JPH0562960B2 - - Google Patents

Info

Publication number
JPH0562960B2
JPH0562960B2 JP18454687A JP18454687A JPH0562960B2 JP H0562960 B2 JPH0562960 B2 JP H0562960B2 JP 18454687 A JP18454687 A JP 18454687A JP 18454687 A JP18454687 A JP 18454687A JP H0562960 B2 JPH0562960 B2 JP H0562960B2
Authority
JP
Japan
Prior art keywords
canister
bentonite
float
well
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18454687A
Other languages
Japanese (ja)
Other versions
JPS6428600A (en
Inventor
Yoshito Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP18454687A priority Critical patent/JPS6428600A/en
Publication of JPS6428600A publication Critical patent/JPS6428600A/en
Publication of JPH0562960B2 publication Critical patent/JPH0562960B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、放射性廃棄物を収納した密閉容器の
埋設工法に関するものである。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to a method for burying a sealed container containing radioactive waste.

(ロ) 従来技術 従来、放射性廃棄物を収納した密閉容器(以
下、これをキヤニスターという)の埋設工法とし
ては、例えば500〜1000mの花崗岩や岩塩、頁岩
等の岩盤中に坑道(地下空洞)を開削し、さらに
この坑道の下に深さ7500mm、直径1500mm程度の上
記キヤニスター埋設用の坑井(小孔)を堀削す
る。
(b) Conventional technology Conventionally, the method of burying airtight containers (hereinafter referred to as canisters) containing radioactive waste has been to bury tunnels (underground cavities) at a depth of 500 to 1000 m in rock such as granite, rock salt, shale, etc. After excavation, a well (small hole) for burying the canister with a depth of 7,500 mm and a diameter of about 1,500 mm is dug below this tunnel.

そして、この坑井の内側を粘土鉱物の例えば圧
縮ベントナイトで囲み、その中に長さ4500mm、直
径800mm程度の円筒形の上記キヤニスターを挿入
し、該キヤニスターの上に圧縮ベントナイトを置
き、更にその上に通常のベントナイトを遮閉材と
して載せて完全に外部との接触をなくした後、最
終的には粉状のベントナイトを坑道全体に充填す
る方法が一般に行なわれている。
Then, the inside of this well is surrounded with clay mineral such as compressed bentonite, and the above-mentioned cylindrical canister with a length of 4,500 mm and a diameter of about 800 mm is inserted into the well, compressed bentonite is placed on top of the canister, and then Generally, the tunnel is covered with ordinary bentonite as a shielding material to completely eliminate contact with the outside, and then the entire tunnel is finally filled with powdered bentonite.

しかしながら、このような従来法においては放
射性廃棄物を収納したキヤニスター(見掛比重が
8.18〜9.73)と充填材のベントナイト(見掛比重
約2)との比重差が大きいため、キヤニスターを
包む圧縮ベントナイトが流動する可能性があり、
これによりキヤニスターがベントナイト中を沈下
移動して岩盤と直接接触し、岩盤中の水を通して
放射能汚染が広がる虞れがあつた。
However, in this conventional method, a canister containing radioactive waste (apparent specific gravity
8.18 to 9.73) and the filler bentonite (apparent specific gravity approximately 2), the compressed bentonite surrounding the canister may flow.
This raised the possibility that the canister would sink through the bentonite and come into direct contact with the bedrock, potentially spreading radioactive contamination through the water in the bedrock.

(ハ) 発明の開示 本発明は、放射性廃棄物をキヤニスターに収納
して地層中に埋蔵処理した際、キヤニスターが遮
閉材であるベントナイト中を沈下移動して直接岩
盤と接触することを防止することができる工法を
提供するものである。
(c) Disclosure of the invention The present invention prevents the canister from sinking and moving through bentonite, which is a shielding material, and coming into direct contact with bedrock when radioactive waste is stored in a canister and buried in a geological formation. This provides a construction method that can be used.

即ち、本発明は、放射性廃棄物を収納した見掛
比重の大きなキヤニスターに土中(ベントナイト
中)におけるフロートの役割を果す不活性ガスを
封入した容器(以下、これをフロートという)を
取付けて見掛比重を周囲充填材のベントナイトと
同等もしくはこれに接近した値とし、これにより
ベントナイト中でのキヤニスターの沈下移動を防
止するものである。
That is, the present invention involves attaching a container filled with an inert gas (hereinafter referred to as a float) that acts as a float in the soil (in bentonite) to a canister containing radioactive waste and having a large apparent specific gravity. The hanging specific gravity is set to a value equal to or close to that of the surrounding filler bentonite, thereby preventing the canister from sinking and moving in the bentonite.

