JPH0564348A - Ground fault phase judging equipment - Google Patents

Ground fault phase judging equipment

Info

Publication number
JPH0564348A
JPH0564348A JP22019591A JP22019591A JPH0564348A JP H0564348 A JPH0564348 A JP H0564348A JP 22019591 A JP22019591 A JP 22019591A JP 22019591 A JP22019591 A JP 22019591A JP H0564348 A JPH0564348 A JP H0564348A
Authority
JP
Japan
Prior art keywords
phase
ground fault
zero
phase voltage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22019591A
Other languages
Japanese (ja)
Other versions
JP2796455B2 (en
Inventor
Kazuo Morishita
和夫 森下
Koichi Matsumura
幸一 松村
Koji Ishibashi
孝二 石橋
Kiichi Shiraishi
喜一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU DENKI SEIZO KK
Tohoku Electric Power Co Inc
Original Assignee
TOHOKU DENKI SEIZO KK
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU DENKI SEIZO KK, Tohoku Electric Power Co Inc filed Critical TOHOKU DENKI SEIZO KK
Priority to JP22019591A priority Critical patent/JP2796455B2/en
Publication of JPH0564348A publication Critical patent/JPH0564348A/en
Application granted granted Critical
Publication of JP2796455B2 publication Critical patent/JP2796455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To provide a ground fault phase judging equipment having high reliability by judging the ground fault phase through pursuing the phase closest to the phase advance of 90 deg. relative to zero phase voltage during ground fault. CONSTITUTION:Ground fault phase voltages Va, Vb and Vc are made the same in phase as zero phase voltage Vo by the phase-shifting processing. And the phase difference between the zero phase voltage Vo and three-phase voltages Va, Vb and Vc or the scalar product is arithmetically processed. And the phase having the least phase difference or the phase practically having the maximum scalar product, and the phase having the lowest level among the three-phase voltages Va, Vb and Vc are selectively judged as the ground fault phase depending on the level of zero phase voltage Vo. By doing this, the arithmetic processing can be simplified, the ground fault phase can be accurately judged even though the phase of zero phase voltage changes due to ground fault resistance during ground fault, and the judgment with high reliability can be made.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、送配電線の地絡相を
判定する地絡相判定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault phase determining apparatus for determining a ground fault phase of a transmission / distribution line.

【0002】[0002]

【従来の技術】周知のように、非接地系の総配電線では
一線地絡が発生すると、零相電圧Voのベクトルは、地
絡点抵抗値により図6に示すように半円を描いて変化す
る。ここで、図7は、地絡相を判定する場合の特性の一
例を示している。この特性を実現するために、従来で
は、基準となる相電圧と零相電圧Voとの位相差を計算
し、その位相差の値により地絡相を判定しているため、
演算処理が複雑で時間がかかるという問題が生じる。ま
た、特性上では、検出範囲の境界が零相電圧Voの位相
の変化領域の両端に接しているため、この付近では誤差
により誤不動作になり易いという不都合もある。
2. Description of the Related Art As is well known, when a one-line ground fault occurs in an ungrounded total distribution line, the vector of the zero-phase voltage Vo draws a semicircle as shown in FIG. Change. Here, FIG. 7 shows an example of characteristics in the case of determining the ground fault phase. In order to realize this characteristic, conventionally, the phase difference between the reference phase voltage and the zero-phase voltage Vo is calculated, and the ground fault phase is determined by the value of the phase difference.
There is a problem that arithmetic processing is complicated and takes time. Further, in terms of characteristics, since the boundary of the detection range is in contact with both ends of the phase change region of the zero-phase voltage Vo, there is also a disadvantage that a malfunction easily occurs due to an error in the vicinity.

【0003】[0003]

【発明が解決しようとする課題】以上のように、従来の
地絡相の判定手段では、演算処理が複雑で時間を要する
とともに、信頼性が低いという問題を有している。
As described above, the conventional ground fault phase determination means have problems that the arithmetic processing is complicated and time-consuming, and that the reliability is low.

【0004】そこで、この発明は上記事情を考慮してな
されたもので、演算処理が簡易であるとともに、地絡時
の地絡抵抗により零相電圧の位相が変化しても正確に地
絡相を判定することができる信頼性の高い極めて良好な
地絡相判定装置を提供することを目的とする。
Therefore, the present invention has been made in consideration of the above circumstances, and the arithmetic processing is simple, and even if the phase of the zero-phase voltage changes due to the ground fault resistance at the time of a ground fault, the ground fault phase is accurately measured. It is an object of the present invention to provide an extremely favorable ground fault phase determination device with high reliability capable of determining the.

