JPH0564354A - Accident section separating method for power distribution - Google Patents

Accident section separating method for power distribution

Info

Publication number
JPH0564354A
JPH0564354A JP24457591A JP24457591A JPH0564354A JP H0564354 A JPH0564354 A JP H0564354A JP 24457591 A JP24457591 A JP 24457591A JP 24457591 A JP24457591 A JP 24457591A JP H0564354 A JPH0564354 A JP H0564354A
Authority
JP
Japan
Prior art keywords
accident
current
fault current
fault
current limiter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24457591A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Sugiyama
喜之 杉山
Kazuyuki Tsurunaga
和行 鶴永
Daisuke Ito
大佐 伊藤
Takamitsu Tada
孝光 多田
Hiroyuki Okumura
博行 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24457591A priority Critical patent/JPH0564354A/en
Publication of JPH0564354A publication Critical patent/JPH0564354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To make it possible to have the minimum isolation of accident section and minimize the power interrupted section by attaching a superconducting current limiter to a section switch and by setting its operation value to the accident voltage value. CONSTITUTION:Two power distribution lines are connected in a loop form through a plurality of section switches 3 (3a to 3e), and a current limiter 4 (4a to 4e) for limiting the accident current and an overcurrent relay 15 for monitoring an accident current are connected to each point of said switch. A quench sensor 13 is attached to each end of a trigger coil 12 of said current limiter 4. Operation value of limiting value 4 is properly selected for the short-circuit current value during the accident at power distribution line; at the time of accident on the line, a superconducting current limiter 4 which is the closest to the accident point is operated and accident is eased, and the accident current after limiting is removed by the section switch for load current switching based on the operation output of the quench sensor 13. By doing this, accident isolation can be performed at a high speed at the same time with the accident occurrence, and power interruption time period can be reduced and power interruption range can be minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力供給の高信頼度化の
ため2つの配電線をループ状にした配電系統において、
限流装置及び区分開閉器を組み合わせることで、配電線
事故時に事故区間以外はき線の電圧低下を発生せずに区
間の分離を行なうもので、これにより停電時間の極小化
も同時に実現するための配電用事故区間分離方式に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power distribution system in which two power distribution lines are looped in order to improve the reliability of power supply.
By combining a current limiting device and a division switch, sections other than the fault section can be separated without causing a voltage drop in the feeder when a fault occurs in the distribution line, so that the blackout time can be minimized at the same time. The present invention relates to an accident section separation method for power distribution.

【0002】[0002]

【従来の技術】配電線は網の目のように張り巡らされて
いるが一般的にはループ状ではなく、常開点の開閉器を
開路して運用する放射状のシステム構成となっている。
これは事故区間分離装置が放射状系統でしか使用できな
いためであり、各き線には区分開閉器及び事故捜査器が
区分点に設置されている。図10が従来の配電線における
事故分離装置の構成を、また図11に時限式事故捜査器の
構成例を示す。図10では1が変電所のしゃ断器であり、
2が配電線の第2区間を、3が配電線の負荷電流を開閉
するための区分開閉器を、5,6が夫々配電線の第2区
間,第3区間を、21が事故点の判定と区間分離の制御を
行なう時限式事故捜査器で、20が系統電圧を逓降し低電
圧を与えるための電源変圧器を示す。
2. Description of the Related Art Distribution lines are stretched around like a mesh, but generally not in a loop form, but in a radial system configuration in which a switch at a normally open point is opened to operate.
This is because the accident segmentation device can only be used in a radial system, and each feeder has a division switch and an accident investigation device installed at the division point. FIG. 10 shows the configuration of a conventional accident isolation device in a distribution line, and FIG. 11 shows an example of the configuration of a timed type accident investigation device. In Figure 10, 1 is the breaker of the substation,
2 is the second section of the distribution line, 3 is the section switch for opening and closing the load current of the distribution line, 5 and 6 are the second section and the third section of the distribution line, respectively, and 21 is the judgment of the fault point. 20 is a timed type accident investigation device for controlling section separation, and 20 is a power supply transformer for stepping down the system voltage to give a low voltage.