地層中で固体物質が流体のような性質を示すと
いうことは、一般的には受入れ難いことである
が、地質学的には証明される現象である。
Although it is generally difficult to accept that solid substances exhibit fluid-like properties in geological formations, it is a geologically proven phenomenon.

即ち、我国においては食塩といえば海水から採
取る方法が取られているが、アメリカやソ連、ヨ
ーロツパ諸国では岩塩を採堀して供給される。こ
の岩塩はドーム状あるいは背斜の形をしており、
地下数Kmに位置する岩塩層がその上位に位置する
堆積岩を貫いて上がつて来たものである(これを
ダイヤピール構造という)。
In other words, in Japan, salt is extracted from seawater, but in the United States, the Soviet Union, and European countries, rock salt is mined and supplied. This rock salt has a dome or anticline shape,
This is a rock salt layer located several kilometers underground that has risen through the overlying sedimentary rock (this is called the diamond peel structure).

この生成原因としては種々の説があつたが、現
在では次のように解釈されている。即ち、固体の
岩塩の上を被覆する堆積物の密度が岩塩の密度よ
り大きければ、ただそれだけで岩塩ドームが発達
し、岩塩ドームはその軽さに基づく浮力によつて
浮上がるのであつて、それ以外の圧縮力を必要と
しない。
There have been various theories as to the cause of this phenomenon, but it is currently interpreted as follows. In other words, if the density of the sediment covering solid rock salt is greater than the density of rock salt, that alone will cause a rock salt dome to develop, and the rock salt dome will float due to its buoyancy due to its lightness. No other compression force is required.

これと同様の現象が、我国の黒鉱鉱床の中でも
石膏の生成形態として数多く見受けられる。黒鉱
鉱床は第三期中新世の酸性火山活動によつて生じ
た海底噴気堆積性鉱床であり、下位から上位に向
つて白色流紋岩又は下磐石英安山岩、硅鉱(鉱体
の周辺部では石膏)、黄鉱、黒鉱、泥岩または凝
灰岩という累体構造を示している。
A phenomenon similar to this can be seen in many forms of gypsum in Japan's black ore deposits. The Kuroko deposit is a submarine fumarole deposit produced by acidic volcanic activity during the Tertiary Miocene. From the lower to the upper part, it consists of white rhyolite, Shimowaite andesite, and silica (the surrounding area of the ore body). It shows a formation structure of gypsum), yellow ore, black ore, mudstone, or tuff.

この場合、石膏はその下盤面では地層と平行面
となつているが、黒鉱鉱床の上盤側ではドーム状
に盛り上り、母岩の層理を切つていのが見られ
る。
In this case, the lower part of the gypsum is parallel to the strata, but the upper part of the black ore deposit is raised in a dome shape and can be seen cutting through the bedding of the host rock.

この特徴ある形態を生成せしめた原因は、岩塩
ドームと同じか又は別の要因によるかは明確でな
いが、少なくとも石膏が周囲岩石を押し上げて貫
入しているのは事実である。
It is not clear whether the cause of this distinctive form is the same as that of the salt dome or a different factor, but it is a fact that at least the gypsum is pushing up and penetrating the surrounding rock.

また、同様に黒鉱鉱床中には別の興味のある現
象も見られる。即ち、層状に堆積した黒鉱(比重
4.5)が圧密を受けて固化した後、広域的な摺曲
作用や貫入岩の貫入による変形を受けると、硬い
黒鉱はブーデン現象を起し、ソーセージを縦に連
ねたような形でブロツク化してしまい、そのちぎ
れた部分には周囲の凝灰岩や粘土が流動して埋め
られている現象が確かめられている。
Similarly, another interesting phenomenon is observed in black ore deposits. In other words, black ore deposited in layers (specific gravity
After 4.5) is consolidated and solidified, it undergoes deformation due to wide-area sliding action or intrusion of intrusive rocks, causing the hard black ore to undergo a budden phenomenon, forming blocks in the shape of vertical sausages. It has been confirmed that the surrounding tuff and clay are flowing and filling the torn parts.

