JPH0563687B2 - - Google Patents

Info

Publication number
JPH0563687B2
JPH0563687B2 JP58199031A JP19903183A JPH0563687B2 JP H0563687 B2 JPH0563687 B2 JP H0563687B2 JP 58199031 A JP58199031 A JP 58199031A JP 19903183 A JP19903183 A JP 19903183A JP H0563687 B2 JPH0563687 B2 JP H0563687B2
Authority
JP
Japan
Prior art keywords
air
fuel
stage
combustion
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58199031A
Other languages
Japanese (ja)
Other versions
JPS6091141A (en
Inventor
Isao Sato
Yoji Ishibashi
Yoshihiro Uchama
Takashi Oomori
Fumio Kato
Noryuki Hayashi
Michio Kuroda
Shigeyuki Akatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19903183A priority Critical patent/JPS6091141A/en
Publication of JPS6091141A publication Critical patent/JPS6091141A/en
Publication of JPH0563687B2 publication Critical patent/JPH0563687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン燃焼器の燃料と空気の供
給方法に係り、特に、低NOx型の二段燃焼方式
ガスタービン燃焼器に対して良好な燃焼性能を得
る燃焼器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for supplying fuel and air to a gas turbine combustor, and particularly to a method for supplying fuel and air to a gas turbine combustor of a low NOx type two-stage combustion type gas turbine combustor. Regarding the combustor that obtains the performance.

〔発明の背景〕[Background of the invention]

ガスタービンにおける大気汚染物質は排ガス中
に含まれる窒素酸化物(NOx)、一酸化炭素
(CO)、煤等でありこれら物質の排出を極力抑え
ることがタービン性能を向上させると同様に重要
な課題である。とくに、NOx,COは燃焼の過程
で生成するものであり、NOxは高温度の燃焼ガ
ス雰囲気で発生するため、燃焼ガス温度を低下す
る方法がとられる。具体的には燃焼ガス中に水や
蒸気などの冷媒を添加する方法と過剰の空気で燃
焼を行なう希薄低温度燃焼法があり、ガスタービ
ンでは効率低下を抑えた希薄低温度燃焼法が一般
的に行なわれている。しかし、過剰の空気を供給
し低温度燃焼を行なうことは他方では過冷却によ
り燃焼性が低下し、COや未燃焼成分(HC)等の
発生が多くなる原因である。このため、ガスター
ビン燃焼器ではNOx低減とCO,HCなど未燃焼
分の低減とは相反する特性を持つので、これらを
同時に解消することがガスタービン燃焼器改良の
ポイントになる。
Air pollutants in gas turbines include nitrogen oxides (NOx), carbon monoxide (CO), soot, etc. contained in exhaust gas, and minimizing the emissions of these substances is as important as improving turbine performance. It is. In particular, NOx and CO are generated during the combustion process, and NOx is generated in a high-temperature combustion gas atmosphere, so methods are taken to lower the combustion gas temperature. Specifically, there are two methods: one is to add a refrigerant such as water or steam to the combustion gas, and the other is the lean low-temperature combustion method in which combustion is performed using excess air.The lean low-temperature combustion method is common in gas turbines because it reduces efficiency loss. It is carried out in However, supplying excessive air and performing low-temperature combustion also reduces combustibility due to supercooling, which causes an increase in the generation of CO, unburned components (HC), and the like. For this reason, in gas turbine combustors, NOx reduction and reduction of unburned substances such as CO and HC have contradictory characteristics, and the key to improving gas turbine combustors is to simultaneously eliminate these two factors.

出来るだけ少量の空気で効果的に均一な低温度
燃焼を行なわせるようにし、過冷却部分が生じな
いようにすることがNOx低減となり又、CO発生
防止に非常に有利になる。具体的な方法として、
頭部に若干空気過剰で、しかも、安定な燃焼火炎
を形成せしめる頭部燃焼室を設け、その後流に空
気と燃料とを供給し、全体的に均一な低温度燃焼
を行なう、いわゆる、燃料を2段に供給する二段
燃焼方式がとられる。この方法は二段目燃料供給
時に空気が過剰になりすぎるため未燃焼成分や
COの発生が多くなり大巾な燃焼効率低下をまね
く欠点をもつている。このようすを第1図を用い
て説明する。
Efficient, uniform, and low-temperature combustion with as little air as possible and avoiding the occurrence of supercooled areas will reduce NOx and will be very advantageous in preventing CO generation. As a specific method,
A head combustion chamber with a slight excess of air and a stable combustion flame is installed in the head, and air and fuel are supplied to its wake, resulting in uniform low-temperature combustion throughout. A two-stage combustion system is adopted in which the fuel is supplied to two stages. This method creates too much air when supplying fuel to the second stage, so unburned components and
It has the disadvantage that it generates a lot of CO, leading to a significant drop in combustion efficiency. This situation will be explained using FIG.

第1図は二段燃焼方式の従来形燃焼器の断面図
である。ガスタービンは空気圧縮機1、タービン
2、燃焼器3および負荷4(例えば発電機)の主
要部材で構成する。圧縮機1で圧縮された空気5
は燃焼器3に導かれる。燃焼器3は外筒6、内筒
7および側閉端を構成する。外筒カバー8には頭
部燃焼室9に1次燃料10を供給する1次燃料ノ
ズル11が組込まれ、又、後部燃焼室12にはカ
バー8に取付られた燃料供給部13から燃料溜1
4を介し、複数個の燃料噴出部15より二次空気
供給孔(時には旋回羽根となる)16へ二次燃料
が噴射17され二次空気18と共に後部燃焼室へ
供給し、予混合火炎22を形成する。一方、1次
燃料ノズル11の周囲には旋回空気19を供給す
るタービユレータ20が取付けられ頭部燃焼室9
に形成する拡散火炎21の安定性を助長してい
る。
FIG. 1 is a cross-sectional view of a conventional two-stage combustion type combustor. A gas turbine consists of the following main components: an air compressor 1, a turbine 2, a combustor 3, and a load 4 (for example, a generator). Air 5 compressed by compressor 1
is led to the combustor 3. The combustor 3 includes an outer cylinder 6, an inner cylinder 7, and a side closed end. A primary fuel nozzle 11 that supplies primary fuel 10 to the head combustion chamber 9 is incorporated in the outer cylinder cover 8, and a fuel reservoir 1 is supplied to the rear combustion chamber 12 from a fuel supply section 13 attached to the cover 8.
4, secondary fuel is injected 17 from a plurality of fuel injection parts 15 to a secondary air supply hole (sometimes serving as a swirling vane) 16, and is supplied to the rear combustion chamber together with secondary air 18 to generate a premixed flame 22. Form. On the other hand, a turbulator 20 is attached around the primary fuel nozzle 11 to supply swirling air 19 to the head combustion chamber 9.
This promotes the stability of the diffusion flame 21 that is formed.

このように、1次燃料の燃焼による頭部拡散火
炎を形成し、さらに、予混合燃焼火炎22を形成
することによつて、全体的に希薄低温度燃焼を実
現させることによつて低NOx化を図つている。
In this way, by forming the head diffusion flame by combustion of the primary fuel and further forming the premix combustion flame 22, the overall lean and low temperature combustion is realized, thereby reducing NOx. We are trying to

しかし、二次燃料17と二次過剰空気18との
予混合燃焼火炎22では二次空気18に燃料17
が供給される過程で燃料17の供給が非常に少な
い低負荷時には燃料濃度が空気18に対し淡い状
態になるため過冷却の燃焼となり、燃焼が阻害さ
れ、HCやCOなどの未燃焼成分が多く排出される
大きな欠点がある。
However, in the premixed combustion flame 22 of the secondary fuel 17 and the secondary excess air 18, the fuel 17 is added to the secondary air 18.
In the process of supplying fuel 17, at low loads when the supply of fuel 17 is very small, the fuel concentration becomes lighter than the air 18, resulting in supercooled combustion, inhibiting combustion, and leaving a large amount of unburned components such as HC and CO. There is a big drawback that it is discharged.

第2図に二段燃焼方式による燃料供給方法の一
例を示す。燃料の供給は、まず、1次燃料のみで
着火を行ない、このまま燃料を増大させタービン
負荷50%程度になつたら燃料の増加を止め、一定
流量とするため頭部燃焼室9に炎を形成21す
る。この時点で二次燃料17を供給し始め、50%
から100%までのタービン負荷上昇は二次燃料1
7の増加によつて行なう。
FIG. 2 shows an example of a fuel supply method using a two-stage combustion method. To supply fuel, first ignite with only the primary fuel, continue to increase the fuel, and when the turbine load reaches about 50%, stop increasing the fuel and form a flame in the head combustion chamber 9 to maintain a constant flow rate 21 do. At this point, start supplying secondary fuel 17, 50%
The turbine load increase from 100% to 100% is secondary fuel 1.
This is done by an increase of 7.

第3図に二次燃料供給後の燃料17と空気18
との状態を示す。空気流量18は圧縮機1が定格
運転をしているため、常に一定流量となる。この
空気中に燃料17が供給されることになるが、燃
料17の供給量が少ないA域では空気流量に比べ
燃料供給量が少ないため燃料が希薄の状態になり
すぎ、燃焼が出来ない、いわゆる、不燃焼範囲に
なる。
Figure 3 shows fuel 17 and air 18 after secondary fuel supply.
Indicates the state of The air flow rate 18 is always a constant flow rate because the compressor 1 is operating at its rated value. Fuel 17 will be supplied into this air, but in region A where the supply amount of fuel 17 is small, the fuel supply amount is small compared to the air flow rate, so the fuel becomes too dilute and combustion cannot occur. , it becomes a non-flammable range.

第4図に排ガス中に含まれるCO,HCなどの未
燃焼成分の排出特性を示す。ガスタービン出力50
%以下では頭部燃焼室9へ供給する1次燃料10
のみの燃焼であり着火時に空気温度がほぼ室温と
等しいこと、および周囲の構成物の温度が低いた
め燃焼性が阻害される。このため、COの排出が
多くなる傾向を示す。また、タービン出力50%近
傍から主燃焼室12へ燃料17の供給を開始す
る。とくに、二次燃料供給開始直後の50〜70%出
力では二次空気18が多く第3図に示すように空
気に比べて燃料供給量が少ないA域に相当する状
態となる。このため、燃焼せず未燃焼成分のまま
で排ガス中に含まれCO濃度が多くなつている。
Figure 4 shows the emission characteristics of unburned components such as CO and HC contained in exhaust gas. Gas turbine output 50
% or less, the primary fuel 10 supplied to the head combustion chamber 9
Since the air temperature is almost the same as room temperature at the time of ignition, and the temperature of surrounding components is low, combustibility is inhibited. For this reason, CO emissions tend to increase. Further, the supply of fuel 17 to the main combustion chamber 12 is started from around 50% of the turbine output. In particular, at 50% to 70% output immediately after the start of secondary fuel supply, there is a large amount of secondary air 18, which corresponds to region A, where the amount of fuel supplied is small compared to air, as shown in FIG. For this reason, it remains unburned and is contained in the exhaust gas, increasing the CO concentration.

このように、二段燃焼方式では二次燃料を供給
する段階で上述のような不燃焼範囲が存在するた
め、COの生成を抑えることが出来ない大きな欠
点をもつ。そこで、二次燃料と二次空気との予混
合燃料を頭部燃焼室の燃焼火炎21に向くように
供給方向を変えて未燃焼ガスの生成を抑制する策
も試みられているが、頭部火炎21にさらに燃料
が供給されることからガスタービン定格運転時
に、燃焼器軸心部の温度は高温度へ移向するため
定格時に、NOxの発生が多くなる欠点をもち、
二次燃料は二次空気と混合し予混合燃料ガスとし
て予混合燃焼を行なう二次燃焼の場合、燃料投入
開始時に空気過剰になることに起因するCOなど
の未燃焼成分の多量発生を防止することは出来な
い。
As described above, the two-stage combustion method has a major drawback in that it cannot suppress the generation of CO because the above-mentioned non-combustion range exists at the stage of supplying the secondary fuel. Therefore, attempts have been made to suppress the generation of unburned gas by changing the supply direction of the premixed fuel of secondary fuel and secondary air so that it faces the combustion flame 21 in the head combustion chamber. Since fuel is further supplied to the flame 21, the temperature of the combustor shaft center moves to a high temperature during rated operation of the gas turbine, which has the disadvantage of increasing NOx generation during rated operation.
In the case of secondary combustion, where secondary fuel is mixed with secondary air and premixed combustion is performed as a premixed fuel gas, this prevents the generation of large amounts of unburned components such as CO due to excess air at the beginning of fuel injection. I can't do that.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、排ガス中のNOxを大巾に低
減し、しかも、ガスタービンの運転範囲でCO,
HCの発生を抑え、燃焼性能良好な燃焼器を提供
するにある。
The purpose of the present invention is to significantly reduce NOx in exhaust gas, and to reduce CO and CO within the operating range of the gas turbine.
The purpose of the present invention is to provide a combustor that suppresses the generation of HC and has good combustion performance.

〔発明の概要〕[Summary of the invention]

本発明の要点は、ガスタービン二段燃焼器は頭
部燃焼室に拡散希薄低温度燃焼により低NOx化
を図る安定な火炎を形成させ、さらに後流にひか
える後部燃焼室には燃料と空気とを混合させた若
干空気過剰の予混合燃焼を行ない、大巾な低
NOx化を図る。さらに二段目から供給する予混
合空気流量は二段目供給燃料流量との流量比で、
常に、若干空気過剰の流量比になるように燃料の
供給と二段目空気流量を制御することにより二段
目燃料供給開始時でも常に燃焼範囲内にあるよう
にすることによつて空気過剰による過冷却をなく
し、未燃焼成分であるCO,HCの発生を抑制する
にある。
The main point of the present invention is that the gas turbine two-stage combustor forms a stable flame in the head combustion chamber to reduce NOx through diffusion-lean low-temperature combustion, and furthermore, in the rear combustion chamber located downstream, fuel and air are formed. By performing premix combustion with a slight excess of air, a wide range of low
Aim to reduce NOx. Furthermore, the flow rate of premixed air supplied from the second stage is the flow rate ratio with the flow rate of fuel supplied to the second stage.
By controlling the fuel supply and the second stage air flow rate so that the flow rate ratio is always slightly excessive, even when the second stage fuel supply starts, the combustion range is always within the combustion range. The goal is to eliminate supercooling and suppress the generation of unburned components such as CO and HC.

特に、本発明の低NOxガスタービン燃焼器は、
頭部に1段目の燃料と1段目の空気とを導入し拡
散火炎を形成することによつて拡散燃焼を行わせ
る頭部燃焼室と、前記頭部燃焼室の後方に2段目
の燃料と2段目の空気との混合物を供給し予混合
燃焼火炎を形成することによつて予混合燃焼を行
わせる主燃焼室とを備えたものである。このよう
な燃焼器であつて、タービンの起動立上時には、
1段目燃料及び1段目空気を共に増加させる。更
に、タービンの出力が50%以下時には、1段目燃
料は増加させるものの1段目空気は一定とする。
更に、タービンの出力が50%以上時には、1段目
燃料は一定とし1段目空気を増加させると共に、
2段目燃料及び2段目空気を共に増加させる空気
流量調整器を設けたことを特徴とする。
In particular, the low NOx gas turbine combustor of the present invention
A head combustion chamber that performs diffusion combustion by introducing first-stage fuel and first-stage air into the head and forming a diffusion flame, and a second-stage combustion chamber located behind the head combustion chamber. It is equipped with a main combustion chamber that performs premix combustion by supplying a mixture of fuel and second stage air to form a premix combustion flame. In such a combustor, at startup of the turbine,
Both the first stage fuel and the first stage air are increased. Furthermore, when the output of the turbine is less than 50%, the first stage fuel is increased but the first stage air is kept constant.
Furthermore, when the output of the turbine is 50% or more, the first stage fuel is kept constant and the first stage air is increased,
It is characterized by providing an air flow regulator that increases both the second stage fuel and the second stage air.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第5図ないし第8図を用いて
説明する。
Embodiments of the present invention will be described using FIGS. 5 to 8.

第5図は本発明によるガスタービン燃焼器の一
実施例の断面図である。
FIG. 5 is a cross-sectional view of one embodiment of a gas turbine combustor according to the present invention.

燃焼用圧縮空気を二系統に分け、従来形燃焼器
と同様に圧縮機1からの吐出空気を尾筒23周囲
を覆うように流れ頭部燃焼室9に開口したタービ
ユレータ20空気孔24や壁面冷却用空気孔25
および主燃焼室12に開口した壁面冷却用空気孔
25、希釈空気孔26から燃焼器内に導入される
系と、さらに、圧縮機からの空気を分岐して主燃
焼器へ供給する二次空気旋回供給孔27に導く二
系統を備えている。すなわち、二段目から主燃焼
室12に供給する燃料28と常に若干空気過剰の
流量比になるように空気29の流量を調節する弁
30を備えている。流量調節をされた空気は空気
溜31に集合し、旋回空気孔27から主燃焼室1
2内へ供給されるが旋回空気流中に燃料32を供
給し、空気29と予混合燃料として旋回孔27か
ら主燃焼器12へ導入される。二次空気29は流
量調整弁30で二次燃料32との流量比が空気過
剰率:λが1.2〜1.8になるような若干空気過剰と
なるように調整して供給する。λが1.2より少な
いと燃焼ガス33温度が高くなるため、NOx生
成が多くなりまた、λ≧1.8以上になると燃料に
対し、空気過剰となり、燃焼が阻害されるため燃
焼の不安定や、CO,HCなどの未燃焼分の排出が
多くなるなど燃焼性を低下させる。このように、
二次空気流量を常に若干空気過剰の燃料との流量
比になるように流量比調節33を行なうものであ
る。このような制御の状態を第6図に示す。空気
流量は二次燃料投入開始からタービン負荷が増加
するにつれて増加し、これにつれ流量調整器34
で空気流量を増加させ、常に、λで1.2〜1.8にな
るようにする。従つて、二次燃料投入直後にも不
燃焼範囲にならない状態を維持することができ
る。又、ガスタービン出力に対する空気流量の変
化状態を第7図に示す。全空気流量とこれに対す
る各空気量の変化を示す。二次空気はタービン出
力が約50%になつた時に流れ始まるように制御
し、100%負荷時に全体空気量の約30%が流入す
るように制御する。30%以上になると二次空気流
出量が多くなるため燃焼性が低下する。約25%程
度が良好である。
The compressed air for combustion is divided into two systems, and the air discharged from the compressor 1 flows around the transition piece 23 and flows through the turbulator 20, which opens into the head combustion chamber 9, the air holes 24, and wall cooling, just as in the conventional combustor. air hole 25
and a system that is introduced into the combustor through the wall cooling air holes 25 and dilution air holes 26 that open into the main combustion chamber 12, and secondary air that branches air from the compressor and supplies it to the main combustor. Two systems leading to the swirl supply hole 27 are provided. That is, a valve 30 is provided that adjusts the flow rate of the air 29 so that the flow rate ratio of the fuel 28 and the air 29 supplied from the second stage to the main combustion chamber 12 is always slightly excessive. The air whose flow rate has been adjusted gathers in the air reservoir 31 and flows through the swirling air hole 27 into the main combustion chamber 1.
The fuel 32 is supplied into the swirling air flow into the swirling air flow, and is introduced into the main combustor 12 from the swirling hole 27 as premixed fuel with the air 29. The secondary air 29 is adjusted and supplied by a flow rate regulating valve 30 so that the flow rate ratio with the secondary fuel 32 is slightly excessive so that the excess air ratio: λ is 1.2 to 1.8. When λ is less than 1.2, the temperature of the combustion gas 33 becomes high, which increases the production of NOx. When λ≧1.8 or more, there is an excess of air relative to the fuel, inhibiting combustion, resulting in unstable combustion, CO, This reduces combustibility, such as increased emissions of unburned substances such as HC. in this way,
The flow rate ratio adjustment 33 is performed so that the secondary air flow rate always becomes the flow rate ratio with the fuel with a slight excess of air. The state of such control is shown in FIG. The air flow rate increases as the turbine load increases from the start of secondary fuel injection, and the flow rate regulator 34 increases as the turbine load increases.
Increase the air flow rate at , always ensuring that λ is between 1.2 and 1.8. Therefore, it is possible to maintain a state in which the fuel does not fall into the non-flammable range even immediately after the secondary fuel is introduced. Further, FIG. 7 shows how the air flow rate changes with respect to the gas turbine output. The total air flow rate and the changes in each air amount relative to this are shown. The secondary air is controlled so that it begins to flow when the turbine output reaches approximately 50%, and is controlled so that approximately 30% of the total air volume flows in at 100% load. If it exceeds 30%, the amount of secondary air flowing out increases, resulting in a decrease in flammability. Approximately 25% is good.

第8図に本発明によるNOx,CO,HCの濃度
特性を示す。ガスタービン出力50%までは一次燃
料のみの燃焼でありガスタービン出力0%時には
COの生成が多い傾向を示すが、本発明のポイン
トとなつている二次燃料を供給開始直後にはCO
濃度は少なく、その生成がほとんどない。これは
二次燃料と混合し燃焼を継続する二次旋回空気を
制御していることにより従来例に見られた過剰空
気による過冷却の状態がなくなつたことにより良
好な燃焼状態を維持出来るようになつたためであ
る。NOxの発生も予混合燃焼を行なう従来と同
じ形態であり、大巾な低減ができる。一方、他の
方法として次のようなことでも対応できる。二次
空気の流量変化は圧縮機吐出空気の系統を二系統
に分割し、途中に流量調節用弁を備えているが、
これと同様の効果を得る方法として二次旋回空気
流入口の前に可変の整流板を設け、整流板を動か
すことによつて空気開孔部面積が変化することに
よつても同程度のCO低減効果を得ることができ
る。
FIG. 8 shows the concentration characteristics of NOx, CO, and HC according to the present invention. Up to 50% gas turbine output, only the primary fuel is combusted, and when the gas turbine output is 0%
There is a tendency for a large amount of CO to be generated, but immediately after starting the supply of secondary fuel, which is the key point of this invention, CO
Its concentration is low and its production is almost non-existent. By controlling the secondary swirling air that mixes with the secondary fuel and continues combustion, it is possible to maintain a good combustion state by eliminating the supercooling state caused by excess air that was seen in conventional examples. This is because he became older. NOx generation is also the same as in the conventional method, which uses premixed combustion, and can be significantly reduced. On the other hand, the following methods can also be used. To change the flow rate of secondary air, the compressor discharge air system is divided into two systems, and a flow rate adjustment valve is installed in the middle.
A method to obtain a similar effect is to install a variable current plate in front of the secondary swirling air inlet, and by moving the current plate to change the air opening area, the same level of CO2 can be achieved. A reduction effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によればNOxの大巾低減とガスタービ
ンの運転範囲でCO,HCなどの未燃焼分の生成を
抑えることができる。
According to the present invention, it is possible to significantly reduce NOx and suppress the generation of unburned components such as CO and HC within the operating range of the gas turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の低NOx二段燃焼器の断面図、
第2図は二段燃焼器における燃料投入線図、第3
図は従来の燃焼器の二段目燃料投入時の燃料空気
状態特性図、第4図は従来の燃焼器の排ガス特性
図、第5図は本発明による一実施例の系統図、第
6図は本発明の二段目燃料投入時の燃料空気状態
変化図、第7図は本発明による空気変化図、第8
図は本発明による低NOx二段燃焼器の排ガス特
性図である。 3……燃焼器、16……二段目空気重量、13
……二段目燃料、28……二段目燃料、29……
二段目空気、9……頭部燃焼室、12……主燃焼
室、30……空気制御用弁。
Figure 1 is a cross-sectional view of a conventional low NOx two-stage combustor.
Figure 2 is a fuel input diagram for a two-stage combustor;
The figure is a fuel-air condition characteristic diagram when fuel is input into the second stage of a conventional combustor, Figure 4 is an exhaust gas characteristic diagram of a conventional combustor, Figure 5 is a system diagram of an embodiment of the present invention, and Figure 6 7 is a diagram showing changes in the fuel-air state during second-stage fuel injection according to the present invention, FIG. 7 is a diagram showing changes in air according to the present invention, and FIG.
The figure is an exhaust gas characteristic diagram of the low NOx two-stage combustor according to the present invention. 3... Combustor, 16... Second stage air weight, 13
...Second stage fuel, 28...Second stage fuel, 29...
Second stage air, 9...Head combustion chamber, 12...Main combustion chamber, 30...Air control valve.

