JPH0563634B2 - - Google Patents

Info

Publication number
JPH0563634B2
JPH0563634B2 JP61227056A JP22705686A JPH0563634B2 JP H0563634 B2 JPH0563634 B2 JP H0563634B2 JP 61227056 A JP61227056 A JP 61227056A JP 22705686 A JP22705686 A JP 22705686A JP H0563634 B2 JPH0563634 B2 JP H0563634B2
Authority
JP
Japan
Prior art keywords
pressure chamber
control valve
pressure
chamber
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61227056A
Other languages
Japanese (ja)
Other versions
JPS6385285A (en
Inventor
Nobufumi Nakajima
Shigeru Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP61227056A priority Critical patent/JPS6385285A/en
Priority to KR1019870007150A priority patent/KR900003797B1/en
Priority to DE89105204T priority patent/DE3788228T2/en
Priority to EP89105204A priority patent/EP0332224B1/en
Priority to EP87113234A priority patent/EP0261507B1/en
Priority to DE8787113234T priority patent/DE3763225D1/en
Priority to US07/096,410 priority patent/US4819440A/en
Publication of JPS6385285A publication Critical patent/JPS6385285A/en
Publication of JPH0563634B2 publication Critical patent/JPH0563634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ベーン型回転圧縮機、特に容量可
変機構を有するベーン型回転圧縮機であつて例え
ば自動車用空調装置に用いられるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a vane type rotary compressor, particularly a vane type rotary compressor having a variable capacity mechanism, which is used, for example, in an automobile air conditioner.

(従来の技術) ベーン型回転圧縮機において、容量を可変とす
る機構は種々のものが公知であるが、例えば特願
昭61−142600号として本願出願人は内部制御式の
ものを提案している。これは、サイドブロツクに
回動自在の調節部材を設け、この調節部材をスプ
リングの付勢力と圧力室の押圧力とのバランスで
回動させ、圧縮開始位置を調節するようになつて
いる。圧力室は、高圧ガスが絞られて導入される
と共に、連通路を介して低圧室に連通するように
なつており、この圧力室と低圧室との連通度を低
圧室の圧力に応じて調節する制御弁が設けられて
いる。圧縮機の回転数が増大すると低圧室の圧力
が低下し、制御弁により連通路が開かれ、圧力室
の圧力が低下してスプリングにより調節部材が容
量増の方向へ回動し、その逆に圧縮機の回転数が
低下すると調節部材が反対方向に回動して容量を
低下させるものである。
(Prior Art) Various mechanisms for varying the capacity of vane-type rotary compressors are known, but for example, the applicant proposed an internally controlled mechanism in Japanese Patent Application No. 142,600/1982. There is. This is configured such that a rotatable adjustment member is provided on the side block, and the adjustment member is rotated based on the balance between the biasing force of the spring and the pressing force of the pressure chamber to adjust the compression start position. The high-pressure gas is throttled and introduced into the pressure chamber, and the gas is communicated with the low-pressure chamber via a communication path, and the degree of communication between the pressure chamber and the low-pressure chamber is adjusted according to the pressure in the low-pressure chamber. A control valve is provided. When the rotation speed of the compressor increases, the pressure in the low pressure chamber decreases, a communication passage is opened by the control valve, the pressure in the pressure chamber decreases, and the spring rotates the adjustment member in the direction of increasing capacity, and vice versa. When the rotational speed of the compressor decreases, the adjusting member rotates in the opposite direction to reduce the capacity.

(発明が解決しようとする問題点) しかしながら、上記先願例にあつては、容量が
低圧室の圧力に応じて制御されるようになつてい
るので、例えば自動車の加速時には容量を少なく
してエンジンの負荷を軽減して加速性を高めたい
のに係わらず、加速された後でなければ低圧室の
圧力が減少しないので容量が小さくならず、外部
変化に応じて適切には制御することができないと
いう問題点があつた。
(Problem to be solved by the invention) However, in the case of the above-mentioned prior application, since the capacity is controlled according to the pressure of the low pressure chamber, for example, when the car accelerates, the capacity is reduced. Regardless of the desire to reduce the load on the engine and improve acceleration, the pressure in the low pressure chamber does not decrease until after acceleration, so the capacity does not decrease, and it is difficult to control the engine appropriately in response to external changes. There was a problem that I couldn't do it.

そこで、この発明は、上記の問題点を解消し、
内部変化ばかりでなく、外部変化に応じても容量
を制御し、もつて最適に容量を制御することがで
きるベーン型回転圧縮機を提供することを課題と
している。
Therefore, this invention solves the above problems and
It is an object of the present invention to provide a vane-type rotary compressor that can control capacity not only in response to internal changes but also in response to external changes, thereby optimally controlling capacity.

