JPH0563427B2 - - Google Patents

Info

Publication number
JPH0563427B2
JPH0563427B2 JP5038988A JP5038988A JPH0563427B2 JP H0563427 B2 JPH0563427 B2 JP H0563427B2 JP 5038988 A JP5038988 A JP 5038988A JP 5038988 A JP5038988 A JP 5038988A JP H0563427 B2 JPH0563427 B2 JP H0563427B2
Authority
JP
Japan
Prior art keywords
water glass
sio
molar ratio
lime
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5038988A
Other languages
Japanese (ja)
Other versions
JPH01224254A (en
Inventor
Kenji Kashiwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP5038988A priority Critical patent/JPH01224254A/en
Publication of JPH01224254A publication Critical patent/JPH01224254A/en
Publication of JPH0563427B2 publication Critical patent/JPH0563427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は水ガラスと、石灰類と、アルカリ剤と
を含有し、主として地盤注入用薬材として利用さ
れる固結用材料に係り、特に長いゼル化時間でも
高強度を得、しかも長期固結強度が大きい固結用
材料に関する。 〔従来の技術〕 地盤注入用薬材として、従来、水ガラスにセメ
ントのような懸濁性反応材を加えてなる水ガラス
グラウト(懸濁型グラウト)、あるいは水ガラス
に有機系反応剤や、無機塩のような溶液性反応剤
を加えてなる水ガラスグラウトが知られている。 このうち、溶液性反応剤を用いた水ガラスグラ
ウトは懸濁性反応剤を用いたものよりも浸透性に
優れているという利点を有するが、強度が低く、
特にゲル化時間を長く調整する場合には反応剤を
少なくすることになり、したがつて水ガラス中に
未反応のSiO2分が多く残存し、このため強度が
一層低くなり、かつ長期固結用強度も得られない
という問題があつた。 さらに、セメントを用いる懸濁型グラウトもま
た、ゲル化時間を長く調整した場合には前述と同
様の問題が生じた。 そこで、ゲル化時間を長く調整する水ガラスグ
ラウトとして、低モル比の水ガラスを用いるセメ
ント水ガラスグラウトが提案されている。(特公
昭51−8486号公報)。しかし、この場合でも、ゲ
ル化時間はせいぜい数分から10分程度しか長くな
らず、これでは水ガラスと反応剤をミキサー中で
十分に撹拌混合してから注入するという事はでき
ず、両者を注入管で合流してそのまま注入すると
いう手段をとらざるを得なかつた。したがつて、
このような合流注入では、充分な浸透効果が得ら
れないのみならず、注入剤の混合が不充分であつ
て反応が不完全となり、このため地盤中の固結物
は長期間安定したものとはならなかつた。 また、水ガラスとアルミン酸ソーダあるいは塩
化カルシウムとからなる水ガラスグラウトも知ら
れている。このうち、塩化カルシウムの場合は、
水ガラスに対して少量の添加量でも瞬結になつて
しまう。また、アルミン酸ソーダの場合は、通
常、1分あるいはそれ以下でゲル化し、特に、20
℃以上の温度では急激にゲル化時間が短縮され、
氷を入れて冷やさなくては使用できなくなる。さ
らに、水ガラスとアルミン酸ソーダ系の場合、こ
の中にまだらな沈澱を生じやすいため、これを防
ぐために水ガラスに苛性ソーダを加えることも提
案されているが、この場合、ゲル化時間に関して
は苛性ソーダの添加により多少長くなる程度であ
り、これを多量に添加してもゲル化時間はそれ程
長くはならない。そこでアルミン酸ソーダの添加
量を少なくしてゲル化時間の延長を試みても、数
十分あるいは60分以上のゲル化時間にすることは
困難であり、アルミン酸ソーダが過少になれば強
度が大幅に低下するという新たな問題が起こる。 また、地盤中にあらかじめ反応剤を注入してお
き、その後、この注入個所に低モル比の水ガラス
を注入する工法も提案されているが、この工法で
は地盤中において両液を一定の比率で反応させる
ことが事実上不可能であり、このため充分な固結
効果あるいは長期固結効果を期待することは困難
である。 また、ゲル化時間を長く設定するために、まず
水ガラスと少量のセメントを混合し、この上ずみ
液を地盤中に注入する工法、あるいはカルシウム
化合物を水と混合して静置し、その上ずみ液を低
モル比の水ガラスと混合して極めて少量の水溶性
カルシウム化合物を含む水ガラスグラウトを地盤
中に注入する工法が知られている。 しかし、これらの工法に用いられるグラウトは
10ミクロン程度のカルシウム化合物の微粒子を含
むものの、実質的には溶液型水ガラスグラウトと
同じであり、水ガラス中に含まれるSiO2分に対
するカルシウム分が極めて少なく、このため未反
応のSiO2が多く残存し、固結強度が低くなると
ともに耐久性にも劣るものである。 〔発明が解決しようとする問題点〕 上述の従来工法における水ガラスグラウトは水
ガラス中のSiO2に対する反応剤の量を少なくし
てゲル化時間を長くするものであり、このため固
結強度が小さくなり、かつ耐久性も劣化すること
になる。また、あらかじめ水ガラスか反応剤を地
盤中に注入しておいてから、他方をその後に注入
して地盤中で反応させる上述工法では、反応が不
充分となつて固結強度あるいは耐久性が得れな
い。 そこで、本発明の目的は水ガラス中にSiO2
を反応せしめるに充分な量の反応剤を用いて長期
間の耐久性を得る一方、水ガラスと反応剤をミキ
サー中で混合してゆつくりと地盤中に注入するに
充分な長いゲル化時間を保持し得、すなわち、長
いゲル化時間で高固結強度を得、かつ浸透性なら
びに長期間耐久性をも保持し、前述の公知技術に
存する欠点を改良した固結用材料を提供すること
にある。 〔問題点を解決するための手段〕 前述の目的を達成するため、本発明固結用材料
によれば、水ガラスと、石灰類と、アルカリ剤と
を混合してなり、かつ次の(A)乃至(D)の要件を具備
してなることを特徴とする。 (A) SiO2/Me2O(SiO2は水ガラスのシリカ分に
起因する二酸化ケイ素であり、Meは前記水ガ
ラスとアルカリ剤に起因するアルカリ金属であ
る)がモル比で約2.0以下の範囲内であること。 (B) 石灰類/SiO2の比率がモル比で0.2以上であ
ること。 (C) SiO2の含有量が前記材料100c.c.当り0.07モル
以上であること。 (D) 石灰類の含有量が前記材料100c.c.当り1g以
上であること。 前述の本発明固結材料における水ガラスとアル
カリ剤の含有比率はSiO2/Me2O(Meはアルカリ
金属)の比率がモル比約2.0以下になるような範
囲である。ただし、SiO2は水ガラスのシリカ分
に起因するものであり、Me2Oは水ガラスのアル
カリ分とアルカリ剤の両方に起因するものであ
る。 前述の石灰類は生石灰または消石灰である。こ
れら消石灰または生石灰は他の難溶性多価金属化
合物と併用して用いることができる。難溶性多価
金属化合物としては、たとえば珪酸カルシウム、
炭酸カルシウム、ドロマイト等の難溶性カルシウ
ム化合物、さらに、石膏、Mg、Al、Fe等の水酸
化物、酸化物、炭酸塩、硫酸塩等をあげることが
できる。 また、上述の難溶性カルシウム化合物のうち、
炭酸カルシウムは消石灰とは異なる挙動を示す。
すなわち、消石灰はSiO2/Me2Oのモル比が約2.0
以下の全ての領域でゲル化現象を起こすが、一
方、炭酸カルシウムはモル比がほぼ1付近かある
いはそれ以下でないと多量添加してもゲル化を起
こさない。炭酸カルシウムは本来、水ガラスとは
反応しないものであるが、モル比が1付近、ある
いはそれ以下の水ガラス中では、遊離の苛性ソー
ダの作用によつてCa(OH)2を形成し、これが水
ガラスのSiO2と反応するものと思われる。これ
に対して、消石灰はモル比が2付近でも、シリカ
分と当量の添加により充分に長いゲル化時間を得
るため、アルカリ分の添加量が少なくすみ、しか
も遊離の苛性ソーダを生じることがない。このた
め、消石灰は経済的にもよく、作業性もすぐれ、
かつ水質保全の面からも効果的である。 さらに、本発明に用いられるアルカリ剤として
は苛性ソーダ、苛性カリ、炭酸ナトリウム、炭酸
カリ等の水溶性アルカリが挙げられるが、特に苛
性アルカリが最も効果的である。 なお、本発明において、水ガラスとアルカリ剤
の配合比率はSiO2/Me2Oがモル比で約2.0以下で
あり、これが1に近づくにつれて水ガラスとアル
カリ剤の反応により分子量の小さいNaHSiO3
るいはNa2SiO3が多くなり、1よりも小さくなる
につれて遊離のアルカリ分が多くなり、特に0.5
以下になると遊離のアルカリ分が多くなり過ぎて
ゲル化しにくくなり、注入地盤をアルカリ汚染し
やすくなるので好ましくない。 また、本発明にかかる水ガラスは高モル比の水
ガラス、例えばモル比が3.8の水ガラスでもよく、
この場合、アルカリ剤の存在によりモル比は低モ
ル比となり、これにより本発明は長期強度を増大
させることができる。 〔作用〕 上述の本発明にかかる水ガラス、石灰類および
アルカリ剤の三成分系において、水ガラスの珪酸
分と反応するに充分な量の石灰類を混合しても、
数十分乃至数時間という長いゲル化時間をもつて
強固に固結する。水ガラスは通常、溶融法あるい
は湿式法という方法によつて製造される。前者は
珪砂とソーダ灰を溶融し、冷却して得られる珪酸
ソータガラスを水に溶解して製造され、後者は原
料として液体苛性ソーダおよび珪砂粉末を用い、
珪酸ソーダガラスとして取り出すことなく、直接
珪酸ソーダ溶液を得ることにより製造される。こ
のようにして得られた水ガラスは低モル比のもの
であるが、このような低モル比の水ガラスに石灰
類を含有させても上述の本発明効果、すなわち、
数十分乃至数時間という長いゲル化時間をもつて
強固に固結するという効果は得られない。例え
ば、溶融法であれ、湿式法であれ、モル比が2.0
の水ガラスを用い、これに石灰類をシリカ分の当
量加えても、ゲル化は数秒で生じる。この理由は
溶融法あるいは湿式法で製造された水ガラスは分
子量の大きいコロイド珪酸の含有量が多いため、
水ガラスがゲル化しやすい状態にあるためであ
り、したがつて、ゲル化物の結合も弱く、強度も
小さくなる。 これに対して、水ガラスと石灰類の系にさらに
アルカリ剤が存在すると、コロイド珪酸の殆どが
低分子の珪酸アルカリ金属塩になつてゲル化が起
こりにくい状態となり、このため、石灰類が存在
してもただちにゲル化せず、充分に混合されてゆ
るやかに反応し、最終的には完全に反応して高強
度の固結体を得る。すなわち、本発明は水ガラス
と、石灰類と、アルカリ剤を懸濁状態で配合させ
て、一時に反応が進行しないようにし、かつ配合
液中のSiO2量、SiO2とMe2Oのモル比、石灰量、
SiO2とCaOのモル比等を特定の範囲に定めるこ
とによりゲル化時間を数秒から長時間に調整し、
高強度ならびに長期耐久性を得る。 さらに、本発明の水ガラスは高モル比のものが
アルカリ剤の存在により低モル比となり、これに
より本発明は長期強度を増大させることができ
る。 〔実施例〕 以下、本発明を次の実験例によつて詳述する。 〔実験−1〕 市販3号水ガラス(モル比2.94、SiO2:28.29
%、Na2O:9.9%、比重1.4溶融法によつて製造)
と消石灰系のゲル化時間を測定し、結果を表−1
に示す。
[Industrial Application Field] The present invention relates to a consolidation material containing water glass, lime, and an alkaline agent, which is mainly used as a ground injection agent, and which has high strength even after a particularly long gelling time. The present invention relates to a material for consolidation which has high long-term consolidation strength. [Prior Art] Conventionally, water glass grout (suspension type grout), which is made by adding a suspended reactive material such as cement to water glass, or water glass and an organic reactive agent, etc., has been used as a ground injection chemical. Water glass grout made by adding a solution-based reactant such as an inorganic salt is known. Among these, water glass grout using a solution-based reactant has the advantage of better permeability than one using a suspension-type reactant, but has lower strength and
In particular, when adjusting the gelation time to be long, the amount of reactant must be reduced, and therefore a large amount of unreacted SiO2 remains in the water glass, resulting in even lower strength and long-term consolidation. There was a problem that the strength for use could not be obtained. Furthermore, suspension grout using cement also had the same problem as described above when the gelation time was adjusted to be long. Therefore, a cement water glass grout using a low molar ratio of water glass has been proposed as a water glass grout with a long gelation time. (Special Publication No. 51-8486). However, even in this case, the gelation time only increases from a few minutes to 10 minutes at most, and in this case, it is not possible to mix the water glass and the reactant thoroughly in a mixer before injection; I had no choice but to use a tube to join them and inject them directly. Therefore,
In such joint injection, not only is it not possible to obtain a sufficient infiltration effect, but also the mixture of the injection agent is insufficient, resulting in incomplete reaction, and as a result, the solidified material in the ground is not stable for a long period of time. I couldn't stop. Water glass grout made of water glass and sodium aluminate or calcium chloride is also known. Among these, in the case of calcium chloride,
Even a small amount added to water glass causes instant curdling. In addition, in the case of sodium aluminate, it usually gels in 1 minute or less, and in particular,
At temperatures above ℃, the gelation time is rapidly shortened.
You can't use it unless you put ice in it to cool it down. Furthermore, in the case of water glass and sodium aluminate, it is easy to form mottled precipitates in the water glass, so it has been proposed to add caustic soda to the water glass to prevent this. However, even if a large amount of this is added, the gelation time will not become that long. Therefore, even if we try to extend the gelling time by reducing the amount of sodium aluminate added, it is difficult to achieve a gelling time of several tens of minutes or more than 60 minutes, and if the amount of sodium aluminate is too small, the strength will deteriorate. A new problem arises: a significant drop. Additionally, a method has been proposed in which a reactant is injected into the ground in advance, and then water glass with a low molar ratio is injected into the injection location, but in this method, both liquids are mixed into the ground at a fixed ratio. It is virtually impossible to cause a reaction, and therefore it is difficult to expect a sufficient solidification effect or long-term solidification effect. In addition, in order to set a longer gelation time, there is a method of first mixing water glass with a small amount of cement and injecting this superfluous liquid into the ground, or a method of mixing a calcium compound with water and letting it stand, and then A method is known in which water glass grout containing a very small amount of water-soluble calcium compounds is injected into the ground by mixing a water glass solution with a low molar ratio of water glass. However, the grout used in these methods
Although it contains fine particles of calcium compounds of about 10 microns, it is essentially the same as solution-type water glass grout, and the calcium content is extremely small compared to the SiO 2 contained in water glass, so unreacted SiO 2 is A large amount remains, resulting in low consolidation strength and poor durability. [Problems to be solved by the invention] The water glass grout in the conventional method described above reduces the amount of the reactant for SiO 2 in the water glass to increase the gelation time, and therefore the consolidation strength is reduced. It becomes smaller and its durability deteriorates. In addition, with the above-mentioned method in which water glass or a reactive agent is injected into the ground in advance and the other is injected afterwards to react in the ground, the reaction may be insufficient and the consolidation strength or durability may not be achieved. Not possible. Therefore, the purpose of the present invention is to obtain long-term durability by using a sufficient amount of reactant to cause SiO2 to react in water glass, and at the same time to obtain long-term durability by mixing water glass and reactant in a mixer. In other words, it can maintain a long enough gelation time to be injected into the ground, that is, it can obtain high consolidation strength with a long gelation time, and also maintains permeability and long-term durability. The object of the present invention is to provide a material for consolidation which has improved the existing disadvantages. [Means for Solving the Problems] In order to achieve the above-mentioned object, the consolidation material of the present invention is made by mixing water glass, lime, and an alkaline agent, and contains the following (A ) to (D). (A) SiO 2 /Me 2 O (SiO 2 is silicon dioxide derived from the silica content of water glass, Me is an alkali metal derived from the water glass and alkali agent) in a molar ratio of about 2.0 or less Must be within range. (B) The molar ratio of lime/SiO 2 is 0.2 or more. (C) The content of SiO 2 is 0.07 mol or more per 100 c.c. of the material. (D) The content of lime shall be 1 g or more per 100 c.c. of the above material. The content ratio of water glass and alkali agent in the above-mentioned consolidated material of the present invention is in a range such that the molar ratio of SiO 2 /Me 2 O (Me is an alkali metal) is about 2.0 or less. However, SiO 2 is caused by the silica content of water glass, and Me 2 O is caused by both the alkali content of water glass and the alkaline agent. The aforementioned limes are quicklime or slaked lime. These slaked lime or quicklime can be used in combination with other poorly soluble polyvalent metal compounds. Examples of poorly soluble polyvalent metal compounds include calcium silicate,
Examples include poorly soluble calcium compounds such as calcium carbonate and dolomite, as well as hydroxides, oxides, carbonates, and sulfates of gypsum, Mg, Al, Fe, and the like. Moreover, among the above-mentioned poorly soluble calcium compounds,
Calcium carbonate behaves differently than slaked lime.
In other words, slaked lime has a SiO 2 /Me 2 O molar ratio of approximately 2.0.
Gelation occurs in all of the following regions, but on the other hand, calcium carbonate does not cause gelation even if added in large amounts unless the molar ratio is approximately 1 or less. Calcium carbonate originally does not react with water glass, but in water glass where the molar ratio is around 1 or less, it forms Ca(OH) 2 due to the action of free caustic soda, and this reacts with water. It seems to react with SiO 2 in the glass. On the other hand, even when the molar ratio of slaked lime is around 2, a sufficiently long gelation time can be obtained by adding an amount equivalent to the silica content, so the amount of alkali content to be added can be small, and free caustic soda is not produced. For this reason, slaked lime is economical and has excellent workability.
It is also effective in terms of water quality conservation. Further, the alkaline agent used in the present invention includes water-soluble alkalis such as caustic soda, caustic potash, sodium carbonate, and potassium carbonate, and particularly caustic alkali is the most effective. In addition, in the present invention, the mixing ratio of water glass and alkali agent is SiO 2 /Me 2 O in molar ratio of about 2.0 or less, and as this approaches 1, the reaction between water glass and alkali agent causes NaHSiO 3 or As Na 2 SiO 3 increases and becomes smaller than 1, the free alkali content increases, especially at 0.5
If it is less than that, the free alkali content will be too large, making it difficult to gel and making it easy for the injection ground to be contaminated with alkali, which is not preferable. Further, the water glass according to the present invention may be a water glass with a high molar ratio, for example, a water glass with a molar ratio of 3.8,
In this case, the presence of the alkaline agent results in a low molar ratio, which allows the present invention to increase long-term strength. [Function] In the three-component system of water glass, lime, and alkaline agent according to the present invention, even if a sufficient amount of lime is mixed to react with the silicic acid content of water glass,
It solidifies strongly after a long gelation time of several tens of minutes to several hours. Water glass is usually produced by a melting method or a wet method. The former is manufactured by melting silica sand and soda ash and dissolving silicate sorter glass obtained by cooling it in water, while the latter uses liquid caustic soda and silica sand powder as raw materials,
It is manufactured by directly obtaining a sodium silicate solution without taking it out as sodium silicate glass. Although the water glass thus obtained has a low molar ratio, even if the water glass with such a low molar ratio contains lime, the above-mentioned effects of the present invention, namely,
It is not possible to obtain the effect of firm solidification with a long gelation time of several tens of minutes to several hours. For example, whether it is a melt method or a wet method, the molar ratio is 2.0.
Even if lime is added to water glass in an amount equivalent to the silica content, gelation occurs in a few seconds. The reason for this is that water glass produced by the melting method or wet method contains a large amount of colloidal silicic acid, which has a large molecular weight.
This is because water glass is in a state where it is easy to gel, and therefore the bonds of the gelled product are weak and the strength is also low. On the other hand, if an alkaline agent is further present in the water glass and lime system, most of the colloidal silicic acid becomes a low-molecular alkali metal silicate salt, making it difficult for gelation to occur. However, it does not immediately gel, but is thoroughly mixed and reacts slowly, and finally reacts completely to obtain a high-strength solid. That is, in the present invention, water glass, lime, and an alkaline agent are mixed in a suspended state to prevent the reaction from proceeding all at once, and to reduce the amount of SiO 2 and the moles of SiO 2 and Me 2 O in the blended liquid. ratio, lime content,
By setting the molar ratio of SiO 2 and CaO within a specific range, gelation time can be adjusted from a few seconds to a long time.
Obtains high strength and long-term durability. Furthermore, in the water glass of the present invention, a high molar ratio becomes a low molar ratio due to the presence of an alkali agent, and as a result, the present invention can increase long-term strength. [Example] Hereinafter, the present invention will be explained in detail using the following experimental example. [Experiment-1] Commercially available No. 3 water glass (molar ratio 2.94, SiO 2 : 28.29
%, Na 2 O: 9.9%, specific gravity 1.4 Manufactured by melting method)
The gelation time of the slaked lime system was measured, and the results are shown in Table 1.
Shown below.

〔実験−2〕[Experiment-2]

水ガラス−セメント−アルカリ剤系の実験結果
を表−2に示す。 アルカリ剤として苛性ソーダを用いた。水ガラ
スとアルカリ剤の混合比率は表−2中のモル比に
なるように定めた。混合液(A液とB液)100c.c.
当たり、SiO2含有量は0.165モルである。
Table 2 shows the experimental results for the water glass-cement-alkali agent system. Caustic soda was used as the alkaline agent. The mixing ratio of water glass and alkali agent was determined to be the molar ratio shown in Table-2. Mixed liquid (liquid A and liquid B) 100c.c.
per unit, the SiO 2 content is 0.165 mol.

〔実験−3〕[Experiment-3]

水ガラス−セメントあるいは石灰の上ずみ液−
アルカリ剤系の実験結果を表−3に示す。 なお、A液は実験−1の水ガラス25c.c.とアルカ
リ剤(苛性ソーダ)と水との混合液であり、この
モル比を表−3に示した。また、B液は水100c.c.
にセメントあるいは石灰をそれぞれ20gづつ混合
し、1時間静止してのち、上ずみ液を50c.c.とつ
た。
Water glass - Cement or lime scum -
The experimental results for the alkaline agent system are shown in Table 3. Note that liquid A was a mixed liquid of 25 c.c. of water glass from Experiment 1, an alkaline agent (caustic soda), and water, and its molar ratio is shown in Table 3. Also, B liquid is water 100c.c.
20g of each of cement or lime was mixed into the mixture, and after standing still for 1 hour, 50c.c. of the supernatant liquid was added.

〔実験−4〕[Experiment-4]

実験−1の3号水ガラス(モル比2.94)を混合
液100c.c.当たり25c.c.(0.165モル)配合し、これに
苛性ソーダを加えてSiO2/Na2Oのモル比を調整
した。また、消石灰の添加量を混合液100c.c.当た
り0.5g(0.07モル)〜25(0.338モル)の範囲で変
化させ、これらについてそれぞれゲル化時間を測
定し、結果を表−4に示した。
25 c.c. (0.165 mol) of No. 3 water glass (mole ratio 2.94) from Experiment-1 was mixed per 100 c.c. of the mixed liquid, and caustic soda was added to this to adjust the molar ratio of SiO 2 /Na 2 O. . In addition, the amount of slaked lime added was varied in the range of 0.5 g (0.07 mol) to 25 (0.338 mol) per 100 c.c. of the mixed liquid, and the gelation time was measured for each of these, and the results are shown in Table 4. .

〔実験−5〕[Experiment-5]

SiO2/Na2O(モル比)が2.0、CaO/SiO2(モル
比)が1.0の条件下で、混合液100c.c.当たりのSiO2
の含有量を変化させ、ゲル化実験を行つた。ま
た、SiO2/Na2O(モル比)1.5に定め、CaO/
SiO2(モル比)と混合液100c.c.当たりのSiO2の含
有量を変化させ、ゲル化実験を行つた。これらの
結果を表−5、表−6および表−7に示す。ま
た、SiO2/Na2O、CaO/SiO2を変化させて長期
強度試験を行い、測定結果を表−8に示す。
SiO 2 per 100 c.c. of mixed liquid under the conditions of SiO 2 /Na 2 O (molar ratio) of 2.0 and CaO / SiO 2 (molar ratio) of 1.0.
A gelation experiment was conducted by changing the content of . In addition, SiO 2 /Na 2 O (molar ratio) was set at 1.5, and CaO /
Gelation experiments were conducted by varying SiO 2 (mole ratio) and SiO 2 content per 100 c.c. of the mixed solution. These results are shown in Table-5, Table-6 and Table-7. Further, long-term strength tests were conducted by changing SiO 2 /Na 2 O and CaO/SiO 2 , and the measurement results are shown in Table 8.

【表】【table】

【表】【table】

【表】【table】

〔実験−6〕[Experiment-6]

表−9Aに示すように、各種モル比の市販水ガ
ラス(溶融法で製造)と苛性ソーダを含む配合液
をA液とし、消石灰と水を含む配合液をB液とし
た。これらAB液の混合液についてゲル化実験を
行い、結果を表−9Bに示した。 混合液100c.c.中のSiO2濃度は0.165モル、CaO/
SiO2(モル比)は1.0とした。
As shown in Table 9A, liquid mixtures containing various molar ratios of commercially available water glass (manufactured by the melting method) and caustic soda were called liquid A, and liquid mixtures containing slaked lime and water were called liquid B. A gelation experiment was conducted on a mixture of these AB solutions, and the results are shown in Table 9B. The concentration of SiO 2 in 100 c.c. of the mixed solution is 0.165 mol, CaO/
SiO 2 (molar ratio) was set to 1.0.

〔実験−7〕[Experiment-7]

水ガラス−消石灰−アルカリ剤系についてゲル
化試験を行い、結果を表−10に示した。なお、比
較のために、消石灰を含まない系についても実験
を行つた。表−10中のA液は水ガラスとアルカリ
剤の混合液である。
A gelation test was conducted on the water glass-slaked lime-alkaline agent system, and the results are shown in Table 10. For comparison, experiments were also conducted on a system that did not contain slaked lime. Solution A in Table 10 is a mixture of water glass and an alkaline agent.

【表】【table】

【表】【table】

〔実験−8〕[Experiment-8]

水ガラス−石灰類(消石灰)−アルカリ剤(苛
性ソーダ)系のゲル化時間の長い配合液を基本素
材(A液)とし、これにゲル化促進剤、強度増強
剤等(B液)を合流あるいは添加して任意のグラ
ウトを調整し、これらについてゲル化時間を測定
し、結果を表−11に示した。前記基本素材は
SiO2:0.165モル、SiO2/Na2O:2、CaO/
SiO2:1.0である。(実験−4参照)
A water glass-lime (slaked lime)-alkaline agent (caustic soda) based solution with a long gelation time is used as the basic material (liquid A), and gelation accelerators, strength enhancers, etc. (liquid B) are added to it or The grout was added to prepare any desired grout, and the gelation time was measured for these grouts, and the results are shown in Table 11. The basic material is
SiO 2 : 0.165 mol, SiO 2 /Na 2 O: 2, CaO /
SiO2 : 1.0. (See Experiment-4)

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明にかかる固結用材料はゲ
ル化時間を長くしても固結強度を得るとともに長
期耐久性にも優れ、地盤固結用の注入薬液として
最適な固結用材料である。
As described above, the consolidation material according to the present invention maintains consolidation strength even when the gelation time is extended, and has excellent long-term durability, making it an optimal consolidation material as an injection chemical for ground consolidation. .

Claims (1)

【特許請求の範囲】 1 水ガラスと、石灰類と、アルカリ剤とを混合
してなる固結用材料であつて、次の(A)乃至(D)の要
件を具備してなる固結用材料。 (A) SiO2/Me2Oがモル比でほぼ2.0以下の範囲内
である。ただし、SiO2は前記水ガラスのシリ
カ分に起因する二酸化ケイ素であり、Meは前
記水ガラスとアルカリ剤に起因するアルカリ金
属である。 (B) 石灰類/SiO2がモル比で0.2以上である。 (C) SiO2の含有量が前記材料100c.c.当り0.07モル
以上である。 (D) 石灰類の含有量が前記材料100c.c.当り1g以
上である。 2 請求項第1項の固結用材料において、前記(A)
のSiO2/Me2Oのモル比が2.0乃至0.5の範囲内で
ある固結用材料。
[Scope of Claims] 1. A consolidation material made of a mixture of water glass, lime, and an alkaline agent, which satisfies the following requirements (A) to (D): material. (A) The molar ratio of SiO 2 /Me 2 O is approximately 2.0 or less. However, SiO 2 is silicon dioxide resulting from the silica content of the water glass, and Me is an alkali metal resulting from the water glass and the alkali agent. (B) The molar ratio of lime/SiO 2 is 0.2 or more. (C) The content of SiO 2 is 0.07 mol or more per 100 c.c. of the material. (D) The content of lime is 1 g or more per 100 c.c. of the material. 2. In the consolidation material according to claim 1, the above (A)
A consolidation material in which the molar ratio of SiO 2 /Me 2 O is within the range of 2.0 to 0.5.
JP5038988A 1988-03-03 1988-03-03 Material for consolidation Granted JPH01224254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5038988A JPH01224254A (en) 1988-03-03 1988-03-03 Material for consolidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5038988A JPH01224254A (en) 1988-03-03 1988-03-03 Material for consolidation

Publications (2)

Publication Number Publication Date
JPH01224254A JPH01224254A (en) 1989-09-07
JPH0563427B2 true JPH0563427B2 (en) 1993-09-10

Family

ID=12857515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5038988A Granted JPH01224254A (en) 1988-03-03 1988-03-03 Material for consolidation

Country Status (1)

Country Link
JP (1) JPH01224254A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717903B2 (en) * 1990-06-01 1995-03-01 強化土エンジニヤリング株式会社 Ground injection chemical
FR2697830B1 (en) * 1992-11-12 1995-01-27 Rhone Poulenc Chimie Process for the preparation of injectable grout.

Also Published As

Publication number Publication date
JPH01224254A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
JPS59164659A (en) Liquid cure accelerator for concrete mixture
JPH0563427B2 (en)
KR0153215B1 (en) Grouting liquid for injection into a ground
JPH0598257A (en) Chemical for grouting soil
JP3205900B2 (en) Grout material for ground injection
JPS5840384A (en) Stabilization of soft soil
JP7308499B1 (en) Ground consolidation material and ground grouting method using it
KR100402456B1 (en) Ground hardening material
JPH01239043A (en) Material for consolidation
JPH10324872A (en) Grout for ground and grout injection method
JPH0415273B2 (en)
JP2568221B2 (en) Method for forming cement suspension composition
JP2808252B2 (en) Ground consolidated material
JP2001098271A (en) Ground solidification material
JPH01190786A (en) Material for solidification
JPH0753960A (en) Liquid inorganic filler for solidifying or sealing soil
JPH0561219B2 (en)
JP2853773B2 (en) Ground injection agent
JPH0629422B2 (en) Material for consolidation
JPS58115057A (en) Hydraulic composition
JP2547120B2 (en) Ground injection method
JP2525330B2 (en) Ground injection chemical
JPH034497B2 (en)
JPH11181425A (en) Ground-grouting material
JPS6260436B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees