JPH0564320B2 - - Google Patents

Info

Publication number
JPH0564320B2
JPH0564320B2 JP3857284A JP3857284A JPH0564320B2 JP H0564320 B2 JPH0564320 B2 JP H0564320B2 JP 3857284 A JP3857284 A JP 3857284A JP 3857284 A JP3857284 A JP 3857284A JP H0564320 B2 JPH0564320 B2 JP H0564320B2
Authority
JP
Japan
Prior art keywords
waste liquid
iodine
carbon dioxide
reprocessing
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3857284A
Other languages
Japanese (ja)
Other versions
JPS60183596A (en
Inventor
Hiroyuki Tsucha
Jun Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59038572A priority Critical patent/JPS60183596A/en
Publication of JPS60183596A publication Critical patent/JPS60183596A/en
Publication of JPH0564320B2 publication Critical patent/JPH0564320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は再処理廃液の減容処理方法に係り、特
にヨウ素含有廃液から、ヨウ素が気相へ放出する
ことを防止するのに適した再処理廃液の減容処理
方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for reducing the volume of reprocessed waste liquid, and in particular, a reprocessing method suitable for preventing iodine from being released into the gas phase from iodine-containing waste liquid. The present invention relates to a method for reducing the volume of waste liquid.

〔発明の背景〕[Background of the invention]

原子炉で使用した核燃料中に含まれているウラ
ンおよびプルトニウムを分離回収して、ふたたび
核燃料として使用するのが核燃料の再処理であ
り、現在、湿式法の一つであるPurex法が大部分
の再処理設備で採用されていることは周知のこと
である。第1図にPurex法による再処理工程から
発生する放射性廃液についてのブロツク線図で示
す。Purex法では使用済の核燃料を前処理工程で
数cmの長さに切断し、次にこれを溶解工程で硝酸
に溶解後、分離・抽出工程において、この核燃料
溶解液をミキサセトラーによつてリン酸トリブチ
ル(TBP)と向流接触させ、抽出・洗浄および
逆抽出操作を行ない、核分裂生成成(FP)、ウラ
ンおよびプルトニウムに分離するものである。
Nuclear fuel reprocessing involves separating and recovering the uranium and plutonium contained in the nuclear fuel used in a nuclear reactor and reusing it as nuclear fuel.Currently, the Purex method, which is a wet method, is used in most cases. It is well known that it is used in reprocessing facilities. Figure 1 shows a block diagram of the radioactive waste liquid generated from the reprocessing process using the Purex method. In the Purex method, spent nuclear fuel is cut into lengths of several centimeters in a pretreatment process, then dissolved in nitric acid in a dissolution process, and the nuclear fuel solution is rinsed using a mixer settler in a separation and extraction process. It is brought into countercurrent contact with tributyl acid (TBP), performs extraction, cleaning, and back extraction operations to separate fission products (FP), uranium, and plutonium.