(問題点を解決するための手段) しかして、この発明の要旨とするところは、ベ
ーンが摺動自在に挿入されたロータをシリンダと
サイドブロツクとに囲まれた空間内に挿入し、前
記シリンダ、ロータ、サイドブロツク及びベーン
に囲まれた圧縮室が前記ロータの回転に伴つて容
積変化するベーン型回転圧縮機において、圧縮開
始位置を調節するように前記サイドブロツクに回
動自在に設けれた調節部材と、この調節部材を一
回動方向に付勢する弾性手段と、前記調節部材を
弾性手段の反付勢方向に押圧する圧力を発生する
よう高圧室にオリフイスを介して連通する圧力室
と、この圧力室と低圧室との連通度を前記低圧室
の圧力に応じて調節する第1の制御弁と、前記圧
力室と低圧室との連通度を外部からの信号に応じ
て調節する第2の制御弁とを具備することことに
ある。
(Means for Solving the Problems) Therefore, the gist of the present invention is to insert a rotor into which vanes are slidably inserted into a space surrounded by a cylinder and a side block, In a vane-type rotary compressor in which a compression chamber surrounded by a rotor, a side block, and a vane changes in volume as the rotor rotates, the side block is rotatably provided to adjust the compression start position. an adjustment member, an elastic means for biasing the adjustment member in one rotational direction, and a pressure chamber communicating with a high pressure chamber via an orifice so as to generate pressure for pressing the adjustment member in a direction opposite to the biasing direction of the elastic means. a first control valve that adjusts the degree of communication between the pressure chamber and the low pressure chamber in accordance with the pressure in the low pressure chamber; and a first control valve that adjusts the degree of communication between the pressure chamber and the low pressure chamber in accordance with a signal from the outside. and a second control valve.

(作用) したがつて、低圧室の圧力が増減することによ
り第1の制御弁が作動して圧力室の圧力を調節
し、容量の内部的に制御する一方、外部信号に応
じて圧力室の圧力を調節する第2の制御弁を設け
たので、この第2の制御弁により外部からも容量
を制御することができ、そのため、上記課題を達
成することができるものである。
(Function) Therefore, as the pressure in the low pressure chamber increases or decreases, the first control valve operates to adjust the pressure in the pressure chamber and internally control the capacity, while increasing or decreasing the pressure in the pressure chamber in response to an external signal. Since the second control valve that adjusts the pressure is provided, the capacity can also be controlled from the outside using the second control valve, and therefore the above object can be achieved.

(実施例) 第1図乃至第4図において、ベーン型回転圧縮
機は、略楕円形の内面が形成されたシリンダ1を
有し、このシリンダ1内にロータ2がシリンダ1
の両短径部付近で接触するよう挿入されており、
このロータ2によりシリンダ1内に2つの動作空
間3a,3bが対称的に画成されている。ロータ
2は、該ロータ2の中心に駆動軸4が固装されて
いると共に、該ロータ2の略半径方向に例えば5
個のベーン溝5が形成され、該ベーン溝5のそれ
ぞれにベーン6が摺動自在に挿入されている。
(Example) In FIGS. 1 to 4, a vane type rotary compressor has a cylinder 1 having a substantially elliptical inner surface, and a rotor 2 is installed inside the cylinder 1.
It is inserted so that it contacts near both short diameter parts,
Two operating spaces 3a and 3b are symmetrically defined within the cylinder 1 by the rotor 2. The rotor 2 has a drive shaft 4 fixedly attached to the center of the rotor 2, and has, for example, a drive shaft 4 extending approximately radially from the rotor 2.
Vane grooves 5 are formed, and a vane 6 is slidably inserted into each of the vane grooves 5.

サイドブロツク7a,7bは、シリンダ1の両
側に固装され、該サイドブロツク7a,7bにロ
ータ2とベーン6とが接しており、シリンダ1、
ロータ2、ベーン6及びサイドブロツク7a,7
bから5個の圧縮室8が構成されている。
The side blocks 7a, 7b are fixed to both sides of the cylinder 1, and the rotor 2 and vane 6 are in contact with the side blocks 7a, 7b.
Rotor 2, vane 6 and side blocks 7a, 7
Five compression chambers 8 are constructed from b.