【0005】[0005]

【課題を解決するための手段】この発明に係る地絡相判
定装置は、非接地系またはリアクトル接地系の送配電線
の一線地絡時に、零相電圧及びその位相が地絡抵抗の値
により変化する系統に使用されるものを対象としてい
る。そして、零相電圧及び3相の相電圧に対して地絡相
の相電圧と零相電圧とが同位相となるように移相処理を
施す移相手段と、この移相手段で移相処理された零相電
圧と3相の相電圧との位相差に対応した値をそれぞれ演
算する演算手段と、この演算手段の各演算結果を比較し
て零相電圧との位相差が最も少ない相を地絡相と判定す
る比較手段と、3相の相電圧をレベル比較して最もレベ
ルの低い相を地絡相と判定する判定手段と、零相電圧の
レベルに応じて比較手段及び判定手段のいずれかの判定
結果を選択する選択手段とを備えるようにしたものであ
る。
A ground fault phase determining apparatus according to the present invention is configured such that a zero-phase voltage and its phase depend on a value of a ground fault resistance at the time of a single ground fault of a transmission / distribution line of an ungrounded system or a reactor grounded system. Intended for use in changing systems. Then, phase shifting means for performing phase shifting processing so that the ground-phase phase voltage and the zero-phase voltage are in phase with respect to the zero-phase voltage and the three-phase voltage, and the phase shifting processing by this phase shifting means. The calculation means for calculating the values corresponding to the phase difference between the zero-phase voltage and the phase voltage of the three phases are compared with the calculation results of this calculation means, and the phase having the smallest phase difference with the zero-phase voltage is selected. Comparing means for determining the ground fault phase, determining means for comparing the phase voltages of the three phases to determine the phase with the lowest level as the ground fault phase, and comparing means and determining means according to the level of the zero phase voltage. A selection means for selecting one of the determination results is provided.

【0006】また、この発明に係る地絡相判定装置は、
上記の対象において、零相電圧及び3相の相電圧に対し
て地絡相の相電圧と零相電圧とが同位相となるように移
相処理を施す移相手段と、この移相手段で移相処理され
た零相電圧と3相の相電圧とのスカラ積をそれぞれ演算
する演算手段と、この演算手段の各演算結果を比較し実
質的に最大値となった相を地絡相と判定する比較手段
と、3相の相電圧をレベル比較して最もレベルの低い相
を地絡相と判定する判定手段と、零相電圧のレベルに応
じて前記比較手段及び判定手段のいずれかの判定結果を
選択する選択手段とを備えるようにしたものである。
Further, the ground fault phase determining apparatus according to the present invention is
In the above object, a phase shift means for performing a phase shift process for the zero-phase voltage and the three-phase phase voltage so that the ground-phase phase voltage and the zero-phase voltage have the same phase, and the phase shift means Computation means for computing the scalar product of the phase-shifted zero-phase voltage and the phase voltage of the three phases respectively, and the computation results of this computation means are compared, and the phase having the substantially maximum value is the ground fault phase. One of the comparing means and the determining means, which compares the phase voltages of the three phases and determines the lowest phase as the ground fault phase, and the comparing means and the determining means according to the level of the zero phase voltage. A selection means for selecting the determination result is provided.

【0007】[0007]

【作用】上記のような構成によれば、地絡相の相電圧と
零相電圧とが同位相となるように移相処理を施した零相
電圧と3相の相電圧との位相差またはスカラ積を演算
し、この位相差が最も少ない相またはスカラ積が実質的
に最大となった相と、3相の相電圧のうち最もレベルの
低い相とを、零相電圧のレベルに応じて選択的に地絡相
として判定するようにしたので、演算処理を簡易にする
ことができるとともに、地絡時の地絡抵抗により零相電
圧の位相が変化しても正確に地絡相を判定することがで
き、信頼性の高い判定を行なうことができる。
According to the above configuration, the phase difference between the zero-phase voltage and the three-phase voltage, which are phase-shifted so that the ground-phase phase voltage and the zero-phase voltage have the same phase, or The scalar product is calculated, and the phase with the smallest phase difference or the phase with the substantially maximum scalar product and the phase with the lowest level among the three phase voltages are determined according to the level of the zero-phase voltage. Since it is selectively judged as the ground fault phase, the calculation process can be simplified and the ground fault phase can be accurately judged even if the phase of the zero-phase voltage changes due to the ground fault resistance during ground fault. Therefore, it is possible to make a highly reliable determination.

【0008】[0008]

【実施例】まず、図5は、非接地系のA相地絡時におけ
る零相電圧Voのベクトル軌跡と、A,B,C三相の各
相電圧Va,Vb,Vcのベクトルとを示したものであ
るが、この図から明らかなように、零相電圧Voと地絡
したA相電圧Vaとの位相関係は、常に、A相電圧Va
が零相電圧Voに対して90°進むようになる。また、
この関係は、B,C相地絡時におけるB,C相電圧V
b,Vcと零相電圧Voとの位相関係についても同様に
成立する。そこで、この発明では、地絡時に零相電圧V
oに対して90°の位相進みに最も近い相を捜すことに
より地絡相を判定することを基本原理としている。
First, FIG. 5 shows a vector locus of the zero-phase voltage Vo and a vector of the phase voltages Va, Vb, and Vc of the three phases A, B, and C at the time of the A-phase ground fault of the ungrounded system. However, as is clear from this figure, the phase relationship between the zero-phase voltage Vo and the grounded A-phase voltage Va is always A-phase voltage Va.
Becomes 90 ° with respect to the zero-phase voltage Vo. Also,
This relationship is the B and C phase voltage V at the time of the B and C phase ground fault.
The phase relationship between b and Vc and the zero-phase voltage Vo is similarly established. Therefore, in this invention, the zero-phase voltage V
The basic principle is to determine the ground fault phase by searching for the phase closest to the phase advance of 90 ° with respect to o.