【0003】この場合、配電線の第2区間5の内部(図
中のF点)で事故が発生した場合には変電所の過電流継
電器が動作し、き線の元に設けられたしゃ断器1がトリ
ップし事故電流をしゃ断する。その後しゃ断器1が再閉
路されて変電所に近い第1区間2から順序送電されて行
く。き線が復電されると電源変圧器20を通じて時限式事
故捜査器21に電圧が印加され、内蔵された時限動作タイ
マ24が時間カウントを開始し、一定時間後に区分開閉器
3を投入する。もしも開閉器3が投入された時点でF点
の事故がまだ継続しておれば、再度大きな事故電流が流
れ、直ちに変電所のしゃ断器1がトリップする。この場
合、時限式事故捜査器21は投入動作をしたことを限時復
帰タイマ23でメモリしており、投入動作後の一定の時間
内に再度系統の電圧が喪失したこと(=電源変圧器の2
次側電圧が喪失したこと)の条件を内部のロジック回路
24,25,26で論理判断し、隣接する区間5が事故発生区
間であると判定する。
In this case, if an accident occurs inside the second section 5 of the distribution line (point F in the figure), the overcurrent relay of the substation operates and the breaker provided under the feeder. 1 trips and cuts off the accident current. After that, the circuit breaker 1 is closed again, and power is sequentially transmitted from the first section 2 near the substation. When the feeder is restored, a voltage is applied to the timed type accident investigation device 21 through the power transformer 20, the built-in timed operation timer 24 starts counting time, and the division switch 3 is turned on after a fixed time. If the accident at point F is still continuing when the switch 3 is turned on, a large accident current flows again and the breaker 1 at the substation immediately trips. In this case, the timed accident investigation device 21 stores the fact that the closing operation has been performed in the time-return timer 23, and that the system voltage has been lost again within a certain time after the closing operation (= 2 of the power transformer).
Secondary side voltage has been lost)
A logical judgment is made at 24, 25 and 26, and it is judged that the adjacent section 5 is an accident occurrence section.

【0004】[0004]

【発明が解決しようとする課題】上記したように事故捜
査器21が事故点を検出する方式では、配電線の事故時に
き線全体が停電してしまうこと、及び事故点の探査のた
めに変電所のしゃ断器1が2回もトリップし再閉路する
必要があることなど、停電する時間や影響を受ける範囲
がき線の全体に及ぶこと、などから供給信頼度の低い事
故区間分離方式であるといえる。本発明は上記事情に鑑
みてなされたものであり、供給信頼度の向上をはかるた
め、従来の放射状の系統で使用するものではなく、供給
信頼度の向上が可能となるループ状の系統でも使用する
ことができ、かつ負荷電流の開閉能率を持っている従来
の区分開閉器を有効に活用でき、事故電流限流装置(例
えば超電導限流器)を開閉器が設置された区分点に併設
し、もしも配電線に事故が発生した場合には事故区間に
隣接した区分点に設置した限流器が動作して事故電流を
限流した後、区分開閉器で事故電流を開路するように制
御し、変電所のしゃ断器によらずに配電線に発生した事
故を除去することができること、また事故区間に隣接し
た開閉器で区間分離が可能となることから、事故区間の
最小分離及び停電区間の極小課が共に可能となる配電用
事故区間分離方式を提供することを目的としている。
As described above, in the method in which the accident investigation device 21 detects an accident point, a power failure occurs in the entire feeder line at the time of a distribution line accident, and a substation is required to search for the accident point. Since the circuit breaker 1 at the location trips twice and needs to be reclosed, the power supply failure time and the affected area extend to the entire feeder line. I can say. The present invention has been made in view of the above circumstances, and in order to improve the supply reliability, it is not used in the conventional radial system, but is also used in a loop system capable of improving the supply reliability. In addition, it is possible to effectively utilize the conventional segmented switch that has a load current switching efficiency, and install a fault current limiting device (for example, a superconducting fault current limiter) at the point where the switch is installed. If an accident occurs on a distribution line, the fault current limiter installed at the division point adjacent to the faulty section operates to limit the fault current, and then the fault current is controlled to open by the sectional switch. , It is possible to eliminate the accident that occurred in the distribution line without using the breaker of the substation, and it is possible to separate the section with the switch adjacent to the accident section. The arrangement that enables the minimum section together And its object is to provide a use fault section separation method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は2つの配電線が複数の区分開閉器を介して
ループ状に接続され、その各開閉器設置点に事故電流を
限流する限流器及び事故電流監視用の過電流継電器を備
え、その限流器のトリガーコイルの両端部にはクエンチ
センサーを設け、配電線事故時の短絡電流値に対して限
流器の動作値が適正に選択されていて、配電線事故時に
は事故点に最も近い区分点の超電導限流器が動作して事
故電流を減少させると共に、過電流継電器と動作した限
流器のクエンチセンサーとの動作出力をもとに負荷電流
開閉用の区分開閉器で限流後の事故電流を除去し、また
限流器のクエンチセンサーが動作せずに監視用の過電流
継電器が動作したとき、線路電圧監視用の電圧継電器が
動作した場合は線路の残留電圧が設定レベル値以下の場
合に一定時間後に区分開閉器で事故電流を開路するよう
構成した。
In order to achieve the above object, according to the present invention, two distribution lines are connected in a loop through a plurality of section switches, and a fault current is limited to each switch installation point. Equipped with a current limiter and an overcurrent relay for fault current monitoring, with a quench sensor at both ends of the trigger coil of the current limiter, and the operating value of the current limiter against the short-circuit current value at the time of a distribution line fault. Is properly selected, the superconducting fault current limiter at the division point closest to the fault point operates at the time of a distribution line fault to reduce the fault current, and at the same time, operates with the overcurrent relay and the quench sensor of the activated fault current limiter. The fault current after current limiting is removed by the load current switching section switch based on the output, and line voltage monitoring is performed when the current limiting quench sensor does not operate and the monitoring overcurrent relay operates. Line if the voltage relay for Residual voltage is configured to open the fault current in the section switch after a predetermined time under the following set level value.