Claims (1)

【特許請求の範囲】 1 頭部に1段目の燃料と1段目の空気とを導入
し拡散火炎を形成することによつて拡散燃焼を行
わせる頭部燃焼室と、前記頭部燃焼室の後方に2
段目の燃料と2段目の空気との混合物を供給し予
混合燃焼火炎を形成することによつて予混合燃焼
を行わせる主燃焼室とを備えた低NOxガスター
ビン燃焼器であつて、 前記タービンの起動立上時には、前記1段目燃
料及び1段目空気を共に増加させ、前記タービン
の出力が50%以下時には、前記1段目燃料を増加
させ前記1段目空気を一定とし、前記タービンの
出力が50%以上時には、前記1段目燃料を一定と
し前記1段目空気を増加させると共に、前記2段
目燃料及び2段目空気を共に増加させる空気流量
調整器を設けたことを特徴とするNOxガスター
ビン燃焼器。
[Scope of Claims] 1. A head combustion chamber that performs diffusion combustion by introducing first-stage fuel and first-stage air into the head and forming a diffusion flame, and said head combustion chamber. 2 behind
A low NOx gas turbine combustor comprising a main combustion chamber that performs premix combustion by supplying a mixture of stage fuel and second stage air to form a premix combustion flame, At startup of the turbine, both the first stage fuel and the first stage air are increased, and when the output of the turbine is 50% or less, the first stage fuel is increased and the first stage air is kept constant; When the output of the turbine is 50% or more, an air flow regulator is provided that increases the first stage air while keeping the first stage fuel constant and increases both the second stage fuel and second stage air. A NOx gas turbine combustor featuring:
JP19903183A 1983-10-26 1983-10-26 Low nox gas turbine burner Granted JPS6091141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19903183A JPS6091141A (en) 1983-10-26 1983-10-26 Low nox gas turbine burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19903183A JPS6091141A (en) 1983-10-26 1983-10-26 Low nox gas turbine burner

Publications (2)

Publication Number Publication Date
JPS6091141A JPS6091141A (en) 1985-05-22
JPH0563687B2 true JPH0563687B2 (en) 1993-09-13

Family

ID=16400959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19903183A Granted JPS6091141A (en) 1983-10-26 1983-10-26 Low nox gas turbine burner

Country Status (1)

Country Link
JP (1) JPS6091141A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610426B2 (en) * 1985-09-20 1994-02-09 株式会社東芝 Gas turbine control device
JP2894861B2 (en) * 1991-04-18 1999-05-24 株式会社日立製作所 Control device for gas turbine combustor
JP2954480B2 (en) * 1994-04-08 1999-09-27 株式会社日立製作所 Gas turbine combustor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192728A (en) * 1981-05-20 1982-11-26 Hitachi Ltd Fremixing combustion method of gas turbine and device thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192728A (en) * 1981-05-20 1982-11-26 Hitachi Ltd Fremixing combustion method of gas turbine and device thereof

Also Published As

Publication number Publication date
JPS6091141A (en) 1985-05-22

Similar Documents

Publication Publication Date Title
US6983605B1 (en) Methods and apparatus for reducing gas turbine engine emissions
US4671069A (en) Combustor for gas turbine
US5121597A (en) Gas turbine combustor and methodd of operating the same
JPS62175524A (en) Combustion unit for gas turbine
JPH0140246B2 (en)
JPS63247536A (en) Gas turbine combustor
JPS6179914A (en) Premixing combustion unit
JPH0563687B2 (en)
JP2755603B2 (en) Gas turbine combustor
JPS59183202A (en) Low nox burner
JPH0583814B2 (en)
JPH0745935B2 (en) Low NOx gas turbine combustor
JPH0443726Y2 (en)
JP2783638B2 (en) Gas turbine combustion equipment
JP3472424B2 (en) Gas turbine and method of operating gas turbine
JP3035410B2 (en) Combustion device and combustion method
JP2527170B2 (en) Operation method of gas turbine two-stage combustor
JP3110558B2 (en) Combustor combustion method
JPS5847928A (en) Gas turbine combustor
JPS60145426A (en) Combuster for gas turbine
JP2000130183A (en) Gas turbine combustor for gasification power plant
JP3205636B2 (en) Gas turbine combustor and method for controlling combustion air amount
JPS629124A (en) Gas turbine combustor
JP3181122B2 (en) Gas turbine combustor control method
JPH07260149A (en) Combustion apparatus for gas turbine