FIGS. 1 and 2, a thermochromic display cell 1 has a thin flexible front wall 2 joined at an edge 4 to enclose a short pitch cholesteric liquid crystal material 5. and a rear wall 2. At the rear of the rear wall 3, a black absorption layer 6 made of, for example, Gold Black is formed, or the wall itself is made of, for example, black.
Constructed from a black opaque material consisting of Melinex.
Both walls 2, 3 are made of a 30 μm thick transparent plastic sheet, for example a polyester co-pressed film with an embossable amorphous surface layer.
It can be Melinex 301 (ICI Materials). The thickness of the amorphous layer depends on the dimensions of the desired shape.
For example, the layer thickness can be 3 μm or more. The rear wall 3 of the cell has a grid 7 as clearly shown in FIG.
has been embossed. The grid 7 has a square or rectangular cross-section and typically has a groove width of 0.05 to 12 μm and a depth of 0.05 to 0.1 μm. In the illustrated example, only the rear wall 3 is embossed. The front wall 2 is flat and untreated, but may be embossed with a grating oriented non-parallel to the rear grating. Alternatively, the front wall 2 can be treated, for example, by dipping in lecithin to create a homeotropic orientation. The cholesteric liquid crystal material 5 is oriented by the grating 7 with the helical axis of the director perpendicular to the walls 2,3. Thus substantially all liquid crystal molecules are aligned in an ideal orientation for maximum reflection of a single wavelength. The liquid crystal material 5 has a pitch p and selectively reflects visible light having a wavelength of 3800 to 7800 Å, for example.
Examples of suitable materials include BDH Catalog Number TM
74A, TM 74B, TM 75A and TM 75B.
These materials are mixed to obtain the desired color and temperature range. An example is a mixture that provides a red-blue color effect in the temperature range from 21 to 25.5°C. This is Mixture A = 30% by weight of TM 74A + TM 75A
70% by weight, mixture B = TM 74B 30% by weight + TM
When 75B is 70% by weight, it is formed by 40% by weight of mixture A + 60% by weight of mixture B. mixture A,
Fine adjustment of range and color is possible by adding small amounts of B, TM 74A or TM 75B. The liquid crystal material is introduced between the walls by spreading a thin layer, for example 10 μm thick, onto the shaped surface of one wall. The other wall is coated with liquid crystal and sealed edges, for example by shape punching or machining and heating to, for example, 100°C. A preferred mixed material is the chiral nematic liquid crystal shown below.