【0009】上記のような原理に基づくこの発明の一実
施例について、以下、図面を参照して詳細に説明する。
図1において、符号11,12,13,14は入力端子
で、それぞれA,B,C相の各相電圧Va,Vb,Vc
及び零相電圧Voが印加されている。なお、この場合の
零相電圧Voは、GPT3次巻線から送出されたものを
取り込んでいるため、図5及び図6に示した零相電圧V
oに比して位相が180°ずれたものとなっている。
An embodiment of the present invention based on the above principle will be described below in detail with reference to the drawings.
In FIG. 1, reference numerals 11, 12, 13, and 14 denote input terminals, and the phase voltages Va, Vb, and Vc of the A, B, and C phases, respectively.
And the zero-phase voltage Vo is applied. Since the zero-phase voltage Vo in this case is the one sent from the GPT tertiary winding, the zero-phase voltage V shown in FIGS. 5 and 6 is obtained.
The phase is 180 ° out of phase with that of o.

【0010】これら入力端子11〜14に印加された相
電圧Va,Vb,Vc及び零相電圧Voは、それぞれ、
補助PT15〜18により絶縁・降圧され、FLT(フ
ィルタ)回路19〜22においてノイズ成分が取り除か
れ、S/H(サンプル/ホールド)回路23〜26で入
力周波数の30°毎にサンプル/ホールドされた後、ア
ナログマルチプレクサ27により選択的にA/D(アナ
ログ/デジタル)変換回路28に導びかれて、デジタル
データVaD,VbD,VcD,VoDに変換される。
なお、このA/D変換回路28は、入力周波数が50H
zの場合には、1.67ms(600Hz)周期で各入
力のA/D変換を行なっている。
The phase voltages Va, Vb, Vc and the zero-phase voltage Vo applied to these input terminals 11 to 14 are respectively
It is insulated and stepped down by the auxiliary PTs 15 to 18, noise components are removed in the FLT (filter) circuits 19 to 22, and sampled / held at every 30 ° of the input frequency in the S / H (sample / hold) circuits 23 to 26. After that, the analog multiplexer 27 selectively guides it to an A / D (analog / digital) conversion circuit 28 to convert it into digital data VaD, VbD, VcD, VoD.
The input frequency of the A / D conversion circuit 28 is 50H.
In the case of z, A / D conversion of each input is performed at a cycle of 1.67 ms (600 Hz).

【0011】ここで、上記A/D変換回路28から出力
される、各相電圧Va,Vb,Vc及び零相電圧Voを
30°毎にA/D変換したデジタルデータVaD,Vb
D,VcD,VoDは、例えばデジタルデータVaDを
例にとると、図2に示すように、Va1,Va2,Va
3,……のデータ群でベクトル量である。そして、これ
らデジタルデータVaD,VbD,VcD,VoDは、
それぞれラッチ回路29〜32にラッチされた後、デジ
タルデータVaDがA相位相演算回路33とA相実効値
演算回路34とに供給され、デジタルデータVbDがB
相位相演算回路35とB相実効値演算回路36とに供給
され、デジタルデータVcDがC相位相演算回路37と
C相実効値演算回路38とに供給され、デジタルデータ
VoDが遅延回路39と零相電圧実効値演算回路40と
に供給される。
Here, digital data VaD, Vb obtained by A / D converting the phase voltages Va, Vb, Vc and the zero-phase voltage Vo output from the A / D conversion circuit 28 every 30 °.
Taking digital data VaD as an example, D, VcD, and VoD are Va1, Va2, and Va as shown in FIG.
It is a vector quantity in the data group of 3, ... Then, these digital data VaD, VbD, VcD, VoD are
After being respectively latched by the latch circuits 29 to 32, the digital data VaD is supplied to the A-phase phase arithmetic circuit 33 and the A-phase effective value arithmetic circuit 34, and the digital data VbD is B.
The phase / phase arithmetic circuit 35 and the B-phase effective value arithmetic circuit 36 are supplied, the digital data VcD is supplied to the C-phase phase arithmetic circuit 37 and the C-phase effective value arithmetic circuit 38, and the digital data VoD is supplied to the delay circuit 39 and zero. It is supplied to the phase voltage effective value calculation circuit 40.