シエル9a,9bはそれぞれ開口端が互いに嵌
合し、シリンダ1とサイドブロツク7a,7bの
周縁を囲んでいる。リア側のサイドブロツク7b
とシエル9bとにより低圧室10が、フロント側
のサイドブロツク7aとシエル9aとにより高圧
室11がそれぞれ接続されている。低圧室10は
シエル9bに形成された吸入口12に接続され、
また、高圧室11はシエル9aに形成された吐出
口13に接続されている。
The open ends of the shells 9a and 9b fit into each other and surround the periphery of the cylinder 1 and the side blocks 7a and 7b. Rear side block 7b
A low pressure chamber 10 is connected to the front side block 7a and the shell 9b, and a high pressure chamber 11 is connected to the front side block 7a and the shell 9a. The low pressure chamber 10 is connected to an inlet 12 formed in the shell 9b,
Further, the high pressure chamber 11 is connected to a discharge port 13 formed in the shell 9a.

前述した駆動軸4は、サイドブロツク7a,7
bはラジアルベアリング14a,14bを介して
回転自在に支持されていると共に、フロント側の
シエル9aに形成された円筒状の中心孔まで延
び、この延びた部分でエンジンからトルクを受け
るようになつている。駆動軸4とシエル9aの間
にはメカニカルシール15が設けられている。
The aforementioned drive shaft 4 is connected to the side blocks 7a, 7.
b is rotatably supported via radial bearings 14a and 14b, and extends to a cylindrical center hole formed in the front side shell 9a, and receives torque from the engine through this extended portion. There is. A mechanical seal 15 is provided between the drive shaft 4 and the shell 9a.

吸入孔16a,16bは、リア側のサイドブロ
ツク7bに圧縮室8が拡大する時低圧室10と連
通するよう対称的に形成されている。ただし、こ
の吸入孔16a,16bの圧縮室8に対する開口
後端位置、即ち、圧縮開始位置は後述する調節部
材により調節されるようになつている。吐出孔1
7a,17bは、シリンダ1の両側にそれぞれ複
数個形成され、圧縮室8が縮小する時弁挿入空間
18a,18bと連通する。弁挿入空間18a,
18bは、シリンダ1と該シリンダ1に取付けら
れたカバー19a,19bとから構成され、それ
ぞれロール状の吐出弁20a,20bと、この吐
出弁20a,20bを規制するストツパ21a,
21bとが配置され、該吐出弁20a,20b及
びストツパ21a,21bがカバー19a,19
bに支持されている。また、弁挿入空間18a,
18bはフロント側のサイドブロツク7aに形成
された吐出連通孔50を介して高圧室11に連通
している。
The suction holes 16a and 16b are symmetrically formed so that they communicate with the low pressure chamber 10 when the compression chamber 8 expands in the rear side block 7b. However, the opening rear end positions of the suction holes 16a and 16b relative to the compression chamber 8, that is, the compression start positions, are adjusted by an adjustment member described later. Discharge hole 1
A plurality of valve openings 7a and 17b are formed on both sides of the cylinder 1, and communicate with the valve insertion spaces 18a and 18b when the compression chamber 8 is contracted. Valve insertion space 18a,
18b is composed of a cylinder 1 and covers 19a and 19b attached to the cylinder 1, and includes roll-shaped discharge valves 20a and 20b, and stoppers 21a and 21a for regulating the discharge valves 20a and 20b, respectively.
21b are arranged, and the discharge valves 20a, 20b and stoppers 21a, 21b are arranged in the covers 19a, 19.
It is supported by b. In addition, the valve insertion space 18a,
18b communicates with the high pressure chamber 11 via a discharge communication hole 50 formed in the front side block 7a.

第5図にも示すように、リング状の調節部材2
2は、リア側のサイドブロツク7bに形成された
環状溝23に回動自在であるよう嵌合されてい
る。この調節部材22は、前述したサイドブロツ
ク7bの吸入孔16a,16bに常時連通する切
欠き部24a,24bが形成されている。したが
つて、調節部材22を回動すると、切欠き部24
a,24bの周方向の位置が変化し、そのため、
前述したベーン6により圧縮室8の吸入孔16
a,16bに対する連通が遮断される位置、即ち
圧縮開始位置が調節されるものである。
As shown in FIG. 5, a ring-shaped adjustment member 2
2 is rotatably fitted into an annular groove 23 formed in the rear side block 7b. This adjustment member 22 is formed with notches 24a and 24b that are constantly in communication with the suction holes 16a and 16b of the side block 7b described above. Therefore, when the adjustment member 22 is rotated, the notch 24
The circumferential positions of a and 24b change, and therefore,
The suction hole 16 of the compression chamber 8 is opened by the vane 6 mentioned above.
The position where communication with a and 16b is cut off, ie, the compression start position, is adjusted.