【作用】先ず、一方の電源側(A側)については、事故
点への事故電流ifaの電流値は事故点をはさむ位置に設
置された各限流器の動作値の間になるため、電源(A
側)の限流器が高速しゃ断し、電源側の開閉器を開路す
る。また、他方(B側)からの流入電流に対してはルー
プ点にある限流器が最も低いレベルで動作するよう設定
されているため、ループ点にて開閉器を開路する。
First, on one power supply side (A side), since the current value of the fault current ifa to the fault point is between the operating values of the fault current limiters installed at the positions sandwiching the fault point, the power source (A
Side) current limiter shuts off at high speed and opens the switch on the power supply side. Further, since the current limiter at the loop point is set to operate at the lowest level for the inflow current from the other side (B side), the switch is opened at the loop point.

【0006】[0006]

【実施例】以下図面を参照して実施例を説明する。図1
は本発明による配電用事故区間分離方式を説明するため
の全体構造図である。図1において、10a ,10b が配電
系統の電源A,Bで、1が変電所のしゃ断器を、2が配
電線の第1区間を、3n(nはa〜e)が区分点に設置さ
れている負荷電流開閉用の区分開閉器を、4nが同所に併
設した超電導限流装置を、5,6,7,8,9が夫々配
電線の第2,3,4,5,6区間を示している。ここで
使用される超電導限流器は図2に示される回路構成を持
ち、11が限流コイル、12がトリガーコイル、13はクエン
チ検出用センサー、14は変流器(CT)、15は事故監視
用の過電流継電器、16は電圧変成器(PT)、17は電圧
検出継電器(VD)、18は限時動作用のタイマ、19は引
き外し指令部を示す。
Embodiments will be described below with reference to the drawings. Figure 1
FIG. 3 is an overall structural diagram for explaining a distribution fault segmentation method according to the present invention. In FIG. 1, 10a and 10b are power supplies A and B of the distribution system, 1 is a breaker of the substation, 2 is the first section of the distribution line, and 3n (n is a to e) are installed at division points. 4n is a section switch for load current switching, 4n is a superconducting fault current limiter installed at the same place, and 5, 6, 7, 8 and 9 are the second, third, fourth, fifth and sixth sections of the distribution line. Is shown. The superconducting fault current limiter used here has the circuit configuration shown in Fig. 2, where 11 is a current limiting coil, 12 is a trigger coil, 13 is a quench detection sensor, 14 is a current transformer (CT), and 15 is an accident. An overcurrent relay for monitoring, 16 is a voltage transformer (PT), 17 is a voltage detection relay (VD), 18 is a timer for timed operation, and 19 is a trip command unit.

