JPH056311B2 - - Google Patents

Info

Publication number
JPH056311B2
JPH056311B2 JP58004567A JP456783A JPH056311B2 JP H056311 B2 JPH056311 B2 JP H056311B2 JP 58004567 A JP58004567 A JP 58004567A JP 456783 A JP456783 A JP 456783A JP H056311 B2 JPH056311 B2 JP H056311B2
Authority
JP
Japan
Prior art keywords
charging
time
timer
trickle
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58004567A
Other languages
Japanese (ja)
Other versions
JPS59128781A (en
Inventor
Kiichi Koike
Hiroshi Sugyama
Kozo Hirose
Akio Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58004567A priority Critical patent/JPS59128781A/en
Publication of JPS59128781A publication Critical patent/JPS59128781A/en
Publication of JPH056311B2 publication Critical patent/JPH056311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蓄電池の自己放電を補うために、負
荷とは切り離された状態で常時微少電流で充電さ
れる、いわゆるトリクル充電状態で使用され、商
用電源の停電時には負荷に信頼性の高い安定な電
力を供給する密閉形鉛蓄電池の充電方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used in a so-called trickle charge state, in which a storage battery is constantly charged with a small current while being disconnected from a load, in order to compensate for self-discharge. The present invention relates to a method for charging a sealed lead-acid battery that provides reliable and stable power to a load during a power outage.

従来例の構成とその問題点 これまでの密閉形鉛蓄電池の充電には、セル当
り2.2V〜2.35Vの定電圧で連続的に充電されるト
リクル充電方式が採用されている。しかし、密閉
形鉛蓄電池は、充電中に正極より発生する酸素ガ
スを負極で吸収除去する負極吸収式の密閉方式
(以下、密閉形鉛蓄電池という)を採用しており、
また非流動化した電解液を使用するため、従来の
液式の鉛蓄電池に比べて液量が少なく、トリクル
充電中に電解液中の水分の一部が飛散し、電解液
量の減少による容量低下を起こして早期に寿命と
なるという問題があつた。
Conventional Structure and Problems Conventionally, sealed lead-acid batteries have been charged using trickle charging, in which each cell is continuously charged at a constant voltage of 2.2V to 2.35V. However, sealed lead-acid batteries use a negative electrode absorption type sealed system (hereinafter referred to as sealed lead-acid batteries) in which the negative electrode absorbs and removes oxygen gas generated from the positive electrode during charging.
In addition, since a non-fluidized electrolyte is used, the amount of liquid is smaller than that of conventional liquid lead-acid batteries, and some of the water in the electrolyte scatters during trickle charging, resulting in a decrease in the amount of electrolyte. There was a problem that the product deteriorated and reached the end of its life prematurely.

発明の目的 本発明は、上記従来の欠点を解消するもので、
一般の鉛蓄電池の寿命モードが主として鉛−アン
チモン合金よりなる正極格子の腐食と、正極板上
に析出したアンチモンによる自己放電のセル間バ
ラツキに起因した容量低下であるのに対して、密
閉形鉛蓄電池の劣化寿命モードは、自己放電や格
子腐食が少ない鉛−カルシウム系合金を使用して
いるため、そのような要因で寿命に至ることは少
ないが、一般の液式鉛蓄電池に比較して電解液量
が比較的少なく、電解液中の水分の蒸発、または
ガスの逸散による容量低下が主なものである。
OBJECT OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks.
While the life mode of general lead-acid batteries is mainly due to corrosion of the positive electrode lattice made of a lead-antimony alloy and cell-to-cell variation in self-discharge due to antimony deposited on the positive electrode plate, sealed lead-acid batteries The deterioration life mode of storage batteries uses a lead-calcium alloy that has less self-discharge and lattice corrosion, so such factors are unlikely to cause the battery to reach the end of its life. The amount of liquid is relatively small, and the capacity decrease is mainly due to evaporation of water in the electrolyte or dissipation of gas.