【表】 |
CH
[Table] |
CH3

【表】【table】

【表】 格子7はエンボシングによりMeline(I.C.I.)上
に形成される。ニツケルメツキ表面に銅プレート
又はローラがコートされる。次にこのメツキは正
方形又は長方形状となるように標準的写真平版技
術を使用して選択的に除去される。好ましくは溝
部は幅0.05乃至12μm、深さ0.05乃至12μmである。
ニツケル層は、Fluorad Surfectant FC 721のよ
うな1μm未満の離型剤薄層をコートされる。プレ
ート又はローラは約105〜115℃に加熱され、
Melinex 301シートのアモルフアス表面層上に圧
着される。一般的な圧力は3〜5気圧である。こ
うしてMelinex301上に微細格子が形成される。 動作中、セルの前壁には白色光が入射する。着
色光、例えば円偏光の一方の向きの赤色は観察者
8の側に反射する。円偏光の反対の向きの同じ赤
色着色光は、井戸の2個の壁2,3を透過して吸
収層6に吸収される。他の波長の光はセル1を通
り吸収層6に吸収される。 反射光の実際の色はコレステリツクピツチpと
屈折率nとにより決定され、波長=npである。
コレステリツクの温度が変化するとピツチpは変
化し、別の色が観察される。反射される周波数の
量及び範囲、即ち色純度はデイスプレイ全体でコ
レステリツク軸を正確に配向することにより強化
される。 第3図はより大型のデイスプレイで使用される
セル1の壁の表面形状を示す。壁3は、第2図と
同様の格子7とピラー9とを形成すべくエンボス
されている。ピラーは完全なセル1の厚さを均一
にせしめる。一般にピラーは25μm×25μmの正方
形断面を有しており、高さ25μmであり、250〜
300μmの間隔で離間されている。エンボスされた
Melinexの2部分は、1個のシートのピラーを隣
接シートに融着すべく接触され及び迅速に加熱さ
れ得る。 セル壁2,3は同様に例えばガラカのようなよ
り厚い材料シートから形成され得るが、その場
合、温度変化が遅くセルはあまり可撓性でない。 デイスプレイの別の構成例を第4図及び第5図
に示す。薄形の前壁11は内側表面に微細格子を
エンボスされている。例えば格子はピツチ5μm未
満の正方形又は正弦波形状であり、例えば溝部の
幅は、2.5μm未満、深さ0.1μm未満である。 後壁13は粗形状14をエンボスされている。
例えば溝部15は幅100μm、深さ10乃至50μm、
溝部間のギヤツプ又はウエブ16は25μmである。
前壁及び後壁の溝部は相互に平行又は非平行、例
えば垂直に配列され得る。吸収層6は後壁の後部
を覆つている。 第5図に示すように粗格子はシートの全長に伸
延する溝部15aを備え得る。あるいは溝部は壁
13の表面に細長形15b又は正方形15cの凹
部を形成すべくクロスウエブ17を備え得る。凹
部は曲線状の角部をもち得、楕円形更には円形の
平面形状を有し得る。 デイスプレイセルを形成するために、液晶材料
は例えばシルクスクリーン印刷、ローラ、インク
ジエツト印刷、又は深さ約10μmへの噴霧により、
粗格子を有する大型シート13上にスプレツドさ
れる。大型シート状の前壁11は後壁13の上に
配置され、両壁は前壁に対してウエブをシールす
べく例えば100℃の加熱量により相互に圧着され
る。粗格子がクロスウエブ17を有する場合、複
数の閉鎖型セルが得られる。次に完成したデイス
プレイはナイフ又ははさみで各形状に裁断され
る。 液晶材料の異なる組成物は後壁の異なる領域で
印刷し得る。これらの異なる組成物は非液晶材料
の領域により分離され得るか又は空乏にし得る。 粗格子の溝部15の底部の微細格子の上に重ね
ることができる。あるいは溝部はホメオトロピツ
ク又はホモジニアス表面配向処理をしても良い。 格子7の形状を変化させることによりメモリ効
果を形成し得る。例えば液晶分子の配向を減らす
ように溝部の深さ及び/又はスペーシングを減少
させる。従つて、局部加熱により生じる分子配列
の変化は冷却により維される。デイスプレイを初
期状態に復帰させるには局部変形が必要である。 本発明のデイスプレイの一用途は、熱画像が集
束されるサーマルイメージングシステムスクリー
ンである。多数の超小型デイスプレイデイスクが
横方向熱伝導率の低い薄形サポートに堆積され
る。このように分離されたデイスクを使用するた
め網状組織が形成され、熱画像の横幅が減少す
る。スクリーン中の温度変化は熱画像を表わす
別々の色として観察される。 上述した様に0.2μm〜0.7μmの短ピツチのコレ
ステリツク材料を、表面が溝幅0.05μm〜12μmの
格子状に形成された壁で封入してなる本発明の熱
変色性液晶デイスプレイは、色の純度及び輝度が
従来より優れており、しかも特別のインク製造技
術を用いないので低コストで製造することが可能
である。
[Table] Grating 7 is formed on Meline (ICI) by embossing. A copper plate or roller is coated on the nickel plated surface. The plating is then selectively removed using standard photolithographic techniques to create a square or rectangular shape. Preferably, the groove has a width of 0.05 to 12 μm and a depth of 0.05 to 12 μm.
The nickel layer is coated with a thin layer of less than 1 μm release agent such as Fluorad Surfectant FC 721. The plate or roller is heated to approximately 105-115°C;
Pressed onto the amorphous surface layer of Melinex 301 sheet. Typical pressures are 3 to 5 atmospheres. In this way, a fine lattice is formed on Melinex301. During operation, white light is incident on the front wall of the cell. Colored light, for example red in one direction of circularly polarized light, is reflected towards the observer 8 . The same red colored light with opposite direction of circular polarization is transmitted through the two walls 2, 3 of the well and absorbed into the absorption layer 6. Light of other wavelengths passes through the cell 1 and is absorbed by the absorption layer 6. The actual color of the reflected light is determined by the cholesteric pitch p and the refractive index n, where wavelength=np.
When the temperature of the cholesteric changes, the pitch changes and different colors are observed. The amount and range of frequencies reflected, and hence color purity, is enhanced by accurately orienting the cholesteric axis across the display. FIG. 3 shows the surface shape of the wall of cell 1 used in larger displays. The wall 3 is embossed to form a grid 7 and pillars 9 similar to FIG. The pillars make the thickness of the complete cell 1 uniform. In general, pillars have a square cross section of 25 μm x 25 μm, and are 25 μm high, with a height of 250 ~
They are spaced at intervals of 300 μm. embossed