【0007】また限流器は事故区間の適正な分離を行な
うため、図4に示されるようなクエンチ時の動作電流特
性を備えるものとし、動作電流値の高い装置を電源に近
い点に設置する。また、ループ点にはもっとも低い電流
で動作するものを設置することとし、隣のき線での事故
である場合には、電圧継電器の条件で開閉器を開路する
ものとする。配電線事故時の装置の応動を図5及び図6
に示す。図に示す系統構成では、ループ点を境界にして
電源A側と電源B側の装置応動は対象な動作となる。即
ち、第6区間が第1区間と、第5区間と第2区間が、ま
た第4区間が第3区間と同じ動作となるため、ここでは
第2区間の事故と第3区間の事故の2つのケースについ
て説明する。
Further, the current limiting device is provided with operating current characteristics at the time of quenching as shown in FIG. 4 in order to properly separate the faulty section, and a device having a high operating current value is installed at a point near the power source. .. Also, the one that operates with the lowest current shall be installed at the loop point, and in the case of an accident on the adjacent feeder, the switch shall be opened under the condition of the voltage relay. Fig.5 and Fig.6 show the response of the device in case of a distribution line accident.
Shown in. In the system configuration shown in the figure, the device response on the power supply A side and the power supply B side with the loop point as a boundary is a target operation. That is, the sixth section has the same operation as the first section, the fifth section and the second section have the same operation, and the fourth section has the same operation as the third section. Two cases will be explained.

【0008】先ず、第3区間6のFA事故時について図
5を用いて説明する。電源A(10a)側の応動について
言えば、電源10a から事故点に流入する事故電流ifa の
電流値が限流器4bと4cの動作値の間になることから、図
4に示されたように限流器4bが高速動作し、直ちに開閉
器3bを開路して電源10a からの事故電流の流入を防止し
事故分離を行なう。即ち、cLa >ifa >cLb →4b動作→
3bで分離となる。また、電源10b 側の応動について言え
ば、電源10b からループ点を経由して事故電流ifb が流
入する。この場合、図3のようにループ点の限流器4cが
最も低いレベルで動作する設定であることから、この流
入する事故電流ifb に対し高速限流する。そして4cのク
エンチセンサーの動作条件で区分開閉器3cを開路し事故
点を電源10b から高速分離をする。即ち、cLd >ifb >
cLc →4c動作→3cで分離となる。なお、Zaは電源Aのイ
ンピーダンス、Zbは電源BのインピーダンスでZa>Zbの
関係にあり、動作レベル協調としてcLa >cLb >cLc <
cLd <cLe としてある。
First, an FA accident in the third section 6 will be described with reference to FIG. Speaking of the response on the power supply A (10a) side, the current value of the fault current ifa flowing from the power source 10a to the fault point is between the operating values of the fault current limiters 4b and 4c, as shown in Fig. 4. In addition, the current limiter 4b operates at high speed, and the switch 3b is immediately opened to prevent inflow of a fault current from the power source 10a and perform fault isolation. That is, cLa > ifa > cLb → 4b operation →
Separated at 3b. As for the response on the power supply 10b side, the fault current ifb flows from the power supply 10b via the loop point. In this case, as shown in FIG. 3, the current limiter 4c at the loop point is set to operate at the lowest level, so that the inflowing fault current ifb is quickly limited. Then, the switching switch 3c is opened under the operating conditions of the quench sensor of 4c, and the accident point is separated from the power supply 10b at high speed. That is, cLd>ifb>
cLc → 4c operation → 3c separates. Note that Za is the impedance of the power source A, Zb is the impedance of the power source B, and has a relationship of Za> Zb. As the operation level cooperation, cLa>cLb> cLc <
cLd <cLe.