リア側のサイドブロツク7bと調節部材22と
の間には付勢手段を構成するコイル状のスプリン
グ25が弾装され、調節部材22を第3図、第4
図の時計方向に押圧している。また、調節部材2
2は、舌片状の受圧部26a,26bが突設さ
れ、この受圧部26a,26bがサイドブロツク
7bに吸入孔16a,16bから続いて形成され
た摺動溝27a,27bに嵌挿されており、この
摺動溝27a,27bと調節部材22とに囲まれ
て圧力室28a,28bが構成されている。この
圧力室28a,28bは、調節部材22の内周、
外周及び受部周縁に嵌合されたシール部材29に
より気密が保たれるようになつている。また、こ
の圧力室28a,28bは、サイドブロツク7b
に形成された接続孔30a,30b及びサイドブ
ロツク7bとシエル9bとに囲まれた接続空間3
1を介して互いに連通している。また、この圧力
室28a,28bの一方は、シリンダ1及びサイ
ドブロツク7a,7bとシエル9a,9bとの間
に形成された第1の高圧導入路32とサイドブロ
ツク7bに形成された第2の高圧導入部33を通
して高圧室11に連通し、第2の高圧導入路33
に設けられたオリフイス34を介して吐出ガスが
絞られて導入されるようになつている。
A coil-shaped spring 25 constituting a biasing means is elastically mounted between the rear side block 7b and the adjustment member 22, and the adjustment member 22 is moved as shown in FIGS.
It is pressed clockwise as shown in the figure. In addition, the adjustment member 2
2 is provided with tongue-shaped pressure receiving parts 26a, 26b which are fitted into sliding grooves 27a, 27b formed in the side block 7b following the suction holes 16a, 16b. The sliding grooves 27a, 27b and the adjusting member 22 define pressure chambers 28a, 28b. These pressure chambers 28a, 28b are located at the inner periphery of the adjustment member 22,
Airtightness is maintained by a sealing member 29 fitted to the outer periphery and the periphery of the receiving portion. Further, the pressure chambers 28a and 28b are connected to the side block 7b.
A connection space 3 surrounded by connection holes 30a and 30b formed in the side block 7b and shell 9b.
They communicate with each other via 1. Further, one of the pressure chambers 28a, 28b is connected to a first high pressure introduction path 32 formed between the cylinder 1, the side blocks 7a, 7b, and the shells 9a, 9b, and a second high pressure introduction path 32 formed in the side block 7b. The second high pressure introduction path 33 communicates with the high pressure chamber 11 through the high pressure introduction part 33.
The discharge gas is introduced in a restricted manner through an orifice 34 provided in the exhaust gas.

第1の制御弁35は、第1図、第4図及び第5
図に示すように、低圧室10の圧力に応じて低圧
室10と圧力室28a,28bとの連通度を調節
するためのもので、低圧室10と圧力室28a,
28bとを連通する第1の連通路36にボール状
の弁37とこの弁体37が着座する第1の弁座3
8とを有する。弁体37は、弁ばね39により着
座方向に押圧されていると共に、弁棒40を介し
てベローズ41に接続されている。このベローズ
41は、低圧室10に配置され、低圧室10の圧
力が高いと縮小し、低いと伸張する。このベロー
ズ41のセツト力は調節ねじ42により調節でき
るようになつている。
The first control valve 35 is shown in FIGS. 1, 4, and 5.
As shown in the figure, this is for adjusting the degree of communication between the low pressure chamber 10 and the pressure chambers 28a, 28b according to the pressure in the low pressure chamber 10.
A ball-shaped valve 37 and a first valve seat 3 on which the valve body 37 is seated in a first communication path 36 that communicates with the valve body 28b.
8. The valve body 37 is pressed in the seating direction by a valve spring 39 and is connected to a bellows 41 via a valve stem 40 . This bellows 41 is arranged in the low pressure chamber 10, and contracts when the pressure in the low pressure chamber 10 is high, and expands when the pressure in the low pressure chamber 10 is low. The setting force of this bellows 41 can be adjusted using an adjusting screw 42.