【0012】上記遅延回路39は、デジタルデータVo
Dを90°遅延させたデジタルデータVoD´を、A,
B,C相位相演算回路33,35,37にそれぞれ出力
している。これにより、例えばA相地絡時における零相
電圧デジタルデータVoD´と地絡相であるA相電圧デ
ジタルデータVaDとは、図3に示すように同位相とな
る。なお、B,C相地絡時においても、零相電圧デジタ
ルデータVoD´と地絡相であるB,C相電圧デジタル
データVbD,VcDとが同位相となることはもちろん
である。ここで、A,B,C相位相演算回路33,3
5,37は、それぞれ下記の(1),(2),(3)式
に示す演算を行ない、その演算結果を比較回路41に出
力している。
The delay circuit 39 uses the digital data Vo.
The digital data VoD ′ obtained by delaying D by 90 ° is
It outputs to the B and C phase operation circuits 33, 35 and 37, respectively. As a result, for example, the zero-phase voltage digital data VoD ′ at the time of the A-phase ground fault and the A-phase voltage digital data VaD that is the ground fault phase have the same phase as shown in FIG. It is needless to say that the zero-phase voltage digital data VoD 'and the ground-phase B, C-phase voltage digital data VbD, VcD have the same phase even when the B, C-phase ground fault occurs. Here, the A, B, and C phase operation circuits 33 and 3
Reference numerals 5 and 37 perform the calculations shown in the following equations (1), (2), and (3), respectively, and output the calculation results to the comparison circuit 41.

【0013】 |VaD|・|VoD´|・cosθa/|VaD| =|VoD´|・cosθa ……(1) |VbD|・|VoD´|・cosθb/|VbD| =|VoD´|・cosθb ……(2) |VcD|・|VoD´|・cosθc/|VcD| =|VoD´|・cosθc ……(3)| VaD |. | VoD '| .cosθa / | VaD | = | VoD' | .cosθa (1) | VbD |. | VoD '| .cosθb / | VbD | = | VoD' | .cosθb ...... (2) | VcD | ・ | VoD '| ・ cosθc / | VcD | = | VoD' | ・ cosθc ...... (3)

【0014】ただし、θaは零相電圧デジタルデータV
oD´とA相電圧デジタルデータVaDとの位相角であ
り、θbは零相電圧デジタルデータVoD´とB相電圧
デジタルデータVbDとの位相角であり、θcは零相電
圧デジタルデータVoD´とC相電圧デジタルデータV
cDとの位相角である。ここで、上記(1)〜(3)式
の左辺の演算は、各相の相電圧デジタルデータVaD,
VbD,VcDと零相電圧デジタルデータVoD´との
各スカラ積を、それぞれの相電圧デジタルデータVa
D,VbD,VcDで割っているが、これはA/D変換
を30°毎に行なっているため90°前の値を簡単に取
り出すことができるので、A相を例にとると、下記の
(4)式に示すスカラ積の演算が簡単に行なえるためで
ある。
However, θa is the zero-phase voltage digital data V
oD ′ is the phase angle between the A-phase voltage digital data VaD, θb is the phase angle between the zero-phase voltage digital data VoD ′ and the B-phase voltage digital data VbD, and θc is the zero-phase voltage digital data VoD ′ and C. Phase voltage digital data V
It is the phase angle with cD. Here, the calculation on the left side of the above equations (1) to (3) is performed by the phase voltage digital data VaD,
The respective scalar products of VbD, VcD and the zero-phase voltage digital data VoD ′ are converted into respective phase voltage digital data Va.
It is divided by D, VbD, and VcD. Since this is because A / D conversion is performed every 30 °, the value 90 ° before can be easily taken out. This is because the scalar product shown in equation (4) can be easily calculated.

【0015】 |VaD|・|VoD´|・cosθa =Va・sinωt・Vo・sin(ωt+θa) +Va・sin(ωt+90°)・Vo・sin(ωt+θa+90°) ……(4)| VaD | · | VoD ′ | · cos θa = Va · sin ωt · Vo · sin (ωt + θa) + Va · sin (ωt + 90 °) · Vo · sin (ωt + θa + 90 °) (4)

【0016】そして、上記(1)〜(3)式の演算値を
比較すると、零相電圧デジタルデータVoD´の絶対値
|VoD´|は3つの式に共通であることから、地絡相
は、3つの位相角θa,θb,θcの中で0°に最も近
い相、つまり演算値が最大となった相であることにな
る。このため、比較回路41は、上記(1)〜(3)式
の演算値、つまりA,B,C相位相演算回路33,3
5,37の各演算出力の中で最大値となった相を地絡相
として出力する。図4は、このようにして地絡相を判定
したときの零相電圧Voの位相マージン、つまり理論上
の零相電圧Voの位相に対して、正確に地絡相を判定す
ることができる零相電圧Voの位相範囲を示している。
Comparing the calculated values of the equations (1) to (3), the absolute value | VoD '| of the zero-phase voltage digital data VoD' is common to the three equations, and therefore the ground fault phase is Of the three phase angles θa, θb, and θc, this is the phase closest to 0 °, that is, the phase having the maximum calculated value. For this reason, the comparison circuit 41 uses the calculated values of the above formulas (1) to (3), that is, the A, B, and C phase calculation circuits 33 and 3.
The phase having the maximum value among the respective calculation outputs of 5 and 37 is output as the ground fault phase. FIG. 4 shows that the ground fault phase can be accurately determined with respect to the phase margin of the zero phase voltage Vo when the ground fault phase is thus determined, that is, the theoretical phase of the zero phase voltage Vo. The phase range of the phase voltage Vo is shown.