【0009】もう1つの代表的な事故ケースとして第2
区間5のFB事故について図6を用いて説明する。この
ケースでは限流器4aは前述のFA事故の場合と同様に、
電源Aに近い区分点の限流器4aのみが動作して高速限流
動作を行なうと共に、クエンチセンサーで検出し、区分
開閉器3aに開路指令を出す。これにより電源10a からの
事故電流の高速しゃ断と高速区間分離が可能となる。即
ち、cLa >ifa →4a動作→3aで分離となる。一方電源B
側についての応動は、前のケースとは少し状況が異な
る。電源Bからの事故電流に対しては、最も低い動作レ
ベルを持つループ点の限流器4cが高速動作して電流を限
流する。つまり事故点に隣接した限流器4bでは限流しな
い。本発明では、系統条件を監視するため、電圧検出継
電器(VD)と過電流継電器を設置し、限流動作後の系
統電圧・電流の2つの判断条件で区間分離を行なうこと
にする。限流器4bに取り付けた電圧検出継電器17により
線路の残留電圧を判断し、それが設定レベルよりも低い
場合には限時継電器18を介して、事故電流監視用過電流
継電器15の動作条件とのAND条件で開閉器4bの開路指
令を出すものとする。図6の系統構成では、電源A側は
3つの区間で構成されているため、系統電圧の監視レベ
ルは電源電圧を区間数(ここでは3)で除した電圧値を
基本値(K)とし、ループ点に近い方からK,KX (区
間数−1)(Kの2倍の値)が判定値として使用され
る。つまり区分開閉器3b用にはE/3が、4a用にはE/
3×2
Second as another typical accident case
The FB accident in section 5 will be described with reference to FIG. this
In the case, the fault current limiter 4a is the same as in the case of the FA accident described above.
Only the fault current limiter 4a at the division point close to the power supply A operates and high-speed current limiting
Along with the operation, the quench sensor detects and classifies
It issues a circuit opening command to the switch 3a. This allows power from 10a
It enables high-speed interruption of fault current and high-speed segmentation. Immediately
After that, cLa> ifa → 4a operation → 3a. On the other hand, power source B
The response on the side is a bit different from the previous case.
It For the fault current from power supply B, the lowest operating
The current limiter 4c at the loop point with the bell operates at high speed to limit the current.
Shed. In other words, the current limiter 4b adjacent to the
Yes. In the present invention, in order to monitor the system condition, the voltage detection relay is
System with electric current (VD) and overcurrent relay installed after current limiting operation
Separation of sections based on two judgment conditions: general voltage and current
To By the voltage detection relay 17 attached to the fault current limiter 4b
Determine the residual voltage on the line and it is lower than the set level
In case of overcurrent for fault current monitoring via time relay 18.
When the AND condition with the operating condition of relay 15
An order shall be issued. In the system configuration of FIG. 6, the power source A side is
Since it consists of three sections, the level of system voltage monitoring
Is the voltage value obtained by dividing the power supply voltage by the number of sections (3 here)
Basic value (K), K, KX (division
Interval-1) (twice the value of K) is used as the judgment value
It In other words, E / 3 for the division switch 3b, E / for 4a
3x2  

【0010】図7は他の実施例の全体構造図である。本
実施例は放射状の配電線に適用した例である。図7にお
いて、図1と同一部分については同一符号を付して説明
を省略する。本実施例は一方の電源Aからループ点まで
の片端を示しており、図8に示される構成から明らかで
あるように、配電線事故時の短絡電流に対して、各限流
器の動作値が適正に選択され、図9に示されるようにな
っている。図9は本実施例の場合の限流器のクエンチ時
の特性図であり、本実施例ではF1 事故では、4aのみが
動作して限流動作を行なう。即ち、クエンチした限流器
はその状態をクエンチセンサー13で検出し、区分開閉器
3aに対して、開路指令部19を介して開路指令を出力す
る。なお、変電所の過電流継電器の動作時間は速くても
50ミリセカンド程度であり、これに対し限流装置は数ミ
リセカンドで動作し事故判定できることから、既設の過
電流継電器に対し充分な動作時間の強調がとれる。
FIG. 7 is an overall structural view of another embodiment. This embodiment is an example applied to a radial distribution line. 7, the same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. This embodiment shows one end from one power supply A to the loop point, and as is clear from the configuration shown in FIG. 8, the operating value of each fault current limiter with respect to the short circuit current at the time of a distribution line fault. Is properly selected and is as shown in FIG. FIG. 9 is a characteristic diagram of the current limiting device in the case of quenching in the case of the present embodiment. In the present embodiment, in the F1 accident, only 4a operates to perform the current limiting operation. That is, the quenched fault current limiter detects its state by the quench sensor 13,
An opening command is output to 3a via the opening command unit 19. Even if the operating time of the overcurrent relay at the substation is fast,
It is about 50 milliseconds, whereas the current limiting device operates in several milliseconds and can judge an accident, so that sufficient operation time can be emphasized for the existing overcurrent relay.

【0011】[0011]

【発明の効果】以上説明したように、本発明によれば超
電導限流器を区分開閉器に併設し、かつその動作値を系
統の事故電圧値を考慮したものとするよう構成したの
で、高信頼度な電力供給が要求される配電線において、
ループ状に系統構成した場合でも、その事故時に事故区
間に隣接した区分点の限流装置により高速限流すること
ができるため、従来の限流技術では全く困難となってい
た事故電流の第1波目からの限流が可能となると共に、
低い事故電流を負荷開閉用区分開閉器で開路すること
で、確実な事故区間の判定と最適系統分離を即座に実施
することが可能となる。これにより従来は2回以上も再
閉路を実施していたものが、事故発生と同時に高速度に
事故分離が可能となり、停電時間の低減及び停電範囲の
極小化を実現できることになる。
As described above, according to the present invention, since the superconducting fault current limiter is provided side by side with the switchgear and the operating value thereof is set in consideration of the fault voltage value of the system, For distribution lines that require reliable power supply,
Even if the system is configured in a loop, the current limiting device at the section point adjacent to the fault section can perform high-speed current limiting at the time of the accident. It becomes possible to limit the current from the wave,
By opening a low fault current with the load switching switch, it is possible to immediately perform a reliable fault segment determination and optimal system separation. As a result, although the circuit has been reclosed twice or more in the past, the accident can be separated at a high speed at the same time as the occurrence of the accident, and the power outage time can be reduced and the power outage range can be minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による配電用事故区間分離方式を説明す
るための全体構成例図。
FIG. 1 is an overall configuration diagram for explaining a power distribution accident section separation method according to the present invention.

【図2】超電導限流器の構成例図。FIG. 2 is a structural example diagram of a superconducting fault current limiter.

【図3】超電導限流器の設置条件例図。FIG. 3 is a diagram showing an example of installation conditions of a superconducting fault current limiter.

【図4】超電導限流器の動作電流値の特性例図。FIG. 4 is a characteristic example diagram of an operating current value of a superconducting fault current limiter.

【図5】配電線の第3区間のFA事故時の事故分離方式
を示す図。
FIG. 5 is a diagram showing an accident separation method at the time of an FA accident in the third section of the distribution line.

【図6】配電線の第2区間のFB事故時の事故分離方式
を示す図。
FIG. 6 is a diagram showing an accident separation method at the time of an FB accident in the second section of the distribution line.

【図7】他の実施例を説明する全体構成図。FIG. 7 is an overall configuration diagram illustrating another embodiment.

【図8】他の実施例で適用する超電導限流器の構成例
図。
FIG. 8 is a structural example view of a superconducting fault current limiter applied in another embodiment.

【図9】他の実施例で適用する超電導限流器の動作電流
値の特性例図。
FIG. 9 is a characteristic example diagram of an operating current value of a superconducting fault current limiter applied in another embodiment.

【図10】従来の配電線における事故分離装置の構造図。FIG. 10 is a structural diagram of a conventional accident isolation device for a distribution line.

【図11】時限式事故捜査器の構造図。FIG. 11 is a structural diagram of a timed accident investigation device.

【符号の説明】[Explanation of symbols]

1 配電用しゃ断器 2,5,6,7,8,9 各区間 3a〜3e 区分開閉器 4a〜4e 超電導限流器 10a ,10b 電源 11 限流コイル 12 トリガーコイル 13 クエンチセンサー 14 変流器 15 過電流継電器 16 電圧変成器 17 電圧検出継電器 18 限時継電器 19 引き外し指令部 1 Distribution breaker 2, 5, 6, 7, 8, 9 Each section 3a to 3e Sectional switch 4a to 4e Superconducting fault current limiter 10a, 10b Power supply 11 Current limiting coil 12 Trigger coil 13 Quench sensor 14 Current transformer 15 Overcurrent relay 16 Voltage transformer 17 Voltage detection relay 18 Time delay relay 19 Tripping command section

フロントページの続き (72)発明者 多田 孝光 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 奥村 博行 東京都府中市東芝町1番地 株式会社東芝 府中工場内Front page continuation (72) Inventor Takamitsu Tada 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Headquarters Office (72) Inventor Hiroyuki Okumura 1st Toshiba Town, Fuchu-shi, Tokyo Inside Toshiba Fuchu Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2つの配電線が複数の区分開閉器を介し
てループ状に接続され、その各開閉器設置点に事故電流
を限流する限流器及び事故電流監視用の過電流継電器を
備え、その限流器のトリガーコイルの両端部にはクエン
チセンサーを設け、配電線事故時の短絡電流値に対して
限流器の動作値が適正に選択されていて、配電線事故時
には事故点に最も近い区分点の超電導限流器が動作して
事故電流を減少させると共に、過電流継電器と動作した
限流器のクエンチセンサーとの動作出力ともとに負荷電
流開閉用の区分開閉器で限流後の事故電流を除去し、ま
た限流器のクエンチセンサーが動作せずに監視用の過電
流継電器が動作したとき、線路電圧監視用の電圧継電器
が動作した場合は線路の残留電圧が設定レベル値以下の
場合に一定時間後に区分開閉器で事故電流を開路するこ
とを特徴とする配電用事故区間分離方式。
1. Two current distribution lines are connected in a loop through a plurality of section switches, and a fault current limiter for limiting a fault current and an overcurrent relay for fault current monitoring are installed at each switch installation point. A quench sensor is provided at both ends of the trigger coil of the fault current limiter, and the operating value of the fault current limiter is properly selected for the short-circuit current value at the time of a fault in the distribution line. The superconducting fault current limiter at the nearest division point operates to reduce the fault current, and the operation output of the overcurrent relay and the quench sensor of the activated current limiter are both limited by the division switch for switching the load current. When the overcurrent relay for monitoring operates by removing the fault current after the flow and the quench sensor of the fault current limiter does not operate, the residual voltage of the line is set when the voltage relay for monitoring the line voltage operates. After a certain amount of time when the level value is below A fault section separation method for power distribution, which is characterized by opening a fault current with a division switch.
【請求項2】 配電線上に事故区間を分離するための区
分開閉器とその開閉器設置点に事故電流を限流する限流
器とを複数個備え、その限流器のトリガーコイルの両端
部にはクエンチセンサーを備え、配電線事故時の短絡電
流値に対し各限流器の動作値が適正に選択されており、
配電線事故時には事故点に最も近い区分点の超電導限流
器が高速に動作して事故電流を減少させると共に、前記
クエンチセンサーの出力をもとに負荷電流開閉用の区分
開閉器で限流後の事故電流を開路することを特徴とする
配電用事故区間分離方式。
2. A plurality of section switches for separating fault sections on a distribution line and a plurality of fault current limiters for limiting fault current at the switch installation points, and both ends of a trigger coil of the fault current limiter. Equipped with a quench sensor, the operating value of each fault current limiter is properly selected for the short-circuit current value at the time of a distribution line accident,
In the event of a distribution line accident, the superconducting fault current limiter at the division point closest to the accident point operates at high speed to reduce the fault current, and after the current is cut off by the division switch for switching the load current based on the output of the quench sensor. A fault segment separation method for power distribution, which is characterized by opening the fault current of.
JP24457591A 1991-08-29 1991-08-29 Accident section separating method for power distribution Pending JPH0564354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24457591A JPH0564354A (en) 1991-08-29 1991-08-29 Accident section separating method for power distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24457591A JPH0564354A (en) 1991-08-29 1991-08-29 Accident section separating method for power distribution

Publications (1)

Publication Number Publication Date
JPH0564354A true JPH0564354A (en) 1993-03-12

Family

ID=17120762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24457591A Pending JPH0564354A (en) 1991-08-29 1991-08-29 Accident section separating method for power distribution

Country Status (1)

Country Link
JP (1) JPH0564354A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209151A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Loop operational system in electrical distribution system and method
JP2008042991A (en) * 2006-08-02 2008-02-21 Kansai Electric Power Co Inc:The Looping distribution system
JP2008278701A (en) * 2007-05-02 2008-11-13 Kansai Electric Power Co Inc:The Loop distribution system
JPWO2014122929A1 (en) * 2013-02-07 2017-01-26 日本電気株式会社 Power control system
JP2017208999A (en) * 2016-05-11 2017-11-24 ディーラボラトリー スウェーデン エービー Method and device for fault clearing in power network with ring-feed-loop
US10170931B2 (en) 2013-02-07 2019-01-01 Nec Corporation Electric power control system
KR102175998B1 (en) * 2019-07-15 2020-11-06 성균관대학교산학협력단 Protection method, apparatus and system for multi-terminal dc distribution system using power-semiconductor-type fault current limiter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209151A (en) * 2006-02-03 2007-08-16 Hitachi Ltd Loop operational system in electrical distribution system and method
JP2008042991A (en) * 2006-08-02 2008-02-21 Kansai Electric Power Co Inc:The Looping distribution system
JP2008278701A (en) * 2007-05-02 2008-11-13 Kansai Electric Power Co Inc:The Loop distribution system
JPWO2014122929A1 (en) * 2013-02-07 2017-01-26 日本電気株式会社 Power control system
US10170931B2 (en) 2013-02-07 2019-01-01 Nec Corporation Electric power control system
JP2017208999A (en) * 2016-05-11 2017-11-24 ディーラボラトリー スウェーデン エービー Method and device for fault clearing in power network with ring-feed-loop
KR102175998B1 (en) * 2019-07-15 2020-11-06 성균관대학교산학협력단 Protection method, apparatus and system for multi-terminal dc distribution system using power-semiconductor-type fault current limiter

Similar Documents

Publication Publication Date Title
CN1032835C (en) Method of and device for protecting electrical power system
EP2494571B1 (en) An hvdc breaker and control apparatus for controlling an hvdc breaker
CA2365737C (en) Loop restoration scheme for distribution feeders
US6426856B1 (en) Method for monitoring a protective gear
CN107046278A (en) A kind of DC Line Fault current limliting module and protection scheme based on voltage source converter
US8861154B2 (en) Recloser device and method of operation
JPH0564354A (en) Accident section separating method for power distribution
JPH06260308A (en) Neutral-point ground apparatus
US5793594A (en) Predictive control circuit and method for circuit interrupter
US5812353A (en) Current limiter for electrical transmission/distribution protection systems
CN116742574A (en) Power distribution system, solid-state circuit breaker and circuit protection method
JP2720048B2 (en) Distribution line protection relay device and distribution line device
JP3227653B2 (en) Power system protection controller
JP2000156935A (en) Method and apparatus for controlling self power generation system
JP3081494B2 (en) Automatic section switch
JP3760759B2 (en) Overcurrent relay device
KR102512645B1 (en) High Speed DC Circuit Breaker
KR870000710B1 (en) Automatic sectionalizing breaking switch
JPS6242448B2 (en)
JPS6338938B2 (en)
JPH03265413A (en) Distribution line protective device
JPH1014100A (en) Ground self-breaking type automatic section switch
US4974112A (en) Apparatus for improved protection against lower magnitude faults in an electrical power distribution system
CN116826670A (en) Method and system for protecting fracture flashover of main transformer high-voltage side circuit breaker of nuclear power plant
RU26693U1 (en) DEVICE FOR PROTECTING A MULTI-PHASE ELECTRIC TRANSMISSION LINE FROM THE CONSEQUENCES OF A ZERO WIRE TERMINATION