従つて、この種の鉛蓄電池では、電解液の減少
を押さえる充電方式を採用すれば、その寿命が大
幅に伸びることになる。その方法として本発明は
5〜50時間のトリクル充電時間と、500時間以内
の休止時間とを有する充電方式とし、これをくり
返すことにより、トリクル充電中の過充電を押さ
え、電解液量の減少による容量低下を防止して密
閉形蓄電池の寿命を伸ばすことを目的とする。
Therefore, the lifespan of this type of lead-acid battery can be significantly extended by adopting a charging method that prevents the electrolyte from depleting. As a method for this purpose, the present invention uses a charging method that has a trickle charging time of 5 to 50 hours and a rest time of less than 500 hours, and by repeating this, overcharging can be suppressed during trickle charging and the amount of electrolyte can be reduced. The purpose is to extend the life of sealed storage batteries by preventing capacity reduction due to

発明の構成 上記目的を達成するため、本発明はトリクル充
電で使用される密閉形鉛蓄電池の充電を、発振器
とその発振周波数を分周して5〜50時間の充電時
間と、500時間以内の休止時間の設定とを行なう
タイマ回路と、このタイマ回路を電源投入時ある
いはその停電後の復電時の信号によりスタートさ
せる制御回路を備えることにより、間欠的に充電
を行なうことを特徴としたものである。
Structure of the Invention In order to achieve the above object, the present invention charges a sealed lead-acid battery used in trickle charging by dividing the oscillator and its oscillation frequency to charge the battery within 5 to 50 hours and within 500 hours. A device characterized by intermittent charging by being equipped with a timer circuit that sets the rest time and a control circuit that starts this timer circuit with a signal when the power is turned on or when the power is restored after a power outage. It is.

このように従来の充電器にタイマーによる充電
時間と休止時間の制御回路を加えることにより、
密閉形鉛蓄電池の過充電を押さえて電解液の減少
を防止し、電池寿命を伸ばすことができるもので
ある。
In this way, by adding a timer-based charging time and rest time control circuit to a conventional charger,
It suppresses overcharging of sealed lead-acid batteries, prevents electrolyte loss, and extends battery life.

実施例の説明 以下、本発明の一実施例について図面に基づき
説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

図中IC1は、発振周波数設定用抵抗R2,R3およ
びコンデンサC2によつて発振周波数が決定され、
その発振周波数を分周することで充電時間を制御
するタイマ用IC,IC2はタイマ用IC1と同じ仕様
で、抵抗R7,R8、コンデンサC5で設定された休
止時間を制御するタイマ用IC,IC3は充電時間制
御用タイマIC1の出力と、インバータ用のIC6と、
抵抗R4、コンデンサC3よりなる遅延回路で、充
電時間制御用タイマIC1の動作終了信号より休止
時間制御用タイマIC2のスタート信号を得るAND
ゲートIC、同様にIC4は、インバータ用のIC5
R5,C4とで休止時間制御用タイマIC2の動作終了
信号より充電時間制御用タイマIC1のスタート信
号を得るANDゲートICである。Q1は充電時間制
御用タイマIC1の出力により密閉形鉛蓄電池Bを
充電する定電圧回路aの定電圧制御用トランジス
タQ2を制御するトランジスタである。またR6
Qのベース抵抗である。
The oscillation frequency of IC 1 in the figure is determined by the oscillation frequency setting resistors R 2 and R 3 and the capacitor C 2 .
Timer IC 2 , which controls charging time by dividing the oscillation frequency, has the same specifications as timer IC 1 , and is a timer IC that controls the rest time set by resistors R 7 and R 8 and capacitor C 5 . IC 3 is the output of timer IC 1 for charging time control, IC 6 for inverter,
A delay circuit consisting of resistor R 4 and capacitor C 3 is used to obtain the start signal of timer IC 2 for rest time control from the operation end signal of timer IC 1 for charge time control.
The gate IC, similarly IC 4 , is connected to IC 5 for the inverter.
This is an AND gate IC that uses R 5 and C 4 to obtain a start signal for charging time control timer IC 1 from an operation end signal for rest time control timer IC 2 . Q 1 is a transistor that controls the constant voltage control transistor Q 2 of the constant voltage circuit a that charges the sealed lead-acid battery B based on the output of the charging time control timer IC 1 . Also, R 6 is the base resistance of Q.

抵抗R1、コンデンサC1は、電源投入時あるい
は停電後の復電時に充電時間制御用タイマIC1
充電開始信号を与えるものであり、R9,D1はタ
イマ回路に安定な電源を与えるツエナーダイオー
ドを抵抗である。
Resistor R 1 and capacitor C 1 provide a charge start signal to charging time control timer IC 1 when power is turned on or when power is restored after a power outage, and R 9 and D 1 provide stable power to the timer circuit. A Zener diode is a resistor.

この回路の動作は、コンデンサC1、抵抗R1
より電源投入あるいは停電後の復電を検出し、制
御信号として充電時間制御用タイマIC1のスター
ト信号を出し、C2,R2,R3によつて設定された
時間だけ充電時間制御用タイマIC1を作動させる。
この時充電時間制御用タイマIC1の出力は低レベ
ルであるので、定電圧制御用トランジスタQ2
制御するトランジスタQ1はオフ状態で、Q2はオ
ン状態を保ち定電圧回路はトリクル充電々圧を出
力する。
The operation of this circuit is to detect power-on or power restoration after a power outage using capacitor C 1 and resistor R 1 , output a start signal for charging time control timer IC 1 as a control signal, and connect C 2 , R 2 , R 3 Charging time control timer IC 1 is activated for the time set by .
At this time, the output of the charging time control timer IC 1 is at a low level, so the transistor Q 1 that controls the constant voltage control transistor Q 2 is in the off state, Q 2 is in the on state, and the constant voltage circuit is trickle charged. Outputs pressure.

充電時間制御用タイマIC1が設定時間動作する
と、出力が高レベルとなり、トランジスタQ1
オンとなるので、定電圧制御用トランジスタQ2
がオンからオフとなり、充電が停止するととも
に、インバータ用IC6とR4,C3の遅延回路と
ANDゲートIC3により、C5,R7,R8によつて休
止時間が設定された休止時間制御用タイマIC2
スタート信号を出し、タイマIC2を作動させる。
When charging time control timer IC 1 operates for the set time, the output becomes high level and transistor Q 1 turns on, so constant voltage control transistor Q 2
turns from on to off, charging stops, and the inverter IC 6 and the delay circuit of R 4 and C 3
The AND gate IC 3 outputs a start signal for the pause time control timer IC 2 whose pause time is set by C 5 , R 7 , and R 8 to activate the timer IC 2 .

休止時間制御用IC2が設定時間作動すると、出
力が高レベルになりこの時にIC5,R5,C4の遅延
回路とANDゲートIC4により充電時間制御用タイ
マIC1のスタート信号を出すので、タイマーIC1
再び作動して充電を開始し、以後この動作がくり
返し行なわれる。
When IC 2 for rest time control operates for the set time, the output becomes high level and at this time, the delay circuit of IC 5 , R 5 , C 4 and AND gate IC 4 output a start signal for timer IC 1 for charge time control. , the timer IC 1 operates again to start charging, and this operation is repeated thereafter.

このような回路において、トリクル充電時間
は、蓄電池放電後の回復充電時間が通常の充電々
圧では5〜50時間必要とすることから、この充電
時間とトリクル充電時間を同じに設定することが
回路構成上有利であり、また休止時間は、密閉形
鉛蓄電池の自己放電量が40℃では最大0.3〜0.5
%/日になり、休止時間を20日以上にすると蓄電
池残存容量が90%以下になる可能性があるため、
トリクル充電時間は5〜50時間、休止時間は500
時間以内が適当である。また、第2図の休止時間
と電解液の減液量の相関特性から、明らかなよう
に、休止時間を500時間以上にしても減液量は変
化しないので、この点からも休止時間は500時間
以下が望ましい。
In such a circuit, the trickle charging time requires 5 to 50 hours for recovery charging after discharging the storage battery under normal charging pressure, so it is best to set this charging time and trickle charging time to be the same in the circuit. The configuration is advantageous, and the rest time is 0.3 to 0.5 at max.
%/day, and if the downtime is 20 days or more, the remaining battery capacity may drop below 90%.
Trickle charge time is 5-50 hours, rest time is 500 hours
Within hours is appropriate. Also, from the correlation between the rest time and the amount of electrolyte loss shown in Figure 2, it is clear that the amount of electrolyte loss does not change even if the rest time is 500 hours or more. Preferably less than 1 hour.

第2図は代表例として被充電蓄電池を
12V3.0Ahとし、トリクル充電々圧を14V、周囲
温度を40±30℃、充電時間を24時間とする仕様で
充電休止時間と電解液の減液量との関係を調べた
ものである。
Figure 2 shows a typical example of a rechargeable storage battery.
The relationship between the charging rest time and the amount of electrolyte loss was investigated with specifications of 12V3.0Ah, trickle charging pressure of 14V, ambient temperature of 40±30℃, and charging time of 24 hours.

第3図に、本発明の前記実施例によるトリクル
充電方法で、電池は12V、3.0Ahとし、充電電圧
を14.0V、周囲温度を40±3℃、充電時間を24時
間、休止時間を240時間とした設定で1.5年間の高
温加速試験を行なつた際のトリクル充電期間と電
解液の減液量と蓄電池容量との関係を示す。
FIG. 3 shows the trickle charging method according to the embodiment of the present invention, the battery is 12V, 3.0Ah, the charging voltage is 14.0V, the ambient temperature is 40±3℃, the charging time is 24 hours, and the rest time is 240 hours. The following shows the relationship between the trickle charging period, the amount of electrolyte loss, and the storage battery capacity during a 1.5-year high-temperature accelerated test with the following settings.

このように本実施例によれば、24時間程度のト
リクル充電時間と、その10倍程度の休止時間とを
簡単なタイマ回路で制御することにより過充電を
防止し、電解液の減少にともなう容量低下および
極板の格子腐食を押さえるので、従来の連続的な
トリクル充電方法に比べて大幅に密閉形鉛蓄電池
の寿命を伸ばすことができる。
In this way, according to this embodiment, overcharging is prevented by controlling the trickle charging time of about 24 hours and the pause time of about 10 times the trickle charging time using a simple timer circuit, and the capacity increases as the electrolyte decreases. By reducing degradation and plate grid corrosion, the life of sealed lead-acid batteries can be significantly extended compared to conventional continuous trickle charging methods.

発明の効果 以上のように本発明によれば、次の効果を得る
ことができる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1) 従来のトリクル充電装置に、簡単なタイマ回
路とその制御回路を設け、適切な充電時間と休
止時間とをくり返すように制御することによ
り、密閉形鉛蓄電池の過充電による電解液の減
少や極板の格子腐食を防止でき、寿命を大幅に
伸ばすことができる。
(1) By installing a simple timer circuit and its control circuit in a conventional trickle charger and controlling it to repeat an appropriate charging time and rest time, electrolyte discharge due to overcharging of a sealed lead-acid battery can be prevented. It can prevent the reduction and grid corrosion of the electrode plate, and can greatly extend the service life.

(2) 過充電を防止するので、休止時間中の使用電
力量を減少させることができる。
(2) Since overcharging is prevented, the amount of power used during downtime can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例である間欠トリク
ル充電の回路図、第2図は、本発明の充電装置で
休止時間を変化させた時の休止時間と減液量との
相関図、第3図は本発明による間欠トリクル充電
装置で充電した時の容量と減液量の特性の一例を
示す。 IC1……充電時間制御用タイマIC、IC2……休止
時間制御用タイマIC、IC3,IC4……ANDゲート
IC、Q1……充電、休止制御用トランジスタ、Q2
……定電圧制御用トランジスタ。
FIG. 1 is a circuit diagram of intermittent trickle charging which is an embodiment of the present invention, and FIG. 2 is a correlation diagram between the rest time and the amount of liquid reduction when the rest time is changed in the charging device of the present invention. FIG. 3 shows an example of the capacity and liquid reduction characteristics when charging with the intermittent trickle charging device according to the present invention. IC 1 ... Timer IC for charging time control, IC 2 ... Timer IC for rest time control, IC 3 , IC 4 ... AND gate
IC, Q 1 ... Charging, pause control transistor, Q 2
...Transistor for constant voltage control.

Claims (1)

【特許請求の範囲】 1 密閉形鉛蓄電池を間欠的にトリクル充電する
方法であつて、トリクル充電をタイマ回路によ
り、5〜50時間の充電時間と500時間以内の休止
時間とをくり返すよう制御する方式とした密閉形
鉛蓄電池の充電方法。 2 トリクル充電時間と充電休止時間とを設定す
るタイマ回路は、電源の投入信号あるいは停電後
の復電信号によつて制御される特許請求の範囲第
1項記載の密閉形鉛蓄電池の充電方法。
[Claims] 1. A method for intermittently trickle charging a sealed lead-acid battery, wherein the trickle charging is controlled by a timer circuit so that a charging time of 5 to 50 hours and a rest time of up to 500 hours are repeated. A charging method for sealed lead-acid batteries. 2. The method of charging a sealed lead-acid battery according to claim 1, wherein the timer circuit that sets the trickle charging time and the charging pause time is controlled by a power-on signal or a power restoration signal after a power outage.
JP58004567A 1983-01-13 1983-01-13 Charging method of sealed lead-acid battery Granted JPS59128781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004567A JPS59128781A (en) 1983-01-13 1983-01-13 Charging method of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004567A JPS59128781A (en) 1983-01-13 1983-01-13 Charging method of sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPS59128781A JPS59128781A (en) 1984-07-24
JPH056311B2 true JPH056311B2 (en) 1993-01-26

Family

ID=11587609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004567A Granted JPS59128781A (en) 1983-01-13 1983-01-13 Charging method of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPS59128781A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133466A (en) * 1986-11-21 1988-06-06 Shin Kobe Electric Mach Co Ltd Charging of storage battery
JPS63111580U (en) * 1987-01-08 1988-07-18
FR2633003B1 (en) * 1988-06-15 1990-12-28 Guillaume Serge SOLAR MOTOR FOR OPERATING DOORS, GATES AND GATES
CN104269581B (en) * 2014-09-02 2017-03-29 安徽超威电源有限公司 A kind of electric road vehicle accumulator charging method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480525A (en) * 1977-12-09 1979-06-27 Tokyo Shibaura Electric Co Battery charging method
JPS56153665A (en) * 1980-04-30 1981-11-27 Shin Kobe Electric Mach Co Ltd Charging of lead acid battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480525A (en) * 1977-12-09 1979-06-27 Tokyo Shibaura Electric Co Battery charging method
JPS56153665A (en) * 1980-04-30 1981-11-27 Shin Kobe Electric Mach Co Ltd Charging of lead acid battery

Also Published As

Publication number Publication date
JPS59128781A (en) 1984-07-24

Similar Documents

Publication Publication Date Title
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
US8569999B2 (en) Battery charger and method
US7135839B2 (en) Battery pack and method of charging and discharging the same
Wong et al. Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation
MX2010011937A (en) Improved battery charging device and method.
JPH10304589A (en) Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state
JPH11341694A (en) Charging method of secondary battery
US6097176A (en) Method for managing back-up power source
JPH056311B2 (en)
JP2000150000A (en) Backup power supply control method
JPH09117075A (en) Charging method for lithium ion secondary battery
Petrovic et al. Lead–acid batteries
JP4331473B2 (en) Charge / discharge control device and charge / discharge control method for lead-acid battery
JP3216595B2 (en) Rechargeable battery charger
JP3271138B2 (en) Rechargeable battery charger and charging method
JPH11307134A (en) Charging method of alkaline aqueous solution secondary battery for backup
JP2844906B2 (en) Uninterruptible power system
JP2890829B2 (en) How to charge a sealed lead-acid battery
JPH11206023A (en) Power utility device control system and controlling method
JP2004064975A (en) Uninterruptive power unit
JP2001351695A (en) Recharging method of plural alkali water solution secondary cells for backup use connected in parallel
Stefan-Cristian et al. Battery regeneration technology using dielectric method
JP4483195B2 (en) Method and apparatus for preventing deterioration of battery
JPH046074B2 (en)
KR840000374Y1 (en) Charging circuit for cecondary cell