さて、抽出・分離工程から高レベルと中レベル
の2つの廃液が主に発生する。高レベル廃液の発
生量は燃料1トン当り約10m3でこの中に106Ciも
の高い放射能が含まれている。これは核燃料中の
99.9%以上のFPがこの廃液に含まれているため
である。高レベル廃液につては放射能が高く、ま
た、固化法が実用化されていないので、蒸発器で
濃縮後高レベル廃液貯蔵タンクに貯蔵されてい
る。抽出・分離工程で使用したTBPなどの溶媒
は放射線損傷を受け、性能が低下するので、苛性
ソーダなどのアルカリを用い洗浄処理を行ない再
使用される。洗浄後の苛性ソーダは硝酸とともに
中レベル廃液に含まれる。苛性ソーダと硝酸の反
応により硝酸ソーダが生成するため中レベル廃液
の主成分は硝酸ソーダとなる。また、この廃液中
には放射性ヨウ素が含まれる。中レベル廃液の発
生量は核燃料1トン当り約50m3であり、この中に
約0.1mol/の硝酸ソーダおよび約102Ciの放射
能が含まれている。中レベル廃液は、例えばアス
フアルト固化法で処理される。こ固化法は約150
℃に加熱したアスフアルトと廃液をそれぞれ混合
し、水分を蒸発させ、アスフアルト固化体をつく
る方法である。廃液中に含まれるヨウ素は揮発性
であるため、蒸発過程で水分とともにガス系へ移
動する。ガス系にはヨウ素除去用フイルターが設
けられているが、多量のヨウ素が混入するためフ
イルターの容量を大きくしたり、あるいはフイル
ター交換頻度を高めている。
Two types of waste liquids, high level and medium level, are mainly generated from the extraction/separation process. The amount of high-level waste liquid generated is approximately 10 m 3 per ton of fuel, and this contains radioactivity as high as 10 6 Ci. This is in nuclear fuel
This is because more than 99.9% of FP is contained in this waste liquid. High-level waste liquid has high radioactivity and solidification methods have not been put to practical use, so it is concentrated in an evaporator and then stored in a high-level waste liquid storage tank. Solvents such as TBP used in the extraction and separation process are damaged by radiation and their performance deteriorates, so they are cleaned with an alkali such as caustic soda and reused. After washing, caustic soda is included in the medium-level waste liquid along with nitric acid. Sodium nitrate is produced by the reaction between caustic soda and nitric acid, so the main component of medium-level wastewater is sodium nitrate. This waste liquid also contains radioactive iodine. The amount of medium-level waste liquid generated is approximately 50 m 3 per ton of nuclear fuel, and this contains approximately 0.1 mol of sodium nitrate and approximately 10 2 Ci of radioactivity. Medium-level waste liquid is treated, for example, by an asphalt solidification method. The solidification method is about 150
This method creates solidified asphalt by mixing asphalt heated to ℃ and waste liquid, evaporating water, and creating solidified asphalt. Since the iodine contained in the waste liquid is volatile, it moves into the gas system along with moisture during the evaporation process. The gas system is equipped with a filter for removing iodine, but because a large amount of iodine gets mixed in, the capacity of the filter must be increased or the filter must be replaced more frequently.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の従来技術の欠点をなく
し、ヨウ素含有廃液からヨウ素が気相中へ放出す
ることを低減する再処理廃液減容処理方法を提供
することである。
An object of the present invention is to provide a volume reduction treatment method for reprocessing waste liquid that eliminates the above-mentioned drawbacks of the prior art and reduces the release of iodine from the iodine-containing waste liquid into the gas phase.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は、再処理工
程から排出されるヨウ素含有廃液を蒸発処理する
蒸発設備を用いて行う再処理廃液減容処理方法に
おいて、当該蒸発設備を炭酸ガス濃度が20%以上
とな雰囲気下で操作するものである。
In order to achieve the above object, the present invention provides a method for reducing the volume of reprocessing waste liquid using evaporation equipment that evaporates iodine-containing waste liquid discharged from a reprocessing process, in which the evaporation equipment has a carbon dioxide concentration of 20%. It is operated under the above atmosphere.

本願発明者等の検討によれば、ヨウ素含有廃液
から気相中へ放出するヨウ素放出率は、蒸発設備
内の炭酸ガス濃度の増大に伴い減少し、炭酸ガス
濃度が20%以上になると炭酸ガス濃度が0%のと
きの約0.1とほぼ一定となることが分かつた。し
たがつて、本発明によれば、ヨウ素の気相中への
放出量が従来の約1/10に低減する。
According to studies by the inventors of the present application, the rate of iodine release from iodine-containing waste liquid into the gas phase decreases as the carbon dioxide concentration in the evaporation equipment increases, and when the carbon dioxide concentration exceeds 20%, the rate of iodine release into the gas phase decreases. It was found that the value is approximately constant at about 0.1 when the concentration is 0%. Therefore, according to the present invention, the amount of iodine released into the gas phase is reduced to about 1/10 of the conventional amount.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に基づいて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on the drawings.