【0017】この図4に示す特性は、地絡相と進み相及
び遅れ相との相電圧位相角の1/2となるものであり、
最小でも30°あるので実際の零相電圧Voの位相の理
論値からのずれが大きくても10°程度であることを考
えれば十分である。しかしながら、上記(1)〜(3)
式による演算においては、零相電圧Voと各相電圧V
a,Vb,Vcとのスカラ積をそれぞれの相電圧Va,
Vb,Vcで割っているため、完全地絡近辺の相電圧が
非常に小さくなる範囲では誤差により正確な地絡相判別
ができなくなる。
The characteristic shown in FIG. 4 is 1/2 of the phase voltage phase angle between the ground fault phase and the lead and lag phases.
Since there is a minimum of 30 °, it is sufficient to consider that the deviation of the actual phase of the zero-phase voltage Vo from the theoretical value is about 10 ° even if it is large. However, the above (1) to (3)
In the calculation by the formula, the zero phase voltage Vo and each phase voltage V
The scalar product of a, Vb, and Vc is the phase voltage Va,
Since it is divided by Vb and Vc, an accurate ground fault phase determination cannot be performed due to an error in the range where the phase voltage near the complete ground fault becomes extremely small.

【0018】この場合の対策について、以下説明する。
零相電圧Voが完全地絡時の値の50%を越えたときに
は、地絡相の相電圧Va,Vb,Vcが最小となること
から、上記A,B,C相実効値演算回路34,36,3
8でA,B,C相の相電圧Va,Vb,Vcの実効値が
計算され、比較回路42で比較されて実効値が最小とな
った相が地絡相として出力される。
Countermeasures in this case will be described below.
When the zero-phase voltage Vo exceeds 50% of the value at the time of a complete ground fault, the phase voltages Va, Vb, Vc of the ground fault phase become the minimum, so that the A, B, C phase effective value calculation circuit 34, 36,3
At 8, the effective values of the phase voltages Va, Vb, and Vc of the A, B, and C phases are calculated, and the phase whose effective value is minimized by the comparison circuit 42 is output as the ground fault phase.

【0019】一方、零相電圧VoのデジタルデータVo
Dは、零相電圧実効値演算回路40において実効値が計
算され、比較回路43の正入力端+に供給される。この
比較回路43は、その負入力端−に基準値44が供給さ
れており、正入力端+の値が基準値44よりも大きくな
ると論理“1”を出力し、それ以外は論理“0”を出力
するものである。
On the other hand, the digital data Vo of the zero-phase voltage Vo
The effective value of D is calculated in the zero-phase voltage effective value calculation circuit 40, and is supplied to the positive input terminal + of the comparison circuit 43. The comparison circuit 43 is supplied with the reference value 44 at its negative input terminal −, outputs a logic “1” when the value at the positive input terminal + becomes larger than the reference value 44, and otherwise outputs a logic “0”. Is output.

【0020】ここで、上記基準値44は、地絡相判定を
零相電圧Voと相電圧Va,Vb,Vcとの位相により
判定するか、または相電圧Va,Vb,Vcの値で判定
するかを、零相電圧Voのどの値で切り替えるかを決め
るためのものであり、それぞれの手段による誤差が同程
度となるような値に設定されるのが望ましく、概略は完
全地絡時零相電圧Voの80〜95%程度となる。
Here, the reference value 44 is determined based on the phase of the zero phase voltage Vo and the phase voltages Va, Vb and Vc, or the value of the phase voltages Va, Vb and Vc. Is for determining which value of the zero-phase voltage Vo should be switched, and it is desirable to set the values so that the errors due to the respective means are approximately the same. It becomes about 80 to 95% of the voltage Vo.

【0021】そして、比較回路43の出力は、ゲート回
路45〜50に供給されており、出力が論理“1”のと
き、つまり零相電圧Voが基準値44よりも大きい値の
ときは、ゲート回路45〜47のゲートが開かれ、相電
圧Va,Vb,Vcが最小となった相を地絡相と判定し
た比較回路42の地絡相判定出力が、A,B,C相地絡
判定出力端子51〜53に出力される。また、比較回路
43の出力が論理“0”のとき、つまり零相電圧Voが
基準値44よりも小さい値のときは、ゲート回路48〜
50のゲートが開かれ、零相電圧デジタルデータVoD
´に最も近い位相の相電圧Va,Vb,Vcの相を地絡
相と判定した比較回路41の地絡相判定出力が、A,
B,C相地絡判定出力端子51〜53に出力される。以
上により、地絡電圧の全範囲に亘って正確な地絡相判定
を行なうことができる。
The output of the comparison circuit 43 is supplied to the gate circuits 45 to 50. When the output is a logic "1", that is, when the zero-phase voltage Vo is larger than the reference value 44, the gate is output. The gates of the circuits 45 to 47 are opened, and the ground fault phase determination output of the comparison circuit 42 that determines the phase in which the phase voltages Va, Vb, Vc are the minimum is the A, B, C phase ground fault determination. It is output to the output terminals 51 to 53. Further, when the output of the comparison circuit 43 is a logic “0”, that is, when the zero-phase voltage Vo is a value smaller than the reference value 44, the gate circuits 48 to 48.
The gate of 50 is opened, and the zero-phase voltage digital data VoD
The ground fault phase determination output of the comparison circuit 41 that determines the phase of the phase voltages Va, Vb, Vc of the phase closest to ‘A’ is A,
It is output to the B and C phase ground fault determination output terminals 51 to 53. As described above, accurate ground fault phase determination can be performed over the entire range of the ground fault voltage.