しかも、この場合の凝灰岩や粘土は、鉱床の中
心部においては主としてセリサイト(又はセリサ
イトとモンモリナイトの混合層)と緑泥岩から成
つているが、周辺部では主としてモンモリナイト
(一部沸石)より成つており、このモンモリナイ
トは本発明に用いる充填材としてのベントナイト
(即ち、モンモリナイトを主成分として、一般に
石英、クリストバラスト、沸石、長石などを含む
粘土状物質の総称)とほぼ同様な組成を示すもの
である。
Moreover, in this case, the tuff and clay are mainly composed of sericite (or a mixed layer of sericite and montmorinite) and chlorite in the center of the ore deposit, but in the periphery they are mainly composed of montmorinite (partially zeolite). This montmorinite has almost the same composition as bentonite (i.e., a general term for a clay-like substance whose main component is montmorinite and generally includes quartz, cristoballast, zeolite, feldspar, etc.), which is used as a filler in the present invention. It is.

即ち、上記の如く地層中においては固体物質が
流動することを示しており、放射性廃棄物を処理
するに当り、充填材として使用される圧縮ベント
ナイトも流動する可能性があることを意味してい
る。
In other words, this indicates that solid substances flow in the geological formations as described above, and it also means that compressed bentonite, which is used as a filler when processing radioactive waste, may also flow. .

従つて、従来の工法によれば、放射性廃棄物を
収納したキヤニスター(見掛比重8.18〜9.73)と
充填材の圧縮ベントナイト(見掛比重約2)の比
重差により、いずれキヤニスターがベントナイト
中に沈み込み、岩盤と接触して岩盤中の水により
放射能がキヤニスター外へ漏れ出す危険が充分考
えられるのである。
Therefore, according to the conventional construction method, the canister eventually sinks into the bentonite due to the difference in specific gravity between the canister containing radioactive waste (apparent specific gravity 8.18 to 9.73) and the compressed bentonite filler (apparent specific gravity approximately 2). There is a strong possibility that radioactivity may leak out of the canister due to the water in the rock that comes into contact with the canister.

しかも、地震等によりキヤニスターを挿入した
坑井が揺り動かされれば、この流動が更に促進さ
れることも充分考えられる。
Moreover, if the well into which the canister is inserted is shaken due to an earthquake or the like, it is highly conceivable that this flow will be further promoted.

そこで、キヤニスターとその周囲に充填した粘
土鉱物(ベントナイト)の見掛比重値を接近させ
れば、粘土鉱物が流動してもキヤニスターが沈下
移動することはないので、本発明では不活性ガス
を封入した容器フロートを該キヤニスターに取付
けることによりこれを解決したものである。
Therefore, if the apparent specific gravity values of the canister and the clay mineral (bentonite) filled around it are made close to each other, the canister will not sink or move even if the clay mineral flows, so in the present invention, an inert gas is sealed. This problem was solved by attaching a container float to the canister.

以下、本発明の実施例を図を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

(ニ) 実施例 坑内において主坑道(図示せず)から側方に幅
3.3m、高さ4.5mの所要数の水平坑道3をあらか
じめ閉削し、添付図に示す如く該水平坑道3の最
深部に直径1.5m、深さ12.5mのキヤニスター埋
設用坑井4を開削した。
(d) Example In a mine, the width from the main shaft (not shown) to the side.
The required number of horizontal tunnels 3 of 3.3 m and height of 4.5 m are closed in advance, and a canister burial well 4 of 1.5 m in diameter and 12.5 m in depth is drilled in the deepest part of the horizontal shaft 3 as shown in the attached diagram. did.

そこで、まず該坑井4内周壁に粉状のベントナ
イト5を厚さ50mmで塗り、また該坑井4内底には
厚さ0.5mの圧縮ベントナイト6を敷設する。そ
して、坑井4軸心部に0.8m径×4.5m長さのキヤ
ニスター1が挿入できるように坑井4内周壁に沿
つてブロツク状の圧縮ベントナイト6を順次積上
げ、キヤニスター1を上記圧縮ベントナイト6の
内側に挿入し、該キヤニスター1上端には1気圧
のヘリウムガムを封入した1m径×6.494m長さ、
肉厚6mmのステンレス製のフロート2を取付け固
定した。
Therefore, first, powdered bentonite 5 is applied to the inner peripheral wall of the well 4 to a thickness of 50 mm, and compressed bentonite 6 is laid to a thickness of 0.5 m at the inner bottom of the well 4. Then, block-shaped compressed bentonite 6 is sequentially piled up along the inner peripheral wall of the well 4 so that the canister 1 having a diameter of 0.8 m and a length of 4.5 m can be inserted into the 4-axis center of the well. 1 m diameter x 6.494 m length, with 1 atm helium gum sealed in the upper end of the canister 1.
A stainless steel float 2 with a wall thickness of 6 mm was attached and fixed.