第2の制御弁43は、第6図に示すように電磁
弁から成り、コントロールユニツト44からの制
御信号に応じて通電される励磁コイル45と、こ
の励磁コイル45により磁極が発生するステータ
46及び針弁47を有する。この針弁47に対向
してサイドブロツク7bには、低圧室10と圧力
室28bとを連通する第1の連通路48が形成さ
れ、この第2の連通路48の一端周縁に形成され
た第2の弁座49に針弁47の先端が着座するよ
うになつている。コントロールユニツト44には
自動車の加速度Ap、車室内の温度Tr及び外気温
度Taが入力され、これらの入力因業から制御信
号を演算するようになつている。
The second control valve 43 is composed of an electromagnetic valve as shown in FIG. 6, and includes an excitation coil 45 that is energized according to a control signal from a control unit 44, a stator 46 in which a magnetic pole is generated by the excitation coil 45, and a stator 46 that generates a magnetic pole. It has a needle valve 47. A first communication passage 48 that communicates the low pressure chamber 10 and the pressure chamber 28b is formed in the side block 7b opposite to the needle valve 47. The tip of the needle valve 47 is seated on the second valve seat 49. The acceleration Ap of the vehicle, the temperature Tr inside the vehicle, and the outside temperature Ta are input to the control unit 44, and a control signal is calculated from these input factors.

上記構成において、駆動軸4が回転すると、ロ
ータ2と共にベーン5がシリンダ1の内面に沿つ
て回転し、圧縮室8が容積変化する。圧縮室8が
拡大するときには圧縮室8と低圧室10とが吸入
孔16a,16b及び調節部材22の切欠き部2
4a,24bを介して連通するので、吸入口12
から低圧室10に入つたガスが吸入孔16a,1
6b及び切欠き部24a,24bを介して圧縮室
8に吸入される。次に圧縮室8の容積が縮小する
ようになるが、後方のベーン5が切欠き部24
a,24bを一端を通り過ぎていない場合には圧
縮室8のガスは切欠き部24a,24b及び吸入
孔16a,16bを介して低圧室10に逆流し、
未だ圧縮は開始されない。そして、後方のベーン
5が切欠き部24a,24bを通り過ぎると、圧
縮室8内のガスが閉じ込められ、圧縮が開始され
る。さらにロータ2が回転して先行するベーン5
が吐出孔17a,17bを通り過ぎると、吐出弁
20a,20bがその圧縮室8の圧力により開か
れ、圧縮室8と弁挿入空間18a,18bとが連
通し、圧縮室8のガスは、吐出孔17a,17b
を介して弁挿入空間18a,18bに吐出され、
吐出連通孔50を介して高圧室11に至り、吐出
口13から圧縮機外へ吐出されるものである。
In the above configuration, when the drive shaft 4 rotates, the vane 5 rotates together with the rotor 2 along the inner surface of the cylinder 1, and the volume of the compression chamber 8 changes. When the compression chamber 8 expands, the compression chamber 8 and the low pressure chamber 10 are connected to the suction holes 16a, 16b and the notch 2 of the adjustment member 22.
4a, 24b, so the suction port 12
Gas entering the low pressure chamber 10 from the suction holes 16a, 1
6b and the notches 24a, 24b into the compression chamber 8. Next, the volume of the compression chamber 8 is reduced, but the rear vane 5 is cut out at the notch 24.
a, 24b, the gas in the compression chamber 8 flows back into the low pressure chamber 10 via the notches 24a, 24b and the suction holes 16a, 16b.
Compression has not started yet. Then, when the rear vane 5 passes through the notches 24a and 24b, the gas in the compression chamber 8 is trapped and compression starts. Further, the rotor 2 rotates and the vane 5 moves forward.
When the gas passes through the discharge holes 17a and 17b, the discharge valves 20a and 20b are opened by the pressure in the compression chamber 8, the compression chamber 8 and the valve insertion spaces 18a and 18b communicate with each other, and the gas in the compression chamber 8 is discharged through the discharge hole. 17a, 17b
is discharged into the valve insertion spaces 18a, 18b through the
It reaches the high pressure chamber 11 via the discharge communication hole 50 and is discharged from the discharge port 13 to the outside of the compressor.

次に容量可変機構の動作について説明すると、
低速運転時のように低圧室10の圧力Psが高い
場合には、第1の制御弁35のベローズ41が縮
小して弁体37と第1の弁座38との間の開口面
積を小さくするので、第2の制御弁43による第
2の連通路48が一定に絞られている限り、圧力
室28a,28bの圧力Pcが高圧室11の圧力
Pdに近づくように上昇し、これによりスプリン
グ25に抗して調節部材22が反時計方向に回動
し、後方をベーン5が切欠き部24a,24bを
閉じる時期、即ち圧縮開始時期が早まり、圧縮機
が大容量で運転されることになる。
Next, I will explain the operation of the variable capacity mechanism.
When the pressure Ps in the low pressure chamber 10 is high, such as during low speed operation, the bellows 41 of the first control valve 35 contracts to reduce the opening area between the valve body 37 and the first valve seat 38. Therefore, as long as the second communication path 48 is constricted by the second control valve 43, the pressure Pc in the pressure chambers 28a and 28b is equal to the pressure in the high pressure chamber 11.
As a result, the adjustment member 22 rotates counterclockwise against the spring 25, and the timing at which the vane 5 closes the notches 24a and 24b at the rear, that is, the compression start timing, is advanced. The compressor will be operated at high capacity.

高速運転時にはその逆に低圧室10の圧力Ps
が低いので、第1の制御弁35のベローズ41が
伸張して弁体37と第1の弁座38との間の開口
面積を大きくするので、第2の制御弁43による
第2の連通路48が一定に絞られている限り、圧
力室28a,28bの圧力Pcが低圧室10の圧
力Psに近づくように低下し、スプリング25の
押圧力により調節部材22が時計方向に回動し、
後方のベーンが切欠き部24a,24bを閉じる
時期が遅くなり、圧縮機が小容量で運転されるよ
うになる。
Conversely, during high-speed operation, the pressure in the low pressure chamber 10 Ps
Since the bellows 41 of the first control valve 35 expands to increase the opening area between the valve body 37 and the first valve seat 38, the second communication path by the second control valve 43 is reduced. 48 is constricted to a certain level, the pressure Pc in the pressure chambers 28a, 28b decreases to approach the pressure Ps in the low pressure chamber 10, and the adjustment member 22 rotates clockwise due to the pressing force of the spring 25.
The timing at which the rear vanes close the notches 24a and 24b is delayed, and the compressor is operated at a small capacity.

第2の制御弁43は、普通の状態では励磁コイ
ル45に小電流が流され、針弁47が第2の弁座
49から僅かに離れ、微量のガスが圧力室28
a,28bから低圧室10へ漏れるようにされ、
常にPc<Pdであるようにされている。例えば自
動車の加速時にはコントロールユニツト44は加
速信号Apを受けて励磁コイル45への通電を増
加させ、第2の連通路48の開度を大きくする。
このため、第1の制御弁41により第1の連通路
36が閉じられていても圧力室28a,28bの
圧力Pcが低下し、調節部材22が時計方向に回
動して小容量となり、エンジンの負荷を軽減して
加速性を向上させることができる。
In the second control valve 43, under normal conditions, a small current is passed through the excitation coil 45, the needle valve 47 is slightly separated from the second valve seat 49, and a small amount of gas flows into the pressure chamber 28.
a, 28b to leak into the low pressure chamber 10,
Pc<Pd is always maintained. For example, when the automobile accelerates, the control unit 44 receives the acceleration signal Ap and increases the energization of the excitation coil 45, thereby increasing the opening degree of the second communication path 48.
Therefore, even if the first communication passage 36 is closed by the first control valve 41, the pressure Pc in the pressure chambers 28a, 28b decreases, the adjustment member 22 rotates clockwise, and the capacity becomes small, and the engine It is possible to reduce the load on the vehicle and improve acceleration.

また、外気温度Taが低く、車内温度Trが高い
場合にはコントロールユニツト44は励磁コイル
45への通電をオフとして第2の制御弁43によ
り第2の連通路48を完全に閉じるようにする。
このような条件の場合は、暖房時の除湿を目的と
して圧縮機を駆動する場合であるから、そのまま
ではエバポレータの熱負荷が小さくて第1の制御
弁35が開かれて圧力室28a,28bの圧力が
低圧室10の圧力と略等しくなるまで低下させら
れて無負荷運転に近い状態となり、除湿の機能を
奏し得ないが、第2の制御弁43により第2の連
通路48を完全に閉じることにより圧力室28
a,28bの圧力を上昇させ、所定の容量で圧縮
機を駆動することができるようにし、除湿を可能
とするものである。
Further, when the outside temperature Ta is low and the inside temperature Tr is high, the control unit 44 turns off the energization to the excitation coil 45 so that the second control valve 43 completely closes the second communication path 48.
Under these conditions, the compressor is driven for the purpose of dehumidification during heating, so the heat load on the evaporator is small and the first control valve 35 is opened to reduce pressure in the pressure chambers 28a and 28b. The pressure is reduced to approximately equal to the pressure in the low pressure chamber 10, resulting in a state close to no-load operation, and the dehumidification function cannot be performed, but the second communication path 48 is completely closed by the second control valve 43. Possibly pressure chamber 28
By increasing the pressures of the compressors a and 28b, the compressor can be driven at a predetermined capacity, thereby making it possible to dehumidify.

尚、第2の制御弁43を制御する条件は上述し
た例の他に、例えば登坂時には容量を小さくし、
ブレーキを踏んで減速する時には容量を大きく
し、エンジンからの駆動力を圧縮機に伝達するベ
ルト伝道装置にすべりを生じた時には容量を小さ
くし、あるいは圧縮機の吐出ガス温度が異常高温
となつた時には小容量とする等の公知の制御方式
が含まれる。
In addition to the above-mentioned conditions, the conditions for controlling the second control valve 43 include, for example, reducing the capacity when climbing a hill;
The capacity is increased when the brake is applied to decelerate, and the capacity is decreased when the belt transmission device that transmits the driving force from the engine to the compressor slips, or when the temperature of the discharged gas from the compressor becomes abnormally high. In some cases, known control methods such as setting a small capacity are included.

(発明の効果) 以上述べたように、この発明によれば、低圧室
の圧力が増減することにより第1の制御弁が作動
して圧力室の圧力を調節し、調節部材を回動して
圧縮開始位置を変えて容量を内部的に制御する一
方、外部信号に応じて圧力室の圧力を調節する第
2の制御弁を設けたので、この第2の制御弁によ
り外部からも容量を制御して、内部的な制御の簡
易ではあるが、制御が不十分であるという欠点を
補うことができ、最適なシステムとすることがで
きる。また、第2の制御弁は、第1の制御弁を同
じく圧縮機内部で発する高圧室の圧力を利用して
調節部材を動かすようにしたので、第1の制御弁
と同じくこの第2の制御弁も小型なものとするこ
とができるものである。
(Effects of the Invention) As described above, according to the present invention, when the pressure in the low pressure chamber increases or decreases, the first control valve operates to adjust the pressure in the pressure chamber, and rotates the adjustment member. While the capacity is controlled internally by changing the compression start position, a second control valve is provided that adjusts the pressure in the pressure chamber according to an external signal, so the capacity can also be controlled externally using this second control valve. Although the internal control is simple, the drawback of insufficient control can be compensated for, and an optimal system can be obtained. In addition, the second control valve uses the pressure of the high pressure chamber generated inside the compressor to move the adjustment member, so the second control valve operates similarly to the first control valve. The valve can also be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例におけるベーン型
回転圧縮機を示す縦断面図、第2図は第1図の
−線断面図、第3図は第1図の−線断面
図、第4図は第1図の−線断面図、第5図は
同上における要部の分解斜視図、第6図は同上に
用いた第2の制御弁を示す断面図である。 1……シリンダ、2……ロータ、6……ベー
ン、7a,7b……サイドブロツク、8……圧縮
室、10……低圧室、11……高圧室、22……
調節部材、25……スプリング、28a,28b
……圧力室、34……オリフイス、35……第1
の制御弁、43……第2の制御弁。
FIG. 1 is a longitudinal sectional view showing a vane type rotary compressor according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line -- in FIG. 1, FIG. These figures are a sectional view taken along the line -- in FIG. 1, FIG. 5 is an exploded perspective view of the main parts of the same, and FIG. 6 is a sectional view showing the second control valve used in the same. 1... Cylinder, 2... Rotor, 6... Vane, 7a, 7b... Side block, 8... Compression chamber, 10... Low pressure chamber, 11... High pressure chamber, 22...
Adjustment member, 25...Spring, 28a, 28b
...Pressure chamber, 34...Orifice, 35...1st
control valve, 43... second control valve.

Claims (1)

【特許請求の範囲】 1 ベーンが摺動自在に挿入されたロータをシリ
ンダとサイドブロツクとに囲まれた空間内に挿入
し、前記シリンダ、ロータ、サイドブロツク及び
ベーンに囲まれた圧縮室が前記ロータの回転に伴
つて容積変化するベーン型回転圧縮機において、
圧縮開始位置を調節するよう前記サイドブロツク
に回動自在に設けれた調節部材と、この調節部材
を一回動方向に付勢する弾性手段と、前記調節部
材を弾性手段の反付勢方向に押圧する圧力を発生
するよう高圧室にオリフイスを介して連通する圧
力室と、この圧力室と低圧室との連通度を前記低
圧室の圧力に応じて調節する第1の制御弁と、前
記圧力室と低圧室との連通度を外部からの信号に
応じて調節する第2の制御弁とを具備することを
特徴とする容量可変機構を有するベーン型回転圧
縮機。 2 第2の制御弁は電磁弁から成ることを特徴と
する特許請求の範囲第1項記載の容量可変機構を
有するベーン型回転圧縮機。
[Scope of Claims] 1. A rotor into which vanes are slidably inserted is inserted into a space surrounded by a cylinder and a side block, and the compression chamber surrounded by the cylinder, rotor, side block, and vanes is In a vane-type rotary compressor whose volume changes as the rotor rotates,
an adjustment member rotatably provided on the side block to adjust the compression start position; an elastic means for biasing the adjustment member in one rotational direction; and an elastic means for biasing the adjustment member in a direction opposite to the biasing direction of the elastic means. a pressure chamber that communicates with the high pressure chamber via an orifice to generate pressing pressure; a first control valve that adjusts the degree of communication between the pressure chamber and the low pressure chamber in accordance with the pressure of the low pressure chamber; 1. A vane-type rotary compressor having a variable capacity mechanism, characterized by comprising a second control valve that adjusts the degree of communication between the chamber and the low-pressure chamber in accordance with an external signal. 2. A vane type rotary compressor having a variable capacity mechanism according to claim 1, wherein the second control valve is a solenoid valve.
JP61227056A 1986-09-25 1986-09-25 Vane type rotary compressor equipped with capacity varying mechanism Granted JPS6385285A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61227056A JPS6385285A (en) 1986-09-25 1986-09-25 Vane type rotary compressor equipped with capacity varying mechanism
KR1019870007150A KR900003797B1 (en) 1986-09-25 1987-07-04 Vane compressor with displacement adjusting mechanism
DE89105204T DE3788228T2 (en) 1986-09-25 1987-09-10 System for controlling a compressor with a variable delivery rate.
EP89105204A EP0332224B1 (en) 1986-09-25 1987-09-10 Apparatus for controlling a variable displacement compressor
EP87113234A EP0261507B1 (en) 1986-09-25 1987-09-10 Sliding-vane rotary compressor with displacement-adjusting mechanism, and controller for such variable displacement compressor
DE8787113234T DE3763225D1 (en) 1986-09-25 1987-09-10 SLIDING VALVE COMPRESSORS WITH DEVICE FOR ADJUSTING THE FLOW RATE AND REGULATION THEREFOR.
US07/096,410 US4819440A (en) 1986-09-25 1987-09-15 Sliding-vane rotary compressor with displacememt-adjusting mechanism, and controller for such variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227056A JPS6385285A (en) 1986-09-25 1986-09-25 Vane type rotary compressor equipped with capacity varying mechanism

Publications (2)

Publication Number Publication Date
JPS6385285A JPS6385285A (en) 1988-04-15
JPH0563634B2 true JPH0563634B2 (en) 1993-09-10

Family

ID=16854835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227056A Granted JPS6385285A (en) 1986-09-25 1986-09-25 Vane type rotary compressor equipped with capacity varying mechanism

Country Status (2)

Country Link
JP (1) JPS6385285A (en)
KR (1) KR900003797B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857680B2 (en) * 1990-04-06 1999-02-17 株式会社ゼクセル Variable displacement vane compressor with external control

Also Published As

Publication number Publication date
JPS6385285A (en) 1988-04-15
KR900003797B1 (en) 1990-05-31
KR880004229A (en) 1988-06-07

Similar Documents

Publication Publication Date Title
EP0256624A2 (en) Variable capacity vane compressor
KR890001685B1 (en) Variable capacity vane compressor
US5056990A (en) Variable capacity vane compressor
EP0261507B1 (en) Sliding-vane rotary compressor with displacement-adjusting mechanism, and controller for such variable displacement compressor
JP4122736B2 (en) Control valve for variable capacity compressor
US5860791A (en) Scroll compressor with end-plate valve having a conical passage and a free sphere
JPH0563634B2 (en)
JP2857680B2 (en) Variable displacement vane compressor with external control
US4867651A (en) Variable capacity vane compressor
JPH066952B2 (en) Open / close valve mechanism of variable displacement compressor
US5020975A (en) Variable-delivery vane-type rotary compressor
JPS6235089A (en) Vane type compressor
JP2579967B2 (en) Variable capacity compressor
JP4258069B2 (en) Variable capacity scroll compressor and refrigeration cycle for vehicle
JPH0610474B2 (en) Vane compressor
JPS63280883A (en) Variable volume type vane compressor
JPS5968593A (en) Variable capacity type compressor
JPH0426711Y2 (en)
JPH0230996A (en) Vane type rotary compressor
JPH087117Y2 (en) Capacity changer for variable capacity compressor
JPH0259313B2 (en)
JPS6316188A (en) Vane type compressor
JPS62178796A (en) Vane type compressor
JPH0457876B2 (en)
JPH02108891A (en) Variable capacity compressor