【0022】ここで、零相電圧Voと地絡相相電圧V
a,Vb,Vcとを同位相にするための手段としては、
相電圧Va,Vb,Vcを270°遅らせる手段や、零
相電圧Vo及び相電圧Va,Vb,Vcの両方を遅らせ
る手段がある。
Here, the zero phase voltage Vo and the ground fault phase voltage V
As a means for making a, Vb, and Vc in phase,
There are means for delaying the phase voltages Va, Vb, Vc by 270 ° and means for delaying both the zero-phase voltage Vo and the phase voltages Va, Vb, Vc.

【0023】さらに、地絡相を判定する他の手段として
は、上記A,B,C相位相演算回路33,35,37に
それぞれ下記の(5),(6),(7)式に示す演算を
行なわせることも考えられる。
Further, as another means for determining the ground fault phase, the A, B and C phase operation circuits 33, 35 and 37 are respectively represented by the following equations (5), (6) and (7). It is also possible to perform calculation.

【0024】 |VaD|・|VoD´|・cosθa ……(5) |VbD|・|VoD´|・cosθb ……(6) |VcD|・|VoD´|・cosθc ……(7)| VaD | · | VoD ′ | · cos θa …… (5) | VbD | · | VoD ′ | · cos θb …… (6) | VcD | · | VoD ′ | · cos θc …… (7)

【0025】上記(5)〜(7)式は、前記(1)〜
(3)式の左辺を相電圧デジタルデータVaD,Vb
D,VcDで割らない場合の値であって、零相電圧デジ
タルデータVoD´と各相電圧デジタルデータVaD,
VbD,VcDとのスカラ積である。このような演算に
よれば、零相電圧Voが完全地絡時の31/2 /2以下で
は地絡相が最大値を示すため、基準値44を完全地絡時
の70%程度とすることにより、零相電圧Voの全範囲
に渡り正確な地絡相判定を行なうことができる。
The above equations (5) to (7) are expressed by the above (1) to
The left side of the equation (3) is the phase voltage digital data VaD, Vb.
It is a value when it is not divided by D and VcD, that is, zero phase voltage digital data VoD ′ and each phase voltage digital data VaD,
It is a scalar product of VbD and VcD. According to such calculation, the zero-phase voltage Vo is 3 1/2 of that at the time of a complete ground fault. Since the ground fault phase shows the maximum value at / 2 or less, by setting the reference value 44 to about 70% of that in the case of a complete ground fault, accurate ground fault phase determination can be performed over the entire range of the zero phase voltage Vo. it can.

【0026】また、リアクタンス接地された送配電系で
は、一線地絡時の零相電圧と相電圧との関係は、A相地
絡の例で示すと、図8のように零相電圧Voと地絡相相
電圧Vaとの位相関係は、常にA相電圧Vaが零相電圧
Voに対して90°遅れになる。このことからリアクタ
ンス接地の場合においても、零相電圧Voと地絡相相電
圧とが同位相になるように移相してやれば、上記実施例
と同じ手段を用いて同様の効果を得ることができる。な
お、この発明は上記実施例に限定されるものではなく、
この外その要旨を逸脱しない範囲で種々変形して実施す
ることができる。
Further, in the power transmission and distribution system with the reactance grounded, the relationship between the zero-phase voltage and the phase voltage at the time of the one-line ground fault is shown by the example of the A-phase ground fault as shown in FIG. Regarding the phase relationship with the ground fault phase voltage Va, the A phase voltage Va is always delayed by 90 ° with respect to the zero phase voltage Vo. From this, even in the case of reactance grounding, if the zero-phase voltage Vo and the ground fault phase-phase voltage are phase-shifted so as to have the same phase, the same effect can be obtained using the same means as the above-mentioned embodiment. .. The present invention is not limited to the above embodiment,
In addition, various modifications can be made without departing from the scope of the invention.