キヤニスター1とフロート2との連結には例え
ば油圧ホースの接続具に用いられるのと同様の自
動カツプラー7を用いることができる。
For connecting the canister 1 and the float 2, an automatic coupler 7 similar to that used for hydraulic hose connections can be used, for example.

なお、上記キヤニスター1及びフロート2は水
平坑道3の加背より長いため、水平坑道3から直
角に埋め込むことは不可能である。そこで、主坑
道方面より坑井4の中間部に向つて斜めに開削し
なければならない。そして、坑井4中に上記キヤ
ニスター1及びフロート2を挿入した後、坑井4
を円筒状にいつたん形成し直し、キヤニスター1
と坑井4内周壁の間に圧縮ベントナント6を埋め
込み、更にフロート2と水平坑道3の底面との間
に圧縮ベントナント6を埋めて、キヤニスター1
とフロート2を固定すると共に、総重量22t、見
掛比重が9.7g/cm3あるキヤニスター1を充填材
であるベントナイトと同等の見掛比重2.0に調整
する。
In addition, since the canister 1 and the float 2 are longer than the back of the horizontal tunnel 3, it is impossible to embed them at right angles from the horizontal tunnel 3. Therefore, the excavation must be made diagonally from the direction of the main tunnel toward the middle of the well 4. After inserting the canister 1 and float 2 into the well 4,
Once re-formed into a cylindrical shape, canister 1
A compressed vent nant 6 is buried between the canister 1 and the inner peripheral wall of the well 4, and a compressed vent nant 6 is buried between the float 2 and the bottom of the horizontal tunnel 3.
At the same time, the canister 1, which has a total weight of 22 tons and an apparent specific gravity of 9.7 g/cm 3 , is adjusted to have an apparent specific gravity of 2.0, which is equivalent to the bentonite filler.

このようにして、水平坑道3の奥から主坑道方
向に順次キヤニスター1をフロート2と共に埋設
して行くのである。
In this way, the canisters 1 and the floats 2 are sequentially buried from the back of the horizontal tunnel 3 toward the main shaft.

なお本実施例ではフロート2内へ封入する不活
性ガスとしてHeガスを用いたが、これをNe、
Ar、Kr、Xe、Rn等の不活性ガスあるいは放射
能に影響されないその他のガスを使用してもよ
い。
In this example, He gas was used as the inert gas sealed into the float 2, but this was replaced with Ne,
Inert gases such as Ar, Kr, Xe, Rn or other gases that are not affected by radioactivity may also be used.

また、実施例ではHeガスを1気圧で封入した
が、圧気圧は随意調整できるものであり、フロー
ト2の大きさもキヤニスター1の重量(見掛比
重)に合せて決定される。
Further, in the embodiment, He gas was sealed at 1 atm, but the pressure can be adjusted at will, and the size of the float 2 is also determined according to the weight (apparent specific gravity) of the canister 1.

さらに、キヤニスター1及びフロート2の材質
としてはステンレスを用いたが、鉛や鉛合金等一
般の放射性遮閉材を用いることも当然に可能であ
る。
Furthermore, although stainless steel is used as the material for the canister 1 and the float 2, it is naturally possible to use general radioactive shielding materials such as lead and lead alloys.

また、キヤニスター1とフロート2の組合せ形
態として、上記実施例ではキヤニスター1の上部
に不活性ガス封入フロート2を連結したが、フロ
ート2を逆にキヤニスター1の下部に接続し、あ
るいはフロート2中にキヤニスター1を組込む形
態でもよい。また、坑井への埋設の際にはキヤニ
スターは縦にして坑井に挿入するが、水平坑道や
斜坑では横にして埋めることは当然である。
In addition, as a combination of the canister 1 and the float 2, in the above embodiment, the float 2 filled with inert gas is connected to the upper part of the canister 1, but the float 2 may be connected to the lower part of the canister 1, or the float 2 may be connected to the lower part of the canister 1, or A configuration in which the canister 1 is incorporated may also be used. Furthermore, when burying canisters into a well, the canister is inserted vertically into the well, but in horizontal or inclined shafts, it is natural to bury the canister horizontally.

(ホ) 発明の効果 上述のように、本発明工法によれば、フロート
の使用によりキヤニスターの周囲充填材であるベ
ントナイトとキヤニスターとの見掛比重値をほぼ
同等にすることができるので、充填材であるベン
トナイトが坑井中で流動してキヤニスターが沈下
あるいは移動するような可能性はなく、放射性廃
棄物を収納したキヤニスターが岩盤と直接接触す
る危険性もなくなり、超長期間(一千年以上)放
射能汚染を防止することができ、安全面での効果
に大なるものがある。
(e) Effects of the invention As mentioned above, according to the construction method of the present invention, the apparent specific gravity values of bentonite, which is the surrounding filler of the canister, and the canister can be made almost equal by using the float, so that the filler There is no possibility that the canister will sink or move due to bentonite flowing in the well, and there is no risk that the canister containing radioactive waste will come into direct contact with the bedrock, and it will last for an extremely long period of time (more than 1,000 years). It can prevent radioactive contamination and has great safety effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明工法を施工した状態の断面説明図で
ある。 符号説明、1……キヤニスター(放射性廃棄物
収納密閉容器) 2……不活性ガス封入フロート
3……水平坑道 4……坑井 5……粉状ベン
トナイト 6……圧縮ベントナイト 7……連結
具。
The figure is an explanatory cross-sectional view of a state in which the construction method of the present invention has been applied. Description of symbols: 1... Canister (radioactive waste storage sealed container) 2... Inert gas filled float 3... Horizontal tunnel 4... Well 5... Powdered bentonite 6... Compressed bentonite 7... Connector.

Claims (1)

【特許請求の範囲】[Claims] 1 地下空洞に開削した坑井に放射性廃棄物を収
納した密閉容器を挿入してその周囲に充填材を充
填する埋設工法において、上記密閉容器にフロー
トを取付けることにより周囲充填材と見掛比重を
同等もしくは接近させるようにしたことを特徴と
する放射性廃棄物収納容器の埋設工法。
1 In a burial method in which a sealed container containing radioactive waste is inserted into a well excavated in an underground cavity and filler is filled around the container, a float is attached to the sealed container to reduce the apparent specific gravity of the container compared to the surrounding filler. A method for burying radioactive waste storage containers, characterized by burying them at the same level or close to each other.
JP18454687A 1987-07-23 1987-07-23 Burial of radioactive waste container Granted JPS6428600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18454687A JPS6428600A (en) 1987-07-23 1987-07-23 Burial of radioactive waste container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18454687A JPS6428600A (en) 1987-07-23 1987-07-23 Burial of radioactive waste container

Publications (2)

Publication Number Publication Date
JPS6428600A JPS6428600A (en) 1989-01-31
JPH0562960B2 true JPH0562960B2 (en) 1993-09-09

Family

ID=16155093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18454687A Granted JPS6428600A (en) 1987-07-23 1987-07-23 Burial of radioactive waste container

Country Status (1)

Country Link
JP (1) JPS6428600A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817616B1 (en) * 2006-10-02 2008-03-31 한국원자력연구원 Spent nuclear fuel's buffer block and storage system using the block

Also Published As

Publication number Publication date
JPS6428600A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
Field et al. Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada
Cox et al. Hotspot origin of the Mississippi embayment and its possible impact on contemporary seismicity
Hogan et al. Magma traps and driving pressure: consequences for pluton shape and emplacement in an extensional regime
EP0417881B1 (en) Method of sealing permeable unconsolidated materials
US6238138B1 (en) Method for temporary or permanent disposal of nuclear waste using multilateral and horizontal boreholes in deep islolated geologic basins
US4580925A (en) Pervious surround method of waste disposal
CN106782735B (en) Nuke rubbish and other kinds of hazardous waste it is buried
CN103718249A (en) Waste burial method and waste storage container
US5202522A (en) Deep well storage of radioactive material
US4488834A (en) Method for using salt deposits for storage
CN112709576A (en) Water-rich stratum structure with upper soft part and lower hard part and construction method
Ege Mechanisms of surface subsidence resulting from solution extraction of salt
McAdoo et al. Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex
Ishihara et al. Liquefaction-associated ground damage during the Vrancea earthquake of March 4, 1977
US5245118A (en) Collapsible waste disposal container and method of disposal of waste in subduction zone between tectonic plates
JP4356252B2 (en) Geological disposal facility and disposal tunnel segment
JPH0562960B2 (en)
EP0483110A3 (en) Method and device for making a well
US5022788A (en) Subductive waste disposal method
Abdullah et al. Sinkhole investigation: An on-going case study in Kuwait
Pettinga Mud volcano eruption within the emergent accretionary Hikurangi margin, southern Hawke's Bay, New Zealand
RU2132467C1 (en) Method for isolation of underground toxic waste storage in salt-bearing rock mass
JP4253783B2 (en) Geological disposal facility and its construction method
JP4225245B2 (en) Underwater tunnel structure
US5533833A (en) Bulk backfill in situ liner for hard rock environment