The two pieces of Melinex can be brought into contact and rapidly heated to fuse the pillars of one sheet to an adjacent sheet. The cell walls 2, 3 may likewise be formed from thicker sheets of material, such as for example galaca, but then temperature changes are slow and the cells are less flexible. Another example of the structure of the display is shown in FIGS. 4 and 5. The thin front wall 11 has a fine grating embossed on its inner surface. For example, the grating has a square or sinusoidal shape with a pitch of less than 5 μm, and the grooves, for example, have a width of less than 2.5 μm and a depth of less than 0.1 μm. The rear wall 13 is embossed with rough features 14.
For example, the groove portion 15 has a width of 100 μm and a depth of 10 to 50 μm.
The gap or web 16 between the grooves is 25 μm.
The grooves in the front and rear walls may be arranged parallel or non-parallel to each other, for example perpendicularly. An absorbent layer 6 covers the rear part of the rear wall. As shown in Figure 5, the coarse grid may include grooves 15a extending the entire length of the sheet. Alternatively, the groove can be provided with a cross web 17 to form an elongated 15b or square 15c recess in the surface of the wall 13. The recess may have curved corners and may have an elliptical or even circular planar shape. To form the display cells, the liquid crystal material is applied, for example, by silk screen printing, roller, inkjet printing, or spraying to a depth of approximately 10 μm.
It is spread onto a large sheet 13 with a coarse grid. A large sheet-like front wall 11 is placed on top of the rear wall 13 and both walls are pressed together by heating, for example at 100 DEG C., to seal the web against the front wall. If the coarse grid has cross webs 17, a plurality of closed cells is obtained. The completed display is then cut into shapes using a knife or scissors. Different compositions of liquid crystal material can be printed on different areas of the back wall. These different compositions may be separated or depleted by regions of non-liquid crystal material. The grooves 15 of the coarse lattice can be superimposed on the fine lattice at the bottom. Alternatively, the grooves may be subjected to homeotropic or homogeneous surface alignment treatment. By changing the shape of the grating 7 a memory effect can be created. For example, the depth and/or spacing of the grooves may be reduced to reduce orientation of liquid crystal molecules. Therefore, changes in molecular arrangement caused by local heating are maintained by cooling. Local deformation is necessary to return the display to its initial state. One application of the display of the present invention is a thermal imaging system screen where a thermal image is focused. A large number of microscopic display disks are deposited on a thin support with low lateral thermal conductivity. The use of separated disks in this manner creates a network that reduces the lateral width of the thermal image. Temperature changes across the screen are observed as separate colors representing a thermal image. As mentioned above, the thermochromic liquid crystal display of the present invention is made of a cholesteric material with a short pitch of 0.2 μm to 0.7 μm and is enclosed in a wall whose surface is formed in a lattice shape with a groove width of 0.05 μm to 12 μm. It has superior purity and brightness compared to conventional inks, and can be manufactured at low cost because no special ink manufacturing technology is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱変色性液晶デイスプレイの断面図、
第2図は形状内側表面を示す第1図の一方の壁の
部分の拡大図、第3図はより大型のデイスプレイ
で有効な別の壁の断面図、第4図は2個の壁のみ
を示す別のデイスプレイの断面図、及び第5図は
第4図のデイスプレイの一方の壁の斜視図であ
る。 1…デイスプレイセル、2,11…前壁、3,
13…後壁、5…液晶材料、6…吸収層、7…格
子、8…観察者、9…ピラー、15…溝部、16
…ウエブ、17…クロスウエブ。
Figure 1 is a cross-sectional view of a thermochromic liquid crystal display.
Figure 2 is an enlarged view of one wall of Figure 1 showing the internal surface of the shape; Figure 3 is a cross section of another wall useful for larger displays; Figure 4 shows only two walls. 5 is a cross-sectional view of another display shown, and FIG. 5 is a perspective view of one wall of the display of FIG. 1... Display cell, 2, 11... Front wall, 3,
13... Rear wall, 5... Liquid crystal material, 6... Absorption layer, 7... Grid, 8... Observer, 9... Pillar, 15... Groove, 16
...web, 17...crossweb.