蒸発器として従来使用されている遠心薄膜蒸発
器を用いて処理する場合について述べる。第2図
は遠心薄膜蒸発器の一部断面図である。遠心薄膜
蒸発器の動作原理について第2図で説明する。放
射性廃液は廃液供給口4から遠心薄膜蒸発器1の
容器内に導入され、デイストリビユータ5によつ
て蒸発器の容量の伝熱面7に一様に配分される。
このデイストリビユータ5は蒸発器の中央に設け
られた回転軸8と、これに取付けられた可動式の
ブレード9と回転軸の駆動モータ2とからなる。
ブレード9は容器壁に近接して回転軸8に取付け
られており、回転にともなう遠心力により外側に
広がつて容器壁に接するようになつている。伝熱
面7上を重力によつて垂直に落下する廃液は、伝
熱面7上に液膜を形成し、容器壁外側の加熱ジヤ
ケツト6からの熱によつて加熱され、蒸発乾燥さ
れる。加熱ジヤケツト6の熱媒としては、例えば
高圧の蒸気が用いられる。上記ブレード9は、回
転とともに容器壁の伝熱面7上に付着したスケー
ルを除去する。廃液は乾燥した粉体にまで濃縮さ
れ、生成した粉体は遠心薄膜蒸発器1下端の粉体
取出口10から取り出される。また、廃液の蒸発
により発生した蒸気は、遠心薄膜蒸発器1の上部
にある蒸気出口3から排出され、凝縮器に導びか
れる。凝縮器で蒸気は水に戻されて再使用され
る。上述のようにブレード9は、伝熱面7のスケ
ール除去と、伝熱面7での熱交換の促進という2
つの効果を有する。このため、遠心薄膜蒸発器1
はコンパクトで信頼性の高い蒸発器となつてい
る。
A case will be described in which a centrifugal thin film evaporator, which is conventionally used as an evaporator, is used for processing. FIG. 2 is a partial cross-sectional view of a centrifugal thin film evaporator. The operating principle of the centrifugal thin film evaporator will be explained with reference to FIG. The radioactive waste liquid is introduced into the container of the centrifugal thin film evaporator 1 through the waste liquid supply port 4 and is uniformly distributed over the heat transfer surface 7 of the evaporator volume by the distributor 5.
The distributor 5 consists of a rotating shaft 8 provided at the center of the evaporator, a movable blade 9 attached to the rotating shaft 8, and a drive motor 2 for the rotating shaft.
The blade 9 is attached to the rotating shaft 8 in close proximity to the container wall, and is expanded outward by the centrifugal force caused by rotation to come into contact with the container wall. The waste liquid falling vertically on the heat transfer surface 7 by gravity forms a liquid film on the heat transfer surface 7, which is heated by heat from the heating jacket 6 outside the container wall and evaporated to dryness. As the heating medium for the heating jacket 6, for example, high pressure steam is used. The blade 9 removes scale deposited on the heat transfer surface 7 of the container wall as it rotates. The waste liquid is concentrated to a dry powder, and the generated powder is taken out from the powder outlet 10 at the lower end of the centrifugal thin film evaporator 1. Further, the steam generated by the evaporation of the waste liquid is discharged from the steam outlet 3 located at the top of the centrifugal thin film evaporator 1 and guided to the condenser. The steam is converted back to water in the condenser and reused. As mentioned above, the blade 9 serves two purposes: removing scale from the heat transfer surface 7 and promoting heat exchange on the heat transfer surface 7.
It has two effects. For this reason, the centrifugal thin film evaporator 1
is a compact and reliable evaporator.

次に、本発明の一実施例を第3図によつて説明
する。この図において、11は廃液タンク、12
は造粒機、13は炭酸ガスボンベ、14はミスト
セパレータ、15は凝縮器、16はヨウ素フイル
ター、17はブロア、18はグローブボツクス、
19はドラム缶、20は定量ポンプである。
Next, one embodiment of the present invention will be described with reference to FIG. In this figure, 11 is a waste liquid tank, 12
is a granulator, 13 is a carbon dioxide gas cylinder, 14 is a mist separator, 15 is a condenser, 16 is an iodine filter, 17 is a blower, 18 is a glove box,
19 is a drum, and 20 is a metering pump.

再処理工程から発生する中レベル廃液は廃液タ
ンク11に送られる。この廃液は硝酸ナトリウム
を主成分(濃度約30Wt%)とし放射性ヨウ素が
約10-3μCi/c.c.含まれている。廃液タンク内の溶
液は定量ポンプ20により遠心薄膜蒸発器1に注
入され、加熱ジヤケツトから熱を与えられて蒸発
乾燥する。蒸発器内の圧力は放射能のリークを防
ぐためブロア17で負圧に保たれている。蒸気は
ミストセパレータ14、凝縮器15で凝縮水とし
て回収される。凝縮器出口のガスはヨウ素フイル
ターを介し、放出される。薄膜蒸発器1内での蒸
発乾燥の操作は第2図で説明したとおりである。
生成したNaNO3乾燥粉末は自重で粉体取出口1
0から排出される。この粉末は造粒器12でアー
モンド型のペレツトに固められた後グローブボツ
クス18に収納されドラム缶に充填される。
Medium level waste liquid generated from the reprocessing process is sent to waste liquid tank 11. This waste liquid mainly consists of sodium nitrate (concentration approximately 30Wt%) and contains approximately 10 -3 μCi/cc of radioactive iodine. The solution in the waste liquid tank is injected into the centrifugal thin film evaporator 1 by the metering pump 20, and is evaporated to dryness by being given heat from the heating jacket. The pressure inside the evaporator is maintained at negative pressure by a blower 17 to prevent leakage of radioactivity. The steam is collected by a mist separator 14 and a condenser 15 as condensed water. The gas at the condenser outlet passes through an iodine filter and is released. The evaporative drying operation in the thin film evaporator 1 is as explained in FIG.
The generated NaNO 3 dry powder flows through the powder outlet 1 under its own weight.
Ejected from 0. This powder is solidified into almond-shaped pellets in a granulator 12, then stored in a glove box 18 and filled into drums.

さて、廃液を約1時間蒸発処理した後、ヨウ素
フイルター16に捕集された放射性ヨウ素量を
NaIシンチレーダで測定した。その結果、このヨ
ウ素は廃液中に含まれているヨウ素量とほぼ等し
いことがわかつた。すなわち廃液中のヨウ素は器
内で揮発し、換気系へ流出したものである。
Now, after evaporating the waste liquid for about an hour, the amount of radioactive iodine collected in the iodine filter 16 is calculated.
Measured with NaI scintillator. As a result, it was found that this iodine was almost equal to the amount of iodine contained in the waste liquid. In other words, the iodine in the waste liquid was volatilized within the vessel and leaked into the ventilation system.

次に、炭酸ガスボンベ13から蒸発器内に炭酸
ガスを供給し、系内を炭酸ガスの雰囲気下にして
廃液の蒸発処理を行つた。先と同様にして換気系
へ流出するヨウ素量を測定した。なお、試験には
バルブ20の開度を調整し、系内の炭酸ガス濃度
を変えて実施した。第4図にその結果を示す。本
図よりヨウ素放出率は蒸発器内の炭酸ガス濃度の
増大にともない減少し、炭酸ガス濃度が20%以上
で約0.1とほぼ一定になることがわかつた。この
理由は次のように考えられる。水溶液中における
ヨウ素の反応平衡は次式で表わされる。
Next, carbon dioxide gas was supplied from the carbon dioxide gas cylinder 13 into the evaporator, and the inside of the system was brought into a carbon dioxide atmosphere to perform evaporation treatment of the waste liquid. The amount of iodine flowing into the ventilation system was measured in the same manner as before. The test was conducted by adjusting the opening degree of the valve 20 and changing the carbon dioxide concentration in the system. Figure 4 shows the results. This figure shows that the iodine release rate decreases as the carbon dioxide concentration in the evaporator increases, and becomes almost constant at approximately 0.1 when the carbon dioxide concentration is 20% or higher. The reason for this is thought to be as follows. The reaction equilibrium of iodine in an aqueous solution is expressed by the following equation.

I2+H2O2H++2I-+1/2O2 ……(1) すなわち廃液中にはI2とI-イオンが共存してい
る。廃液中には溶存酸素があるため(1)式の反応は
左に進み、ヨウ素はI2の化学形態が多い。一方、
炭酸ガス雰囲気下になると、炭酸ガスが廃液に溶
け込み溶存酸素量が低下する。即ち、溶液中の溶
存酸素濃度は気相中の酸素濃度と一定の関係にあ
り、気相中の酸素濃度が下がれば溶液中の酸素濃
度も下がる。これはヘンリーの法則として良く知
られている。この法則は、ガスの種類に依存しな
いので、炭酸ガス雰囲気になれば溶液中に炭酸ガ
スが溶け込む。したがつて、炭酸ガスの雰囲気に
なることは気相中の炭酸ガス濃度が増大し酸素濃
度が低下することであり、溶液中の炭酸ガス量が
多くなり酸素量が少なくなる。この場合には(1)式
の反応は右に進みヨウ素はI-の化学形態をとる。
廃液中の主成分はNaNO3であるのでI-イオンは
Na+イオンと反応しNaIとなる。NaIはI2に比し
て揮発しにくい。したがつて、蒸発器内を炭酸ガ
ス雰囲気下にすることにより、ヨウ素は粉体中に
回収され、気相中への放出量が低下すると考えら
れる。粉体の一部が換気系へ流出することはさけ
られない。炭酸ガス濃度が20%以上の領域でヨウ
素除去率が0.1と一定である理由は粉体の一部が
換気系へ流出したものと考えられる。
I 2 +H 2 O2H + +2I - +1/2O 2 ...(1) That is, I 2 and I - ions coexist in the waste liquid. Since there is dissolved oxygen in the waste liquid, the reaction in equation (1) proceeds to the left, and iodine is mostly in the I 2 chemical form. on the other hand,
In a carbon dioxide atmosphere, carbon dioxide dissolves in the waste liquid and the amount of dissolved oxygen decreases. That is, the dissolved oxygen concentration in the solution has a certain relationship with the oxygen concentration in the gas phase, and as the oxygen concentration in the gas phase decreases, the oxygen concentration in the solution also decreases. This is well known as Henry's law. This law does not depend on the type of gas, so if there is a carbon dioxide atmosphere, carbon dioxide will dissolve into the solution. Therefore, creating an atmosphere of carbon dioxide gas means that the carbon dioxide concentration in the gas phase increases and the oxygen concentration decreases, and the amount of carbon dioxide gas in the solution increases and the amount of oxygen decreases. In this case, the reaction in equation (1) proceeds to the right and iodine takes the chemical form I - .
Since the main component in the waste liquid is NaNO 3 , I - ions are
Reacts with Na + ions to form NaI. NaI is less volatile than I2 . Therefore, it is considered that by creating a carbon dioxide atmosphere in the evaporator, iodine is recovered in the powder and the amount released into the gas phase is reduced. It is unavoidable that some of the powder will escape into the ventilation system. The reason why the iodine removal rate remained constant at 0.1 in the area where the carbon dioxide concentration was 20% or more is thought to be that some of the powder leaked into the ventilation system.

以上のことから、蒸発器内濃度20%以上の炭酸
ガス雰囲気下で操作することによりヨウ素の換気
系への放出量を従来法の約1/10に低減できる。し
たがつて、ヨウ素フイルターの容量を小さくでき
るとともにフイルタの交換頻度を少なくできる。
From the above, the amount of iodine released into the ventilation system can be reduced to about 1/10 of the conventional method by operating in a carbon dioxide atmosphere with a concentration of 20% or more in the evaporator. Therefore, the capacity of the iodine filter can be reduced and the frequency of filter replacement can be reduced.

廃液タンクはNaNO3濃度を均一にするため撹
拌が行なわれる。炭酸ガスを廃液タンク下部に通
気してバブリングを行い、その後炭酸ガスを蒸発
器に通気すれば、ヨウ素の撹拌機が不要となる効
果も新たに生ずる。また、本実施例では蒸発設備
として遠心薄膜蒸発器について述べたが、アスフ
アルト固化に用いられる混でい式蒸発器について
も同様に実施できる。
The waste liquid tank is stirred to make the NaNO 3 concentration uniform. By ventilating carbon dioxide gas into the lower part of the waste liquid tank to perform bubbling, and then venting the carbon dioxide gas into the evaporator, a new effect will be created that an iodine stirrer will no longer be necessary. Further, in this embodiment, a centrifugal thin film evaporator was described as the evaporation equipment, but the same method can be applied to a mixed evaporator used for asphalt solidification.

〔発明の効果〕〔Effect of the invention〕

本発明によれば放射性ヨウ素の換気系への放出
量が従来法の約1/10となるため、換気系に設けら
れるヨウ素フイルターの容量が小さくなる。ま
た、フイルターの交換頻度が著しく低下する。
According to the present invention, the amount of radioactive iodine released into the ventilation system is about 1/10 that of the conventional method, so the capacity of the iodine filter provided in the ventilation system is reduced. Additionally, the frequency of filter replacement is significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は使用済燃料再処理の廃液発生工程を示
すブロツク図、第2図は遠心薄膜蒸発器の断面を
示す図、第3図は本発明の一実施例を示す系統
図、第4図は蒸発器内炭酸ガス濃度と気相中への
ヨウ素放出率との関係を示す線図である。 1…遠心薄膜蒸発器、11…廃液タンク、13
…炭酸ガスボンベ。
Fig. 1 is a block diagram showing the waste liquid generation process of spent fuel reprocessing, Fig. 2 is a cross-sectional view of a centrifugal thin film evaporator, Fig. 3 is a system diagram showing an embodiment of the present invention, and Fig. 4 is a diagram showing the relationship between the carbon dioxide concentration in the evaporator and the iodine release rate into the gas phase. 1... Centrifugal thin film evaporator, 11... Waste liquid tank, 13
...carbon dioxide cylinder.

Claims (1)

【特許請求の範囲】 1 再処理工程から排出されるヨウ素含有廃液を
蒸発処理する蒸発設備を用いて行う再処理廃液減
容処理方法において、当該蒸発設備を炭酸ガス濃
度が20%以上となる雰囲気下で操作することを特
徴とする再処理廃液減容処理方法。 2 特許請求の範囲第1項に記載の再処理廃液減
容処理方法において、当該ヨウ素含有廃液を炭酸
ガスを用いて攪拌後、これを当該蒸発設備に導入
することを特徴とする再処理廃液減容処理方法。 3 特許請求の範囲第2項記載の再処理廃液減容
処理方法において、当該蒸発設備として遠心薄膜
蒸発器を用いることを特徴とする再処理廃液減容
処理方法。
[Scope of Claims] 1. In a reprocessing waste liquid volume reduction treatment method performed using evaporation equipment for evaporating iodine-containing waste liquid discharged from a reprocessing process, the evaporation equipment is placed in an atmosphere where the carbon dioxide concentration is 20% or more. A reprocessing waste liquid volume reduction treatment method characterized by operating under 2. The reprocessing waste liquid volume reduction treatment method according to claim 1, characterized in that the iodine-containing waste liquid is stirred using carbon dioxide gas and then introduced into the evaporation equipment. Treatment method. 3. A reprocessing waste liquid volume reduction treatment method according to claim 2, characterized in that a centrifugal thin film evaporator is used as the evaporation equipment.
JP59038572A 1984-03-02 1984-03-02 Reprocessing waste liquor volume reducing treating method Granted JPS60183596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59038572A JPS60183596A (en) 1984-03-02 1984-03-02 Reprocessing waste liquor volume reducing treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59038572A JPS60183596A (en) 1984-03-02 1984-03-02 Reprocessing waste liquor volume reducing treating method

Publications (2)

Publication Number Publication Date
JPS60183596A JPS60183596A (en) 1985-09-19
JPH0564320B2 true JPH0564320B2 (en) 1993-09-14

Family

ID=12529002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59038572A Granted JPS60183596A (en) 1984-03-02 1984-03-02 Reprocessing waste liquor volume reducing treating method

Country Status (1)

Country Link
JP (1) JPS60183596A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110999A (en) * 1980-12-27 1982-07-10 Nippon Atomic Ind Group Co Method of solidifying radioactive waste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110999A (en) * 1980-12-27 1982-07-10 Nippon Atomic Ind Group Co Method of solidifying radioactive waste

Also Published As

Publication number Publication date
JPS60183596A (en) 1985-09-19

Similar Documents

Publication Publication Date Title
JP5038160B2 (en) Sodium salt recycling system in wet reprocessing of spent nuclear fuel
JPS6335000B2 (en)
JPH0564320B2 (en)
US4981616A (en) Spent fuel treatment method
EP0347255B1 (en) Method of treating high-level radioactive waste liquid
US3954654A (en) Treatment of irradiated nuclear fuel
JPS59195200A (en) Method of recovering boric acid from nuclear waste
KR100956694B1 (en) Facility and method for removing radioactive material in the used active carbon
CA1155083A (en) Method of reconditioning radioactive filtrate
JPH054639B2 (en)
JPS5815079B2 (en) Radioactive waste disposal method from nuclear fuel reprocessing facilities
CN213752002U (en) Handle microwave drying device in bucket of low radioactivity turbid liquid
Viala et al. Advanced Purex process for the new French reprocessing plants
JP2864180B2 (en) Treatment method of nitric acid aqueous solution containing radioactive substances
JP2864181B2 (en) Treatment of nitric acid aqueous solution containing radioactive substances
JPH0611599A (en) Processing method for radioactive waste and processing equipment
JP2557413B2 (en) Method for powderizing radioactive waste liquid
JP2003021697A (en) Dissolving method and dissolving device for slightly soluble compound
JPH0954195A (en) Treatment method for radioactive spent ion exchanger resin
McDuffee et al. Thorex Pilot Plant Run HD-8 Summary
Buck et al. Chemical processes at UKAEA Works, Dounreay
JPH0743496A (en) Evaporation processing of radioactive waste liquid
JPS61193100A (en) Method and device for recovering washing solvent
Viala et al. Chemical engineering in fuel reprocessing. The French experience
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device