【0027】[0027]

【発明の効果】以上詳述したようにこの発明によれば、
演算処理が簡易であるとともに、地絡時の地絡抵抗によ
り零相電圧の位相が変化しても正確に地絡相を判定する
ことができる信頼性の高い極めて良好な地絡相判定装置
を提供することができる。
As described in detail above, according to the present invention,
A highly reliable ground fault phase determination device that is simple in calculation processing and that can accurately determine the ground fault phase even if the phase of the zero-phase voltage changes due to the ground fault resistance during a ground fault. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る地絡相判定装置の一実施例を示
すブロック構成図。
FIG. 1 is a block configuration diagram showing an embodiment of a ground fault phase determination apparatus according to the present invention.

【図2】同実施例の相電圧デジタルデータVaDの詳細
を示す図。
FIG. 2 is a diagram showing details of phase voltage digital data VaD of the same embodiment.

【図3】同実施例の地絡相相電圧と零相電圧デジタルデ
ータVoD´とが同位相になることを説明するために示
す図。
FIG. 3 is a diagram shown for explaining that the ground fault phase voltage and the zero-phase voltage digital data VoD ′ in the embodiment have the same phase.

【図4】同実施例における零相電圧Voの位相マージン
を説明するために示す図。
FIG. 4 is a diagram for explaining the phase margin of the zero-phase voltage Vo in the same embodiment.

【図5】この発明の基本原理を説明するために示す図。FIG. 5 is a diagram for explaining the basic principle of the present invention.

【図6】地絡点抵抗による零相電圧Voの変化を示す
図。
FIG. 6 is a diagram showing a change in zero-phase voltage Vo due to a ground point resistance.

【図7】従来の地絡相判定特性を示す図。FIG. 7 is a diagram showing a conventional ground fault phase determination characteristic.

【図8】リアクトル接地系における地絡相相電圧と零相
電圧との位相関係を説明するために示す図。
FIG. 8 is a diagram shown for explaining a phase relationship between a ground fault phase voltage and a zero phase voltage in a reactor grounding system.

【符号の説明】[Explanation of symbols]

11〜14…入力端子、15〜18…補助PT、19〜
22…FLT回路、23〜26…S/H回路、27…ア
ナログマルチプレクサ、28…A/D変換回路、29〜
32…ラッチ回路、33…A相位相演算回路、34…A
相実効値演算回路、35…B相位相演算回路、36…B
相実効値演算回路、37…C相位相演算回路、38…C
相実効値演算回路、39…遅延回路、40…零相電圧実
効値演算回路、41〜43…比較回路、44…基準値、
45〜50…ゲート回路、51…A相地絡判定出力端
子、52…B相地絡判定出力端子、53…C相地絡判定
出力端子。
11-14 ... Input terminal, 15-18 ... Auxiliary PT, 19-
22 ... FLT circuit, 23-26 ... S / H circuit, 27 ... Analog multiplexer, 28 ... A / D conversion circuit, 29 ...
32 ... Latch circuit, 33 ... A phase calculation circuit, 34 ... A
Phase effective value calculation circuit, 35 ... B Phase phase calculation circuit, 36 ... B
Phase effective value calculation circuit, 37 ... C Phase phase calculation circuit, 38 ... C
Phase effective value arithmetic circuit, 39 ... Delay circuit, 40 ... Zero phase voltage effective value arithmetic circuit, 41-43 ... Comparison circuit, 44 ... Reference value,
45 to 50 ... Gate circuit, 51 ... A phase ground fault determination output terminal, 52 ... B phase ground fault determination output terminal, 53 ... C phase ground fault determination output terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石橋 孝二 宮城県多賀城市宮内二丁目2番1号 東北 電機製造株式会社内 (72)発明者 白石 喜一 宮城県多賀城市宮内二丁目2番1号 東北 電機製造株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Ishibashi 2-2-1 Miyauchi, Tagajo City, Miyagi Prefecture Tohoku Electric Manufacturing Co., Ltd. (72) Inventor Kiichi Shiraishi 2-2-1 Miyauchi, Tagajo City, Miyagi Prefecture Tohoku Electric Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非接地系またはリアクトル接地系の送配
電線の一線地絡時に、零相電圧及びその位相が地絡抵抗
の値により変化する系統に使用される地絡相判定装置に
おいて、前記零相電圧及び3相の相電圧に対して地絡相
の相電圧と零相電圧とが同位相となるように移相処理を
施す移相手段と、この移相手段で移相処理された前記零
相電圧と3相の相電圧との位相差に対応した値をそれぞ
れ演算する演算手段と、この演算手段の各演算結果を比
較して前記零相電圧との位相差が最も少ない相を地絡相
と判定する比較手段と、前記3相の相電圧をレベル比較
して最もレベルの低い相を地絡相と判定する判定手段
と、前記零相電圧のレベルに応じて前記比較手段及び判
定手段のいずれかの判定結果を選択する選択手段とを具
備してなることを特徴とする地絡相判定装置。
1. A ground fault phase determination device used in a system in which a zero-phase voltage and its phase change depending on the value of the ground fault resistance when a ground fault occurs in a non-grounded or reactor grounded transmission / distribution line. Phase-shifting means for performing phase-shifting processing so that the ground-phase phase voltage and the zero-phase voltage have the same phase with respect to the zero-phase voltage and the three-phase voltage, and the phase-shifting processing is performed by this phase-shifting means. Computation means for computing a value corresponding to the phase difference between the zero-phase voltage and the three-phase voltage and the computation results of this computation means are compared to determine the phase with the smallest phase difference from the zero-phase voltage. A comparing means for judging a ground fault phase, a judging means for comparing the phase voltages of the three phases and judging a phase having the lowest level as a ground fault phase, a comparing means for judging the phase of the zero phase voltage, Selection means for selecting one of the determination results of the determination means. And a ground fault phase determination device.
【請求項2】 非接地系またはリアクトル接地系の送配
電線の一線地絡時に、零相電圧及びその位相が地絡抵抗
の値により変化する系統に使用される地絡相判定装置に
おいて、前記零相電圧及び3相の相電圧に対して地絡相
の相電圧と零相電圧とが同位相となるように移相処理を
施す移相手段と、この移相手段で移相処理された前記零
相電圧と3相の相電圧とのスカラ積をそれぞれ演算する
演算手段と、この演算手段の各演算結果を比較し実質的
に最大値となった相を地絡相と判定する比較手段と、前
記3相の相電圧をレベル比較して最もレベルの低い相を
地絡相と判定する判定手段と、前記零相電圧のレベルに
応じて前記比較手段及び判定手段のいずれかの判定結果
を選択する選択手段とを具備してなることを特徴とする
地絡相判定装置。
2. A ground fault phase determination device used in a system in which a zero-phase voltage and its phase change according to the value of the ground fault resistance when a ground fault occurs in a transmission / distribution line of an ungrounded system or a reactor grounded system. Phase-shifting means for performing phase-shifting processing so that the ground-phase phase voltage and the zero-phase voltage have the same phase with respect to the zero-phase voltage and the three-phase voltage, and the phase-shifting processing is performed by this phase-shifting means. Computation means for computing the scalar product of the zero-phase voltage and the phase voltage of the three phases, respectively, and comparison means for comparing the computation results of this computation means and determining the phase that is substantially the maximum value as the ground fault phase. And a determination means for comparing the phase voltages of the three phases to determine the lowest phase as a ground fault phase, and a determination result of one of the comparison means and the determination means according to the level of the zero-phase voltage. 2. A ground fault phase determination device comprising: a selection unit that selects the.
JP22019591A 1991-08-30 1991-08-30 Ground fault phase determination device Expired - Fee Related JP2796455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22019591A JP2796455B2 (en) 1991-08-30 1991-08-30 Ground fault phase determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22019591A JP2796455B2 (en) 1991-08-30 1991-08-30 Ground fault phase determination device

Publications (2)

Publication Number Publication Date
JPH0564348A true JPH0564348A (en) 1993-03-12
JP2796455B2 JP2796455B2 (en) 1998-09-10

Family

ID=16747382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22019591A Expired - Fee Related JP2796455B2 (en) 1991-08-30 1991-08-30 Ground fault phase determination device

Country Status (1)

Country Link
JP (1) JP2796455B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207942B1 (en) 1998-04-08 2001-03-27 Victor Company Of Japan, Limited Optical pickup device, error detection device, and detection method therefore
CN113820620A (en) * 2021-08-17 2021-12-21 捍防(深圳)实业有限公司 Fault analysis method and fault analysis device for power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207942B1 (en) 1998-04-08 2001-03-27 Victor Company Of Japan, Limited Optical pickup device, error detection device, and detection method therefore
CN113820620A (en) * 2021-08-17 2021-12-21 捍防(深圳)实业有限公司 Fault analysis method and fault analysis device for power supply system

Also Published As

Publication number Publication date
JP2796455B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US4885656A (en) Digital protective relay
JPH0320969B2 (en)
KR20040005603A (en) Distance relay apparatus
JPH0564348A (en) Ground fault phase judging equipment
US5325061A (en) Computationally-efficient distance relay for power transmission lines
WO2018227466A1 (en) Method for detecting fault in power transmission line and protection system using the same
US4212046A (en) Distance relaying systems
EP0283786B1 (en) Digital locator
JPS6019492Y2 (en) ground fault distance relay
JPH04331413A (en) Ground phase detector
JP2004364376A (en) Ground distance relay
JP2989190B2 (en) Negative phase digital filter
JP2600682B2 (en) Ground fault protection relay
JPH08196035A (en) Direction detector
JPH0416780A (en) Three-phase electronic loading apparatus
JP2616285B2 (en) Zero-phase current detector
JP2688286B2 (en) Protective relay
JP2565958B2 (en) Directional relay
Wang et al. New high-speed microprocessor distance relaying for transmission lines
JPH08126187A (en) Protection of digital protective relay
JPH0572237A (en) Ac quantity-of-electricity detector
JP3543380B2 (en) Digital type voltage balanced relay
CN117254422A (en) Relay protection real-time digital twin frequency tracking sampling scheduling method
JP2685641B2 (en) Protective relay
CN118117537A (en) Direction protection method and system for differential electronic transformer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees