JPH0563321A - Wiring board - Google Patents
Wiring boardInfo
- Publication number
- JPH0563321A JPH0563321A JP24649091A JP24649091A JPH0563321A JP H0563321 A JPH0563321 A JP H0563321A JP 24649091 A JP24649091 A JP 24649091A JP 24649091 A JP24649091 A JP 24649091A JP H0563321 A JPH0563321 A JP H0563321A
- Authority
- JP
- Japan
- Prior art keywords
- porous polypropylene
- wiring board
- laminated
- polypropylene film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】コンピュータや通信機器などの電
子機器に好適に使用される、高周波特性に優れる配線板
を提供することを目的とするものである。BACKGROUND OF THE INVENTION It is an object of the present invention to provide a wiring board having excellent high frequency characteristics, which is suitable for use in electronic equipment such as computers and communication equipment.
【0002】[0002]
【従来の技術】近年、テレビ、ビデオ、パーソナルコン
ピュータ等の電子機器が軽量小型化、高機能化するにつ
れ、従来の絶縁被覆電線に代わって、絶縁基材上に導体
回路を形成したフラットケーブルやフレキシブルプリン
ト配線板が使用されるようになっている。2. Description of the Related Art In recent years, as electronic devices such as televisions, video recorders, and personal computers have become lighter, smaller, and have higher functions, flat cables and conductor cables formed on an insulating base material have been used in place of conventional insulated coated electric wires. Flexible printed wiring boards are being used.
【0003】特に、コンピュータや通信機器等に使用さ
れる配線板は、取り扱う信号が通常1MHz以上の高周
波電波であるため、絶縁基材や、絶縁基材と導体回路の
接着剤層の誘電率が大きいと、隣接する導体回路間の静
電容量が大となるため、伝送損失が大きくなったり、波
形が忠実に伝送されないなどの問題が生じる。In particular, in a wiring board used for a computer, a communication device, etc., since a signal to be handled is a high frequency radio wave of 1 MHz or more, a dielectric constant of an insulating base material or an adhesive layer of an insulating base material and a conductor circuit is high. If it is large, the capacitance between adjacent conductor circuits becomes large, which causes problems such as a large transmission loss and the fact that the waveform is not faithfully transmitted.
【0004】また、上記の電子機器内での配線板では、
導体回路から発生する電磁気的ノイズが周囲の電子部品
類に悪影響を与えたり、逆に周囲で発生した電磁気的ノ
イズが導体回路を流れる伝送信号に悪影響を与えたりす
る問題があるため、配線板の絶縁基材上或いは絶縁基材
の周囲に導体層を設けた構造の電磁シールド型の配線板
も使用されている。Further, in the wiring board in the above electronic device,
Electromagnetic noise generated from the conductor circuit adversely affects electronic components in the surroundings, and conversely electromagnetic noise generated in the surroundings adversely affects transmission signals flowing in the conductor circuit. An electromagnetic shield type wiring board having a structure in which a conductor layer is provided on or around an insulating base material is also used.
【0005】ところが、上記の構造の配線板において
も、絶縁基材或いは接着層の誘電率が大きいと、導電層
と導体回路間の静電容量が大となるため、伝送損失が大
きくなったり、波形が忠実に伝送されないなどの問題を
生じる。However, even in the wiring board having the above structure, if the dielectric constant of the insulating base material or the adhesive layer is large, the capacitance between the conductive layer and the conductor circuit becomes large, so that the transmission loss becomes large. This causes problems such as waveforms not being transmitted faithfully.
【0006】高周波信号の伝送損失の増加や信号波形の
忠実な伝送を行うには、絶縁基材や絶縁基材と導体回路
の接着層に誘電率の小さな材料を利用すれば良く、多孔
質ポリテトラフルオロエチレンフィルムに接着剤を含浸
せしめ、導体箔と貼り合わせた構造の配線板が知られて
いる。In order to increase the transmission loss of a high frequency signal and to faithfully transmit a signal waveform, a material having a small dielectric constant may be used for the insulating base material or the adhesive layer between the insulating base material and the conductor circuit. There is known a wiring board having a structure in which a tetrafluoroethylene film is impregnated with an adhesive and is bonded to a conductor foil.
【0007】[0007]
【発明が解決しようとする課題】ところが、多孔質ポリ
テトラフルオロエチレンフィルムを使用した配線板は非
常に高価であり、汎用の高周波信号伝送用の配線板やシ
ールド構造の配線板としては利用できず、特殊な限られ
た用途でしか使用できないのが現状である。However, a wiring board using a porous polytetrafluoroethylene film is extremely expensive and cannot be used as a wiring board for general-purpose high-frequency signal transmission or a wiring board having a shield structure. At present, it can only be used for special limited purposes.