Claims (1)

【特許請求の範囲】 1 コレステリツク液晶材料の層を含む二つの壁
を有する熱変色性液晶デイスプレイであつて、前
記液晶材料が、0.2μmと0.7μmとの間にあるコレ
ステリツクピツチを有しており、該ピツチの値が
液晶材料の温度に伴つて変化しこれにより前記温
度に依存する異なつた色を選択的に反射し、前記
壁の少なくとも一つが0.05μmと12μmとの間にあ
る溝幅を有する格子及び隆起部分の連続として形
成された表面を有しておりこれにより前記壁に接
触する前記液晶材料の分子が、前記溝によつて一
様に配向されることを特徴とする熱変色性液晶デ
イスプレイ。 2 一方の壁の表面形状は他方の壁の表面形状と
異なつている特許請求の範囲第1項に記載のデイ
スプレイ。 3 一方の壁は微細格子状に表面処理されてお
り、他方の壁は粗格子状に処理されている特許請
求の範囲第1項に記載のデイスプレイ。 4 粗格子は、液晶材料が閉鎖セル内に包含され
るようにクロスウエブを備えている特許請求の範
囲第1項に記載のデイスプレイ。 5 デイスプレイの後部に光吸収材が配置されて
いる特許請求の範囲第1項に記載のデイスプレ
イ。 6 壁は薄形且つ可撓性である特許請求の範囲第
1項に記載のデイスプレイ。 7 一方の壁は接触する液晶材料に対してホメオ
トロピツク配向を形成するように処理されている
特許請求の範囲第1項に記載のデイスプレイ。 8 相互間に2分の1波長板を備える2個のデイ
スプレイ素子から形成されており、デイスプレイ
の後部に光吸収材が配置されている特許請求の範
囲第1項に記載のデイスプレイ。 9 デイスプレイの各領域はコレステリツク液晶
材料の異つた組成物を含有している特許請求の範
囲第1項に記載のデイスプレイ。
Claims: 1. A thermochromic liquid crystal display having two walls comprising a layer of cholesteric liquid crystal material, said liquid crystal material having a cholesteric pitch between 0.2 μm and 0.7 μm. and the pitch value changes with the temperature of the liquid crystal material, thereby selectively reflecting different colors depending on the temperature, and at least one of the walls has a groove width between 0.05 μm and 12 μm. thermochromic, characterized in that it has a surface formed as a series of lattices and raised portions, whereby the molecules of said liquid crystal material contacting said walls are uniformly oriented by said grooves; LCD display. 2. The display according to claim 1, wherein the surface shape of one wall is different from the surface shape of the other wall. 3. The display according to claim 1, wherein one wall is surface-treated in a fine lattice pattern, and the other wall is surface-treated in a coarse lattice pattern. 4. A display as claimed in claim 1, wherein the coarse grid comprises cross-webs such that the liquid crystal material is contained within closed cells. 5. The display according to claim 1, wherein a light absorbing material is disposed at the rear of the display. 6. The display according to claim 1, wherein the wall is thin and flexible. 7. A display as claimed in claim 1, wherein one wall is treated to form a homeotropic alignment with the liquid crystal material it contacts. 8. A display according to claim 1, which is formed from two display elements with a half-wave plate between them, and a light absorbing material is arranged at the rear of the display. 9. A display according to claim 1, wherein each area of the display contains a different composition of cholesteric liquid crystal material.
JP59143175A 1983-07-12 1984-07-10 Thermally discoloring liquid crystal display Granted JPS6052890A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB838318863A GB8318863D0 (en) 1983-07-12 1983-07-12 Thermochromic liquid crystal displays
GB8318863 1983-07-12

Publications (2)

Publication Number Publication Date
JPS6052890A JPS6052890A (en) 1985-03-26
JPH0564358B2 true JPH0564358B2 (en) 1993-09-14

Family

ID=10545617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143175A Granted JPS6052890A (en) 1983-07-12 1984-07-10 Thermally discoloring liquid crystal display

Country Status (5)

Country Link
US (1) US4834500A (en)
EP (1) EP0132077B1 (en)
JP (1) JPS6052890A (en)
DE (1) DE3466085D1 (en)
GB (2) GB8318863D0 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531512A (en) * 1978-08-16 1980-03-05 Mitsubishi Electric Corp Controlling method of spark machining
GB8515510D0 (en) * 1985-06-19 1985-07-24 Secr Defence Thermochromic liquid crystal materials
US5299037A (en) * 1985-08-07 1994-03-29 Canon Kabushiki Kaisha Diffraction grating type liquid crystal display device in viewfinder
GB2194351B (en) * 1986-06-27 1989-12-20 Gen Electric Plc Thermal imaging device
GB8703306D0 (en) * 1987-02-13 1987-03-18 Ici Plc Devices
US5058999A (en) * 1987-07-13 1991-10-22 Frederick Davis Liquid crystal device having distinguishing means
US4952033A (en) * 1987-07-13 1990-08-28 James L. Fergason Liquid crystal medical device
US5124819A (en) * 1987-07-13 1992-06-23 James L. Fergason Liquid crystal medical device having distinguishing means
GB8804177D0 (en) * 1988-02-23 1988-03-23 Secr Defence Surface temperature mapping using liquid crystal materials
DE3881046T2 (en) * 1988-09-09 1993-11-04 Akzo Nv THERMO CHROME COATING.
US5223958A (en) * 1988-12-30 1993-06-29 Hyperdesign, Inc. Heat activated amusement device employing microencapsulated thermochromic liquid crystal
US5231528A (en) * 1989-06-23 1993-07-27 Hoechst Aktiengesellschaft Ferroelectric liquid crystal components having high spontaneous polarization and low helical pitch
JP2682310B2 (en) * 1991-12-02 1997-11-26 三菱電機株式会社 Wire electric discharge machining method and apparatus
US5268782A (en) * 1992-01-16 1993-12-07 Minnesota Mining And Manufacturing Company Micro-ridged, polymeric liquid crystal display substrate and display device
US5365356A (en) * 1992-08-11 1994-11-15 Minnesota Mining And Manufacturing Company Method of fabricating an encapsulated liquid crystal display
US5441418A (en) * 1993-05-20 1995-08-15 Binney & Smith Inc. Thermochromic drawing device
US5514635A (en) * 1993-12-29 1996-05-07 Optum Corporation Thermal writing surface and method for making the same
US5717422A (en) * 1994-01-25 1998-02-10 Fergason; James L. Variable intensity high contrast passive display
US5532854A (en) * 1994-01-25 1996-07-02 Fergason; James L. Folded variable birefringerence zeroth order hybrid aligned liquid crystal apparatus
US5541745A (en) * 1994-01-25 1996-07-30 Fergason; James L. Illumination system for a display using cholesteric liquid crystal reflectors
GB9402513D0 (en) * 1994-02-09 1994-03-30 Secr Defence Bistable nematic liquid crystal device
GB9402492D0 (en) * 1994-02-09 1994-03-30 Secr Defence Liquid crystal device alignment
US5401947A (en) * 1994-03-15 1995-03-28 Poland; Terrell A. Information display and product identification system
US6243055B1 (en) 1994-10-25 2001-06-05 James L. Fergason Optical display system and method with optical shifting of pixel position including conversion of pixel layout to form delta to stripe pattern by time base multiplexing
US6184969B1 (en) * 1994-10-25 2001-02-06 James L. Fergason Optical display system and method, active and passive dithering using birefringence, color image superpositioning and display enhancement
US5572341A (en) * 1994-10-25 1996-11-05 Fergason; James L. Electro-optical dithering system using birefringence for optical displays and method
US5715029A (en) * 1994-10-25 1998-02-03 Fergason; James L. Optical dithering system using birefringence for optical displays and method
US5537256A (en) * 1994-10-25 1996-07-16 Fergason; James L. Electronic dithering system using birefrigence for optical displays and method
CA2166847C (en) * 1995-09-19 2000-09-05 Frederick Davis Multilayered dispersed thermochromic liquid crystal
SE515437C2 (en) 1997-10-22 2001-08-06 Lars Andersson Figure Painting
JP3773723B2 (en) * 1999-01-29 2006-05-10 シャープ株式会社 Liquid crystal display
DE10101897A1 (en) * 2001-01-16 2002-07-18 Sunyx Gmbh Device for monitoring temperatures comprises a container incorporating a surface that is both hydrophobic and oleophobic, and holding a liquid with a temperature dependent expansion coefficient
EP1381910A1 (en) * 2001-04-24 2004-01-21 MERCK PATENT GmbH Liquid crystal device exhibiting optical properties which are changeable after assembly
US7064740B2 (en) * 2001-11-09 2006-06-20 Sharp Laboratories Of America, Inc. Backlit display with improved dynamic range
EP1336874B2 (en) 2002-02-13 2013-03-20 Merck Patent GmbH Method of preparing a security marking or device comprising an anisotropic polymer film
DE60332784D1 (en) * 2002-02-13 2010-07-15 Merck Patent Gmbh A method of making an anisotropic polymer film on a substrate having a structured surface
US8243004B2 (en) 2003-03-10 2012-08-14 Fergason Patent Properties, Llc Apparatus and method for preparing, storing, transmitting and displaying images
US7623105B2 (en) 2003-11-21 2009-11-24 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive color
WO2005067453A2 (en) * 2003-12-18 2005-07-28 Sharp Laboratories Of America, Inc. Dynamic gamma for a liquid crystal display
US7872631B2 (en) * 2004-05-04 2011-01-18 Sharp Laboratories Of America, Inc. Liquid crystal display with temporal black point
US20050248553A1 (en) * 2004-05-04 2005-11-10 Sharp Laboratories Of America, Inc. Adaptive flicker and motion blur control
US8395577B2 (en) * 2004-05-04 2013-03-12 Sharp Laboratories Of America, Inc. Liquid crystal display with illumination control
US7777714B2 (en) * 2004-05-04 2010-08-17 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive width
US7532192B2 (en) * 2004-05-04 2009-05-12 Sharp Laboratories Of America, Inc. Liquid crystal display with filtered black point
US7612757B2 (en) * 2004-05-04 2009-11-03 Sharp Laboratories Of America, Inc. Liquid crystal display with modulated black point
US7505018B2 (en) * 2004-05-04 2009-03-17 Sharp Laboratories Of America, Inc. Liquid crystal display with reduced black level insertion
US7023451B2 (en) * 2004-06-14 2006-04-04 Sharp Laboratories Of America, Inc. System for reducing crosstalk
US7556836B2 (en) * 2004-09-03 2009-07-07 Solae, Llc High protein snack product
US7898519B2 (en) * 2005-02-17 2011-03-01 Sharp Laboratories Of America, Inc. Method for overdriving a backlit display
US8050511B2 (en) * 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US8050512B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US7525528B2 (en) * 2004-11-16 2009-04-28 Sharp Laboratories Of America, Inc. Technique that preserves specular highlights
US8121401B2 (en) * 2006-01-24 2012-02-21 Sharp Labortories of America, Inc. Method for reducing enhancement of artifacts and noise in image color enhancement
US9143657B2 (en) * 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8941580B2 (en) * 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight
US20090108009A1 (en) 2007-10-27 2009-04-30 Sar Holdings International Limited Silicone Baby Products
TW200941076A (en) * 2008-03-31 2009-10-01 Ind Tech Res Inst Color cholesteric liquid crystal display devices and fabrication methods thereof
US20140274439A1 (en) * 2013-03-15 2014-09-18 Sanwood Llc Impact Indication and Data Tracking Devices and Methods
CA2962899C (en) 2014-09-29 2022-10-04 Robert Dale Tekolste Architectures and methods for outputting different wavelength light out of waveguides
EP4173550A1 (en) 2015-03-16 2023-05-03 Magic Leap, Inc. Diagnosing and treating health ailments
US10690826B2 (en) * 2015-06-15 2020-06-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
AU2017246901B2 (en) 2016-04-08 2022-06-02 Magic Leap, Inc. Augmented reality systems and methods with variable focus lens elements
EP4235237A1 (en) 2016-05-12 2023-08-30 Magic Leap, Inc. Distributed light manipulation over imaging waveguide
CN110178077B (en) 2016-11-18 2022-08-30 奇跃公司 Multilayer liquid crystal diffraction grating for redirecting light with a wide range of incident angles
IL266669B2 (en) 2016-11-18 2023-11-01 Magic Leap Inc Spatially variable liquid crystal diffraction gratings
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
KR20190082303A (en) 2016-11-18 2019-07-09 매직 립, 인코포레이티드 Waveguide Optical Multiplexer Using Crossed Gratings
EP4002000A1 (en) 2016-12-08 2022-05-25 Magic Leap, Inc. Diffractive devices based on cholesteric liquid crystal
KR102550742B1 (en) 2016-12-14 2023-06-30 매직 립, 인코포레이티드 Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
IL307783A (en) 2017-01-23 2023-12-01 Magic Leap Inc Eyepiece for virtual, augmented, or mixed reality systems
KR102483970B1 (en) 2017-02-23 2022-12-30 매직 립, 인코포레이티드 Variable-focus virtual image devices based on polarization conversion
CN110637249B (en) 2017-03-21 2022-07-01 奇跃公司 Optical device, head-mounted display, imaging system and method of imaging an object
EP4296753A3 (en) 2017-09-21 2024-06-12 Magic Leap, Inc. Augmented reality display with waveguide configured to capture images of eye and/or environment
US10852547B2 (en) 2017-12-15 2020-12-01 Magic Leap, Inc. Eyepieces for augmented reality display system
US11237393B2 (en) 2018-11-20 2022-02-01 Magic Leap, Inc. Eyepieces for augmented reality display system
WO2020257469A1 (en) 2019-06-20 2020-12-24 Magic Leap, Inc. Eyepieces for augmented reality display system
CN112040052B (en) * 2020-08-12 2022-05-17 维沃移动通信有限公司 Detection module and electronic equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533399A (en) * 1965-08-02 1970-10-13 Westinghouse Electric Corp Temperature sensing means and methods
FR2189767B1 (en) * 1972-06-23 1976-06-11 Western Electric Co
US3978580A (en) * 1973-06-28 1976-09-07 Hughes Aircraft Company Method of fabricating a liquid crystal display
JPS5410501B2 (en) * 1974-11-14 1979-05-07
GB1571496A (en) * 1976-05-04 1980-07-16 Standard Telephones Cables Ltd Cholesteric liquid crystal cells
AT369901B (en) * 1976-06-25 1983-02-10 Rupert Dipl Ing Dr Chabicovsky METHOD FOR PRODUCING ELECTRODES FOR LIQUID CRYSTAL CELLS
US4140016A (en) * 1977-04-07 1979-02-20 Becton, Dickinson And Company Novel compositions, devices and method
US4251137A (en) * 1977-09-28 1981-02-17 Rca Corporation Tunable diffractive subtractive filter
US4256787A (en) * 1978-05-03 1981-03-17 Massachusetts Institute Of Technology Orientation of ordered liquids and their use in devices
NL7808899A (en) * 1978-08-30 1980-03-04 Philips Nv DISPLAY WITH LIQUID CRYSTAL.
US4388139A (en) * 1980-07-14 1983-06-14 Fuller David L Thermosensing article and method of manufacture
US4398805A (en) * 1981-07-06 1983-08-16 General Electric Company Transflective liquid crystal display
NL8200069A (en) * 1982-01-11 1983-08-01 Philips Nv DISPLAY WITH LIQUID CRYSTAL.
JPS612130A (en) * 1984-06-14 1986-01-08 Sharp Corp Liquid crystal display element

Also Published As

Publication number Publication date
DE3466085D1 (en) 1987-10-15
GB2143323A (en) 1985-02-06
EP0132077A1 (en) 1985-01-23
EP0132077B1 (en) 1987-09-09
GB8318863D0 (en) 1983-08-10
JPS6052890A (en) 1985-03-26
GB2143323B (en) 1987-03-25
US4834500A (en) 1989-05-30
GB8417499D0 (en) 1984-08-15

Similar Documents

Publication Publication Date Title
JPH0564358B2 (en)
US5148302A (en) Optical modulation element having two-dimensional phase type diffraction grating
EP1234207B1 (en) Bistable nematic liquid crystal device
CA1151273A (en) Orientation of ordered liquids and their use in devices
CA1262485A (en) Encapsulated liquid crystal material, apparatus and method
US6166790A (en) Polarizer, optical element, lighting device and liquid crystal display
US4850681A (en) Optical modulation device
KR970000345B1 (en) Encapsulated liquid crystal and device and making method for using it
US6061107A (en) Bistable polymer dispersed cholesteric liquid crystal displays
EP0808476B1 (en) Liquid crystal device alignment
EP2506065A1 (en) Identification medium and identification method therefore
GB2173605A (en) Optical diffraction device
EP0278721A2 (en) Electro-optical devices and methods for making them
US4844596A (en) Aligning and distorting features in enhanced scattering voltage sensitive encapsulated liquid crystal
Date et al. Droplet size effect on the memory-mode operating temperature of smectic-A holographic polymer dispersed liquid crystal
JP2000035576A (en) Film of light transmission body and its manufacture, laminated film and liquid crystal display device using them
JPH09218421A (en) Reflection type liquid crystal display device
FI106227B (en) Volume phase hologram with liquid crystal in the micro-cavities between the edges
KR100582990B1 (en) Polarization Grating Device Using Liquid Crystals And Its Manufacturing Method
Sutherland et al. Periodic polymer-dispersed liquid crystal structures
JPH0525101B2 (en)
JP3155221B2 (en) Reflective liquid crystal display
JPH1172619A (en) Polarizing material
US5539556A (en) Light-scattering mode liquid crystal display device, and a process for production thereof, having a transparent insoluble liquid material
USRE38500E1 (en) Polarizer, optical element, lighting device and liquid crystal display