【0008】また、多孔質ポリテトラフルオロエチレン
フィルムと導体回路を直接接着できる接着剤は知られて
おらず、また、多孔質ポリテトラフルオロエチレンフィ
ルム自体は引張強度や引裂強度等の機械的強度が弱く、
接着剤を含浸したプリプレグの状態でないと、取り扱い
や導体回路との接着が出来ないために、多孔質ポリテト
ラフルオロエチレンフィルムが本来有する誘電率1.2
〜1.5といった誘電率の低さを有効に利用できない欠
点もあった。Further, there is no known adhesive capable of directly bonding the porous polytetrafluoroethylene film and the conductor circuit, and the porous polytetrafluoroethylene film itself has mechanical strength such as tensile strength and tear strength. Weak,
Unless it is in the state of prepreg impregnated with an adhesive, it cannot be handled or adhered to a conductor circuit. Therefore, the dielectric constant of the porous polytetrafluoroethylene film is 1.2.
There is also a drawback that a low dielectric constant of up to 1.5 cannot be effectively used.
【0009】このような理由で、高周波の伝送に適する
安価な配線板や、高周波の伝送に適し、しかもシールド
効果を有する安価な配線板が求められていた。For these reasons, there has been a demand for an inexpensive wiring board suitable for high frequency transmission and an inexpensive wiring board suitable for high frequency transmission and having a shielding effect.
【0010】[0010]
【課題を解決するための手段】本発明者らは、上記の問
題について鋭意検討した結果、多孔質ポリプロピレンフ
ィルムに直接に導体回路が融着積層されている配線板;
導体回路上の絶縁層として、多孔質ポリプロピレンフィ
ルムが接着剤層を介して積層されている配線板が、高周
波信号の伝送に好適でしかも安価な配線板であることを
見出し、かかる知見に基づいて本発明を完成させるに至
った。DISCLOSURE OF THE INVENTION As a result of intensive studies on the above problems, the present inventors have found a wiring board in which a conductor circuit is directly fused and laminated on a porous polypropylene film;
As an insulating layer on a conductor circuit, a wiring board in which a porous polypropylene film is laminated via an adhesive layer is found to be a wiring board suitable for high-frequency signal transmission and inexpensive, and based on such findings. The present invention has been completed.
【0011】すなわち、本発明は; 下記表7又は表
8に示される構造:That is, the present invention is the structure shown in Table 7 or Table 8 below:
【表7】 [Table 7]
【0012】[0012]
【表8】 を有する、多孔質ポリプロピレンフィルム上に導体回路
が融着積層されてなる配線板であり、また[Table 8] Which is a wiring board in which a conductor circuit is fusion-laminated on a porous polypropylene film,
【0013】 下記表9に示される構造:Structures shown in Table 9 below:
【表9】 を有する、多孔質ポリプロピレンフィルムの片面に高分
子フィルムが積層されてなる点にも特徴を有し、また[Table 9] Having a feature that the polymer film is laminated on one side of the porous polypropylene film,
【0014】 下記表10に示される構造:Structures shown in Table 10 below:
【表10】 を有する、導体回路上に多孔質ポリプロピレンフィルム
が融着積層されてなる点にも特徴を有し、また[Table 10] Is also characterized in that the porous polypropylene film is fusion-laminated on the conductor circuit,
【0015】 下記表11に示される構造:Structures shown in Table 11 below:
【表11】 を有する、導体回路上に融着積層された多孔質ポリプロ
ピレンフィルム上に高分子フィルムが積層されている点
にも特徴を有し、また[Table 11] Also characterized in that the polymer film is laminated on the porous polypropylene film fused and laminated on the conductor circuit,
【0016】 下記表12に示される構造:Structures shown in Table 12 below:
【表12】 を有する、多孔質ポリプロピレンフィルムが電離性放射
線の照射もしくは水架橋によって架橋されている点にも
特徴を有する。[Table 12] Is also cross-linked by irradiation with ionizing radiation or water crosslinking.
【0017】本発明をさらに具体的に説明する。本発明
の多孔質ポリプロピレンフィルムは、特公昭52−15
627号公報、特公昭52−137026号公報、特公
昭63−29906号公報、特公昭63−29907号
公報等に記載された方法によって得ることができる。例
えば、溶融成形した未延伸のポリプロピレンフィルムを
熱処理後、室温若しくは低温で延伸処理して空孔を形成
せしめ、再度熱処理する方法を基本的な製法としている
ものである。The present invention will be described more specifically. The porous polypropylene film of the present invention is disclosed in JP-B-52-15.
It can be obtained by the methods described in Japanese Patent Publication No. 627, Japanese Patent Publication No. 52-137026, Japanese Patent Publication No. 63-29906, Japanese Patent Publication No. 63-29907, and the like. For example, a basic manufacturing method is a method in which a melt-formed unstretched polypropylene film is heat-treated, and then stretched at room temperature or a low temperature to form pores, and then heat-treated again.
【0018】配線板は半田耐熱性が要求される場合や、
高温雰囲気で使用される場合があり、そのような場合に
は、多孔質ポリプロピレンフィルムが架橋されているこ
とが望ましく、電子線やγ線などの電離性放射線による
照射や水架橋等の方法により、架橋構造の多孔質ポリプ
ロピレンフィルムを得ることができる。When the wiring board is required to have soldering heat resistance,
May be used in a high temperature atmosphere, in such a case, it is desirable that the porous polypropylene film is crosslinked, by irradiation with ionizing radiation such as electron beam or γ-rays or by a method such as water crosslinking, A porous polypropylene film having a crosslinked structure can be obtained.
【0019】この場合、電離性放射線の照射による架橋
では、プロピレンの単独ポリマーに限らず、プロピレン
と少量の他の不飽和モノマー或いはオリゴマー、特にエ
チレンとのランダム又はブロック共重合体を使用した
り、多官能性モノマー等の架橋助剤を添加した原料を用
いることが好ましい。In this case, in crosslinking by irradiation with ionizing radiation, not only a propylene homopolymer but also a random or block copolymer of propylene with a small amount of another unsaturated monomer or oligomer, particularly ethylene, It is preferable to use a raw material to which a crosslinking aid such as a polyfunctional monomer is added.
【0020】上記架橋助剤としては、トリメチロールエ
タン(メタ)アクリレート、トリメチロールプロパン
(メタ)アクリレート等の(メタ)アクリル酸エステル
や、トリアリルシアヌレート、トリアリルイソシアヌレ
ート類などが挙げられる。また、水架橋の場合には、シ
ラン変成のポリプロピレンに有機錫化合物などの水架橋
触媒を混合したものを原料として用いれば良い。Examples of the crosslinking aid include (meth) acrylic acid esters such as trimethylolethane (meth) acrylate and trimethylolpropane (meth) acrylate, triallyl cyanurate and triallyl isocyanurates. In the case of water-crosslinking, a mixture of a silane-modified polypropylene and a water-crosslinking catalyst such as an organic tin compound may be used as a raw material.
【0021】また、多孔質ポリプロピレンフィルムと導
体回路との貼合わせに関しては、多孔質ポリプロピレン
フィルムの架橋度を調整することが望ましく、例えば1
80℃の熱プレス装置を使用して貼合わせを行う場合に
は、多孔質ポリプロピレンフィルムの架橋度をキシレン
を抽出溶媒としたゲル分率で凡そ30〜40%に設定す
ることが望ましい。Further, regarding the lamination of the porous polypropylene film and the conductor circuit, it is desirable to adjust the degree of crosslinking of the porous polypropylene film.
When laminating is performed using a hot press machine at 80 ° C., it is desirable to set the degree of crosslinking of the porous polypropylene film to about 30 to 40% in terms of gel fraction using xylene as an extraction solvent.
【0022】ゲル分率の調整は、電離放射線の照射の場
合には原料に添加する多官能性モノマーの添加量と照射
線量により、また水架橋の場合には加圧水蒸気の処理時
間や水浸漬の温度、時間の調整によって設定が可能であ
り、さらに、融着後に電離放射線の再照射を行うなどの
方法によって、多孔質ポリプロピレンフィルムの架橋度
を最終的に高めることも可能である。The gel fraction can be adjusted by the addition amount and irradiation dose of the polyfunctional monomer added to the raw material in the case of irradiation with ionizing radiation, and in the case of water crosslinking, the treatment time of pressurized steam or immersion in water. It can be set by adjusting the temperature and time, and further, the degree of crosslinking of the porous polypropylene film can be finally increased by a method such as re-irradiation with ionizing radiation after the fusion.
【0023】また、この際に、多孔質ポリプロピレンフ
ィルムと導体回路の接着強度を高める目的で、導体回路
の貼合わせ面をエンボス加工しておく等の方法も有効で
ある。At this time, for the purpose of increasing the adhesive strength between the porous polypropylene film and the conductor circuit, it is effective to emboss the bonding surface of the conductor circuit.
【0024】本発明に用いる多孔質ポリプロピレンフィ
ルムの空孔率は、主に誘電率の関係から50〜80%、
より好ましくは60〜70%のフィルムを使用すること
が望ましく、例えば空孔率が60%のフィルムの場合、
誘電率が1.5〜1.6となる。The porosity of the porous polypropylene film used in the present invention is 50 to 80% mainly from the relation of the dielectric constant.
More preferably, it is desirable to use a film having a porosity of 60 to 70%. For example, in the case of a film having a porosity of 60%,
The dielectric constant is 1.5 to 1.6.
【0025】本発明に用いる高分子フィルムとしては、
誘電フイルムとしての機能を有すれば特に制限されない
が、特に架橋ポリエチレンフィルム、架橋ポリプロピレ
ンフィルム、二軸延伸ポリエステルフィルム、ポリイミ
ドフィルム、ポリエーテルイミドフィルム、ポリエーテ
ルサルホンフィルム、ポリエーテルエーテルケトンフィ
ルムなどを好適に使用することができ、使用目的に応じ
て適宜その種類や厚みを選定できる。As the polymer film used in the present invention,
It is not particularly limited as long as it has a function as a dielectric film, but particularly crosslinked polyethylene film, crosslinked polypropylene film, biaxially stretched polyester film, polyimide film, polyetherimide film, polyethersulfone film, polyetheretherketone film, etc. It can be preferably used, and its type and thickness can be appropriately selected according to the purpose of use.
【0026】多孔質ポリプロピレンフィルムと高分子フ
ィルムとの貼合せには、接着剤を介して貼合せるなどの
方法を採用できる。この場合に使用できる接着剤として
は、接着剤自身の誘電率や多孔質ポリプロピレンフィル
ム、導体回路との接着性の観点から、プロピレン−無水
マレイン酸共重合体、エチレン−プロピレン−無水マレ
イン酸共重合体、エチレン−グリシジルメタクリレート
共重合体、エチレン−プロピレン−グリシジルメタクリ
レート共重合体、エチレン−エチルアクリレート−無水
マレイン酸共重合体、エチレン−エチルアクリレート−
一酸化炭素共重合体、シラン変成エチレン−エチルアク
リレート共重合体等を例示でき、単一若しくは複数種の
混合物或いは単一層や多層化して使用することが可能で
ある。For laminating the porous polypropylene film and the polymer film, a method such as laminating with an adhesive may be employed. Examples of the adhesive that can be used in this case include a propylene-maleic anhydride copolymer and an ethylene-propylene-maleic anhydride copolymer from the viewpoint of the dielectric constant of the adhesive itself, the porous polypropylene film, and the adhesiveness with the conductor circuit. Polymer, ethylene-glycidyl methacrylate copolymer, ethylene-propylene-glycidyl methacrylate copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer, ethylene-ethyl acrylate-
Examples thereof include carbon monoxide copolymers and silane-modified ethylene-ethyl acrylate copolymers, and they can be used as a single or a mixture of a plurality of types, or as a single layer or a multilayer.
【0027】また、貼合せ時の接着剤の多孔質ポリプロ
ピレンフィルム空孔への浸入を避けるために、接着剤層
を貼合せ前に部分架橋(Bステージ化)しておくなどの
方法も採用できる。Further, in order to prevent the adhesive from penetrating into the pores of the porous polypropylene film at the time of laminating, a method of partially cross-linking (B stage) the adhesive layer before laminating can be adopted. ..
【0028】[0028]
【実施例】以下、実施例により本発明を更に具体的に説
明するが、これらは本発明の範囲を制限するものではな
い。EXAMPLES The present invention will be described in more detail with reference to examples below, but these do not limit the scope of the present invention.
【実施例1】エチレン−プロピレン共重合体(ビカット
軟化点129℃、メルトフローレート1.2)100重
量部にトリアリルイソシアヌレートを2重量部添加した
材料を使用して、厚みが25μmで空孔率が60%の多
孔質ポリプロピレンフィルムを作製した。Example 1 Using a material obtained by adding 2 parts by weight of triallyl isocyanurate to 100 parts by weight of an ethylene-propylene copolymer (Vicat softening point 129 ° C., melt flow rate 1.2), a blank having a thickness of 25 μm was used. A porous polypropylene film having a porosity of 60% was produced.
【0029】このフイルムに加速電圧が200kVの電
子線を5Mrad照射し、熱キシレン抽出のゲル分率が
34%の多孔質ポリプロピレンフィルムを得た。この多
孔質ポリプロピレンフィルムの両面に厚み35μmの電
解銅箔を180℃の熱プレス装置を用いて、10kg/
cm2 の面圧で3分間熱圧着後、加圧下に水冷して固定
し、多孔質ポリプロピレンフィルムの両面に電解銅箔を
貼合わせた構造の両面板を得た。この両面板の両面から
加速電圧が2MVの電子線をそれぞれ20Mrad照射
し、多孔質ポリプロピレンフィルム層を更に架橋させ
た。This film was irradiated with an electron beam having an accelerating voltage of 200 kV for 5 Mrad to obtain a porous polypropylene film having a gel fraction of 34% by hot xylene extraction. An electrolytic copper foil having a thickness of 35 μm was applied to both sides of this porous polypropylene film at a temperature of 180 ° C. using a hot press machine at 10 kg /
After thermocompression bonding at a surface pressure of cm 2 for 3 minutes, the mixture was water-cooled and fixed under pressure to obtain a double-sided plate having a structure in which electrolytic copper foil was attached to both surfaces of a porous polypropylene film. An electron beam having an accelerating voltage of 2 MV was irradiated from both sides of this double-sided plate at 20 Mrad to further crosslink the porous polypropylene film layer.
【0030】この両面板の両面の銅箔層を塩化第2鉄水
溶液を用いるエッチング法で、図1に示すような回路幅
1mm、回路間隔1mmのストライブ状回路を形成し
た。この回路板のA−B間の静電容量を1MHzで測定
した結果、16pF/10cm回路長さ、回路A−C間
は0.7pF/10cm回路長さであった。また、この
基板は220℃、10秒間の手作業の半田付けにも耐え
るものであった。A striped circuit having a circuit width of 1 mm and a circuit interval of 1 mm as shown in FIG. 1 was formed on the copper foil layers on both sides of the double-sided plate by an etching method using an aqueous ferric chloride solution. As a result of measuring the capacitance between A and B of this circuit board at 1 MHz, the circuit length was 16 pF / 10 cm and the circuit length between circuits A and C was 0.7 pF / 10 cm. Further, this board endured manual soldering at 220 ° C. for 10 seconds.
【0031】[0031]
【実施例2】シラン変成ポリプロピレン(三菱油化
(株)製、メルトフローレート11、触媒マスターバッ
チ5重量部をドライブレンド)を使用して、厚みが25
μmで空孔率が70%の多孔質ポリプロピレンフィルム
を作製し、80℃の水中に24時間浸漬する方法によ
り、熱抽出によるゲル分率が31%の多孔質ポリプロピ
レンフィルムを得た。[Example 2] Silane-modified polypropylene (manufactured by Mitsubishi Petrochemical Co., Ltd., melt flow rate 11, dry blend of 5 parts by weight of catalyst masterbatch) was used, and the thickness was 25.
A porous polypropylene film having a porosity of 70% and a porosity of 31% was prepared by a method of immersing it in water at 80 ° C. for 24 hours to obtain a porous polypropylene film having a gel fraction of 31% by heat extraction.
【0032】プロピレン−無水マレイン酸共重合体(無
水マレイン酸含量5%、メルトフローレート4)(a)
とエチレン−エチルアクリレート−一酸化炭素共重合体
(エチルアクリレート含量11%、一酸化炭素含量5
%、メルトフローレート10)(b)の混合物〔(a)
と(b)との混合比1:1〕を主体とする接着剤を溶融
成形法で厚み20μmのフィルム状に成形した後、20
0kVの電子線を3Mrad照射してBステージ化し
た。Propylene-maleic anhydride copolymer (maleic anhydride content 5%, melt flow rate 4) (a)
And ethylene-ethyl acrylate-carbon monoxide copolymer (ethyl acrylate content 11%, carbon monoxide content 5
%, Melt flow rate 10) (b) mixture [(a)
And (b) are mixed in a mixing ratio of 1: 1] to form a film having a thickness of 20 μm by a melt molding method.
An electron beam of 0 kV was irradiated at 3 Mrad to form a B stage.
【0033】多孔質ポリプロピレンフィルムの片面に厚
み20μmのBステージ化した接着剤を介して厚み25
μmの二軸延伸ポリエステルフィルム、もう片面には厚
み35μmの電解銅箔を170℃の熱プレス装置を用い
て、10kg/cm2 の面圧で3分間熱圧着後、加圧下
に水冷して固定し、図2に示す片面板を得た。この片面
板のポリエステルフィルム側から加速電圧が2MVの電
子線を10Mrad照射し、接着剤層を硬化させた。A 25 μm thick B-staged adhesive having a thickness of 20 μm is provided on one side of the porous polypropylene film.
A biaxially stretched polyester film with a thickness of 35 μm and an electrolytic copper foil with a thickness of 35 μm on the other side were thermocompression bonded at a surface pressure of 10 kg / cm 2 for 3 minutes using a hot press machine at 170 ° C., and then fixed by water cooling under pressure. Then, the single-sided plate shown in FIG. 2 was obtained. An electron beam having an accelerating voltage of 2 MV was irradiated with 10 Mrad from the polyester film side of the one-sided plate to cure the adhesive layer.
【0034】厚み25μmのポリエステルフィルムと実
施例1で使用したゲル分率が34%の多孔質ポリプロピ
レンフィルムとを、厚み20μmのBステージ化した接
着剤を使用して、170℃の熱プレス装置で貼合せ、図
3に示される絶縁基材を得た。A polyester film having a thickness of 25 μm and a porous polypropylene film having a gel fraction of 34% used in Example 1 were heat-pressed at 170 ° C. using a B-staged adhesive having a thickness of 20 μm. The lamination was performed to obtain the insulating base material shown in FIG.
【0035】図2に示された銅箔層をエッチング法で回
路幅1mm、回路間隔1mmのストライブ状回路を形成
した後、この片面板を70℃の温水中に6時間浸漬し、
多孔質ポリプロピレン層をさらに架橋させた。After forming a stripe-shaped circuit having a circuit width of 1 mm and a circuit interval of 1 mm from the copper foil layer shown in FIG. 2 by an etching method, this one-sided plate was immersed in hot water at 70 ° C. for 6 hours,
The porous polypropylene layer was further crosslinked.
【0036】図3に示される絶縁基材の多孔質ポリプロ
ピレンフィルム側をストライブ状回路上に180℃の熱
プレス装置を用いて貼合せた後、加速電圧200kVの
電子線を10Mrad照射し、図2に示される絶縁基材
側の多孔質ポリプロピレンフィルム層の架橋と接着剤層
の硬化を行い、図4に示される積層構造の両面回路板を
得た。After the porous polypropylene film side of the insulating base material shown in FIG. 3 was laminated on a strip-shaped circuit by using a heat pressing device at 180 ° C., an electron beam with an accelerating voltage of 200 kV was irradiated at 10 Mrad, and the figure The porous polypropylene film layer on the insulating substrate side shown in 2 was cross-linked and the adhesive layer was cured to obtain a double-sided circuit board having a laminated structure shown in FIG.
【0037】図4に示される回路板の回路A−C間の静
電容量は、1MHzで測定した結果、0.8pF/10
cmの回路長さであった。また、この基板は220℃で
10秒間の手作業の半田付けにも耐えるものであった。The capacitance between the circuits A and C of the circuit board shown in FIG. 4 was 0.8 pF / 10 as a result of measurement at 1 MHz.
The circuit length was cm. Further, this board endured manual soldering at 220 ° C. for 10 seconds.
【0038】[0038]
【実施例3】実施例2の図4に示された両面回路板を幅
100mmに切断し、二軸延伸ポリエステルの周囲に銀
ペーストを塗布する方法で図5で示されるシールド層D
形成の回路板を得た。シールド層Dと回路A間の静電容
量を1MHzで測定した結果、平均27pF/10cm
の回路長さであった。Example 3 The shield layer D shown in FIG. 5 is formed by cutting the double-sided circuit board shown in FIG. 4 of Example 2 into a width of 100 mm and applying a silver paste around the biaxially oriented polyester.
A formed circuit board was obtained. As a result of measuring the electrostatic capacitance between the shield layer D and the circuit A at 1 MHz, the average is 27 pF / 10 cm.
It was the circuit length.
【0039】[0039]
【比較例1】二軸延伸ポリエステルフィルムの両面に熱
可塑性飽和共重合ポリエステル系接着剤〔東洋紡(株)
製、融点125℃、ガラス転移点−28℃、溶融粘度
2,000ポイズ(200℃)〕を15μmの厚みに形
成した後、180℃の熱プレス装置を用いて、両面に厚
み35μmの電解銅箔を置き、20kg/cm2 の面圧
で5分間熱圧着後、加圧下に水冷して固定し、図6に示
される両面回路板を得た。[Comparative Example 1] Thermoplastic saturated copolyester adhesive on both sides of a biaxially oriented polyester film [TOYOBO CO., LTD.
Manufactured, melting point 125 ° C., glass transition point −28 ° C., melt viscosity 2,000 poise (200 ° C.)] to a thickness of 15 μm, and then a hot pressing machine at 180 ° C. is used to form 35 μm thick electrolytic copper on both sides. The foil was placed, thermocompression-bonded at a surface pressure of 20 kg / cm 2 for 5 minutes, and then fixed by water cooling under pressure to obtain a double-sided circuit board shown in FIG.
【0040】この両面板の銅箔をエッチング法で回路幅
1mm、回路間隔1mmのストライブ状電極とした。回
路A−B間の静電容量を1MHzで測定した結果、41
pF/10cmの回路長さであり、回路A−C間のそれ
は1.9pF/10cmの回路長さであり、実施例1の
結果よりも静電容量が非常に大きいことが判った。The copper foil of this double-sided plate was made into a striped electrode having a circuit width of 1 mm and a circuit interval of 1 mm by an etching method. As a result of measuring the capacitance between the circuits A and B at 1 MHz, 41
It was found that the circuit length was pF / 10 cm and that between the circuits A and C was 1.9 pF / 10 cm, and the capacitance was much larger than the result of Example 1.
【0041】[0041]
【比較例2】厚み25μmの二軸延伸ポリエステルフィ
ルムと厚み35μmの電解銅箔を実施例1の厚み15μ
mの接着剤を使用して、180℃の熱プレス装置で貼合
せた後、銅箔をエッチング法で回路幅1mm、回路間隔
1mmのストライブ状回路とした。[Comparative Example 2] A biaxially stretched polyester film having a thickness of 25 µm and an electrolytic copper foil having a thickness of 35 µm were used in Example 1 with a thickness of 15 µ
After being bonded by a hot press machine at 180 ° C. using an adhesive of m, a copper foil was formed into a striped circuit having a circuit width of 1 mm and a circuit interval of 1 mm by an etching method.
【0042】厚み75μmの二軸延伸ポリエステルフィ
ルムの片面に上記接着剤を厚みが35μmとなるように
形成した後、銅箔回路上に接着剤面を180℃の熱プレ
ス装置で貼合せ、図7に示される積層回路板が得られ
た。After the above adhesive was formed on one surface of a biaxially stretched polyester film having a thickness of 75 μm to a thickness of 35 μm, the adhesive surface was laminated on a copper foil circuit by a hot press machine at 180 ° C. The laminated circuit board shown in was obtained.
【0043】図7の回路板で回路A−C間の静電容量は
1MHzで測定した結果、2.1pF/10cmの回路
長さであり、実施例2の結果よりも静電容量が非常に大
きいことが判った。The capacitance between the circuits A and C on the circuit board of FIG. 7 was 2.1 pF / 10 cm as a result of measurement at 1 MHz, and the capacitance was much larger than that of the second embodiment. It turned out to be big.
【0044】[0044]
【比較例3】図7で示される回路板を幅100mmに切
断し、実施例3の要領で銀ペーストを使用して、図8に
示されるシールド層形成の回路板を得た。シールド層D
と回路A間の静電容量を1MHzで測定した結果、75
pF/10cmの回路長さであり、実施例3の結果より
も静電容量が非常に大きいことが判った。COMPARATIVE EXAMPLE 3 The circuit board shown in FIG. 7 was cut into a width of 100 mm, and the silver paste was used in the same manner as in Example 3 to obtain the circuit board with the shield layer shown in FIG. Shield layer D
As a result of measuring the capacitance between the circuit A and the circuit A at 1 MHz, 75
It was found that the circuit length was pF / 10 cm and the electrostatic capacity was much larger than the result of Example 3.
【0045】[0045]
【発明の効果】以上説明したように、本発明は、価格的
に高価な多孔質ポリテトラフルオロエチレンフィルムを
使用せずとも、導体回路間や導体回路とシールド層との
間の静電容量の小さい、高周波電流の伝送に適した回路
板が得られ、コンピュータや通信機器等の機器内配線用
の回路板としての利用価値は非常に高いものである。As described above, according to the present invention, the electrostatic capacitance between the conductor circuits or between the conductor circuits and the shield layer can be reduced without using the expensive porous polytetrafluoroethylene film. A small circuit board suitable for transmitting high-frequency current can be obtained, and its utility value as a circuit board for wiring in equipment such as computers and communication equipment is very high.
【図1】実施例1で得られた両面に銅箔層を有する回路
板の積層構造を示す模式図である。FIG. 1 is a schematic view showing a laminated structure of a circuit board having copper foil layers on both sides obtained in Example 1.
【図2】実施例2で得られた片面に銅箔層を有する片面
基板の積層構造を示す模式図である。2 is a schematic diagram showing a laminated structure of a single-sided board having a copper foil layer on one side obtained in Example 2. FIG.
【図3】実施例2で得られた絶縁基板の積層構造を示す
模式図である。FIG. 3 is a schematic diagram showing a laminated structure of an insulating substrate obtained in Example 2.
【図4】図2、3の片面基板を貼合せて得られた両面回
路板の積層構造を示す模式図である。FIG. 4 is a schematic view showing a laminated structure of a double-sided circuit board obtained by laminating the single-sided substrates of FIGS.
【図5】図4の両面回路板の周囲にシールド層を形成し
た積層構造を示す模式図である。5 is a schematic view showing a laminated structure in which a shield layer is formed around the double-sided circuit board of FIG.
【図6】比較例1で得られた両面回路板の積層構造を示
す模式図である。FIG. 6 is a schematic view showing a laminated structure of a double-sided circuit board obtained in Comparative Example 1.
【図7】比較例2で得られた回路板の積層構造を示す模
式図である。7 is a schematic diagram showing a laminated structure of a circuit board obtained in Comparative Example 2. FIG.
【図8】比較例3で得られた回路板の積層構造を示す模
式図である。8 is a schematic diagram showing a laminated structure of a circuit board obtained in Comparative Example 3. FIG.
Claims (5)
が融着積層されてなる配線板。1. A structure shown in Table 1 or 2 below: [Table 2] A wiring board having a conductor circuit fused and laminated on a porous polypropylene film.
子フィルムが積層されてなる請求項1記載の配線板。2. The structure shown in Table 3 below: The wiring board according to claim 1, wherein the polymer film is laminated on one surface of a porous polypropylene film having the following.
が融着積層されてなる請求項1又は2記載の配線板。3. The structure shown in Table 4 below: The wiring board according to claim 1 or 2, wherein the porous polypropylene film is fusion-laminated on the conductor circuit having the above-mentioned.
ピレンフィルム上に高分子フィルムが積層されている請
求項3記載の配線板。4. Structures shown in Table 5 below: The wiring board according to claim 3, wherein the polymer film is laminated on the porous polypropylene film fusion-bonded and laminated on the conductor circuit, which has:
線の照射もしくは水架橋によって架橋されている請求項
1〜4のいずれかに記載の配線板。5. The structure shown in Table 6 below: The wiring board according to any one of claims 1 to 4, wherein the porous polypropylene film having: is crosslinked by irradiation of ionizing radiation or water crosslinking.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24649091A JPH0563321A (en) | 1991-09-02 | 1991-09-02 | Wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24649091A JPH0563321A (en) | 1991-09-02 | 1991-09-02 | Wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0563321A true JPH0563321A (en) | 1993-03-12 |
Family
ID=17149177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24649091A Pending JPH0563321A (en) | 1991-09-02 | 1991-09-02 | Wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0563321A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004291455A (en) * | 2003-03-27 | 2004-10-21 | Taiyo Yuden Co Ltd | Ceramic green sheet and its manufacturing process, and laminated electronic component, and its manufacturing process |
WO2022091960A1 (en) * | 2020-10-29 | 2022-05-05 | 株式会社カネカ | Layered film and copper-clad layered sheet |
-
1991
- 1991-09-02 JP JP24649091A patent/JPH0563321A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004291455A (en) * | 2003-03-27 | 2004-10-21 | Taiyo Yuden Co Ltd | Ceramic green sheet and its manufacturing process, and laminated electronic component, and its manufacturing process |
WO2022091960A1 (en) * | 2020-10-29 | 2022-05-05 | 株式会社カネカ | Layered film and copper-clad layered sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6254971B1 (en) | Resin-having metal foil for multilayered wiring board, process for producing the same, multilayered wiring board, and electronic device | |
US4691081A (en) | Electrical cable with improved metallic shielding tape | |
JP2007207629A (en) | Flexible flat cable | |
JPH0521911A (en) | Wiring board | |
JPH0563321A (en) | Wiring board | |
JP2023120170A (en) | Adhesive film and adhesive film laminate comprising the same | |
JPH06316759A (en) | Production of polyimide film/metal foil composite film | |
JPH07162111A (en) | Composite dielectric board | |
JP2683426B2 (en) | Flexible circuit board manufacturing method | |
JP2890747B2 (en) | Flexible printed circuit board and method of manufacturing the same | |
JPH03209792A (en) | Both-side metal-cladded flexible printed circuit board and manufacture thereof | |
JP2591599B2 (en) | Flexible circuit board | |
JPH0712647B2 (en) | Method for manufacturing polyolefin metal laminate | |
JP3291422B2 (en) | Adhesive film for flexible printed circuit board, laminated film for flexible printed circuit board using the same, and flexible printed circuit board using the same | |
JPH0377206A (en) | Flat cable and manufacture thereof | |
JP2523216B2 (en) | Flexible printed wiring board | |
JPS61193845A (en) | Metal lined board for high-frequency circuit | |
JPS6122629B2 (en) | ||
JPH0794641B2 (en) | Adhesive resin composition | |
JPS6358987A (en) | Radio frequency circuit board | |
JP2000188207A (en) | Ptc thermistor | |
JPS61193846A (en) | Double-side metal lined plate for high-frequency circuit | |
JPH06275137A (en) | Reinforcing tape and flat cable using this | |
JPS60154057A (en) | Manufacture of copper lined laminated board | |
JPS6129870B2 (en) |