JPH0562894B2 - - Google Patents
Info
- Publication number
- JPH0562894B2 JPH0562894B2 JP351086A JP351086A JPH0562894B2 JP H0562894 B2 JPH0562894 B2 JP H0562894B2 JP 351086 A JP351086 A JP 351086A JP 351086 A JP351086 A JP 351086A JP H0562894 B2 JPH0562894 B2 JP H0562894B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- continuous carbon
- composite material
- fiber composite
- fiber bundle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 73
- 239000004917 carbon fiber Substances 0.000 claims description 73
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 64
- 239000002131 composite material Substances 0.000 claims description 40
- 229920005672 polyolefin resin Polymers 0.000 claims description 15
- -1 polypropylene Polymers 0.000 claims description 13
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 4
- 239000005042 ethylene-ethyl acrylate Substances 0.000 claims description 4
- 229920001903 high density polyethylene Polymers 0.000 claims description 4
- 239000004700 high-density polyethylene Substances 0.000 claims description 4
- 229920001684 low density polyethylene Polymers 0.000 claims description 4
- 239000004702 low-density polyethylene Substances 0.000 claims description 4
- 239000011800 void material Substances 0.000 claims description 4
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 19
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 230000000704 physical effect Effects 0.000 description 13
- 238000000465 moulding Methods 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 10
- 229920000573 polyethylene Polymers 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000004513 sizing Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000011208 reinforced composite material Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
産業上の利用分野
本発明は、一般には炭素繊維複合材料に関し、
特に、連続炭素繊維とポリオレフイン樹脂との複
合材料に関するものである。本発明に係る炭素繊
維複合材料は、炭素繊維束の取扱い性に優れ、且
つ屈曲性が良く賦形化が良好であるという特性を
有し、特に土木、ケーブルの補強用材料として好
適に使用し得、又後加工特性が良いことから種々
の用途に使用し得るものである。
従来の技術及び問題点
炭素繊維を素材とした、軽量で且つ高強度、高
弾性率の複合材料が種々の分野で注目を浴び、
様々な炭素繊維強化複合材料が開発されている。
しかしながら、これら従来の炭素繊維強化複合
材料は、複雑な形状の樹脂複合体を製造するべ
く、射出成形法、圧縮成形法等に好適なように熱
可塑性樹脂又は熱硬化性樹脂に、その充填物とし
炭素繊維を混入したものであり、従つて炭素繊維
は短繊維及びチヨツプド繊維として使用され、本
来炭素繊維が有する連続長繊維の強度を十分には
発現していない。
従来、連続炭素繊維は、強度並びに軽量性から
各種スポーツ用品、航空宇宙用構造材及び各種部
品等に用いられてきたが、斯る物品は細径の連続
炭素繊維モノフイラメントを500〜100000本束ね
て繊維束を形成し、該繊維束を単独で又は複数本
束ねて一緒に樹脂浴中に浸漬し、該繊維束に完全
に樹脂を含浸させ、その後所定の形に賦形し、完
全に硬化させる製造方法にて作製された。このよ
うな製造方法は、複雑な製造工程及び糸扱いの難
しさが問題とされ、又製造コストが必然的に高く
なり、該炭素繊維複合材料の用途範囲が限定され
ていた。
又、従来プルトルージヨン法等により、不飽和
ポリエステル樹脂、エポキシ樹脂等の熱硬化性樹
脂を用いて作られる樹脂含浸連続炭素繊維複合材
料は屈曲性能が劣つており、繊維が折れるか又は
屈曲後賦形せずに繊維束が戻つてしまうかのいず
れかであつて。そのために、連続炭素繊維複合材
料の用途として土木、建築、各種ケーブル補強
材、各種工業用部品等が期待されているが、十分
な成果を得るまでには至つていない。又、特に土
木、建築の分野では、未硬化樹脂含浸連続炭素繊
維を賦形化し、その後硬化させる従来の工法で
は、現場施行が難しく且つ又大規模製品を効率的
に硬化させるのが難しい等の理由により連続炭素
繊維を幅広く用いることはなされていない。
本発明者等は、連続炭素繊維を容易に賦形化で
き、且つコスト的にも安価なものを開発する為に
鋭意検討を行なつた結果、連続炭素繊維ストラン
ドを熱可塑性樹脂としてポリオレフイン樹脂にて
比較的薄肉にて被覆化することにより糸扱いが極
めて容易で且つ屈曲しても折れることのない連続
炭素繊維束が得られることを見出した。
更に、本発明者等は、研究実験を行なつた結
果、連続炭素繊維複合材料の屈曲性能及び糸扱い
性は、連続炭素繊維束が繊維束内に所定の空〓を
有することが重要であることを見出した。
本発明は上記新規な知見に基ずきなされたもの
である。
発明の目的
本発明の目的は、糸扱いが極めて容易で且つ屈
曲特性に優れた連続炭素繊維複合材料、つまり連
続炭素繊維とポリオレフイン樹脂との複合材料を
提供することである。
発明の要約
要約すれば、本発明に従えば、連続炭素繊維束
をポリオレフイン樹脂にて被覆して成る連続炭素
繊維複合材料が提供される。本発明によれば、連
続炭素繊維束は空〓率が5%以上とされる。
次に、本発明に係る連続炭素繊維複合材料につ
いて更に詳しく説明する。該連続炭素繊維複合材
料は次の如くにして製造し得る。
本発明に係る連続炭素繊維複合材料を製造する
に際し、細径の連続炭素繊維モノフイラメントを
束にした繊維束が使用される。炭素繊維束として
は市場に入手し得るピツチ系、PAN系等の種々
の炭素繊維並びに黒鉛繊維を使用し得る。連続炭
素繊維束は直径5〜15μmのモノフイラメントを
500〜100000本束ねて用いることができるが、本
発明では繊維束への樹脂の薄肉被覆を考慮する
と、モノフイラメント1000〜30000本を束ねて作
製された繊維束が好適である。
又、繊維束に対しては、取り扱いを容易とし劣
化を防止するために、サイジング(サイズ剤処
理)が施されるれるが、サイズ剤は通常の任意の
ものを使用することができ、エポキシ系、エステ
ル系等モノフイラメントの集束性の良いものが選
択される。又、サイジング処理量としては0.5〜
5%、好ましくは1〜3%とされる。
上記連続炭素繊維束は、第1図に図示されるよ
うに、繊維束の供給源1から樹脂含浸槽2へと連
続的に供給される。樹脂含浸槽2内には樹脂含浸
溶液Lが収納されており、該溶液は、ポリオレフ
イン樹脂を有機溶剤に溶解して調製されるのが好
適である。
又、ポリオレフイン樹脂としては、高密度ポリ
エチレン(HDPE)、低密度ポリエチレン
(LDPE)、直鎖状低密度ポリエチレン
(LLDPE)、エチレンビニルアセテート(EVA)、
エチレンエチルアクリレート(EEA)、ポリプロ
ピレン(PP)、ポリプロピレン共重合体等を使用
することができる。有機溶剤としては、キシレ
ン、トルエン、デカリン、テトラリン、ヘプタ
ン、オクタン、デカン等を使用することができ
る。
連続炭素繊維束は、上記含浸槽2内を所定の速
度、一般に0.1〜50m/minにて通糸され、繊維
束表面から内部へと樹脂が含浸される。該繊維束
は乾燥炉5へと送給される。該乾燥炉5にて溶媒
は除去され本発明に係るポリオレフイン樹脂が薄
肉状で被覆された連続炭素繊維複合材料が形成さ
れる。
上述の構造とされる本発明に係る連続炭素繊維
複合材料は、比較的安価で且つ適度な剛性を有
し、更に耐摩耗、繰り返し曲げ疲労性が良いとい
う特徴を有する。
ポリオレフイン樹脂の連続炭素繊維束への薄肉
被覆方法としては、上記含浸方法以外に、第2図
に図示するように、クロスヘツドダイ11を有す
る押出し機10を用いる方法もある。該方法によ
ると、溶融したポリオレフイン樹脂をダイ11中
へと押出し機10にて注入しながら連続炭素繊維
束を通糸することによつて所定断面形状を有した
連続炭素繊維複合材料が得られる。
上記いずれの方法によつても、本発明の連続炭
素繊維複合材料においては、連続炭素繊維束に付
着する樹脂付着量は、十分な屈曲性と糸のバラケ
が生じない複合材料を提供する上から重要であ
り、好ましくは炭素繊維に対して20〜1000wt%、
更に好しくは30〜300wt%である。又、本発明者
等の研究によると、樹脂が完全に繊維束内部に浸
透して完全含浸の状態では十分な屈曲性を得るこ
とができず、繊維束内部にはある程度空〓を保持
することが好しいことを見出した。下記式で示さ
れる空〓率(ε)を用いると、該空〓率は、5%
以上が好しく、更に好ましくは5〜50%である。
ε=[1{(1−w)/dc+w/dp}dr]
×100%
ここで、dc;炭素繊維の密度
dp;ポリオレフイン樹脂の密度
dr;複合材の密度
w;ポリオレフイン樹脂重量分率
であり、ポリオレフイン樹脂重量分率(w)は焼
成炉にて窒素ガス雰囲気下800℃、12時間焼成す
ることによりその重量減少から求めた。
発明の効果
本発明によるポリオレフイン被覆連続炭素繊維
ストランドは糸扱い性に優れ且つ屈曲性に優れて
おり、後加工が容易に達成され、従つて各種用途
に幅広く使用し得るという特徴を有する。
本発明に係る炭素繊維複合材料のいくつかの代
表的用途を例示すると、
円筒状の棒、パイプ等に巻きつけることが可
能でり、管材、ケーブルの補強等に使用し得
る。
2つ折りが可能であり、布、マツト、或は孔
状部分への充填等に好適に使用し得る。
繊維化が容易で裁断しても、縁部がバラケる
ことがなく、繊物等に加工し、クロス、マツト
等に広く使用される。
組ひも、ロープ状の加工が容易に行な得、又
上述のように裁断しても切断部がバラケること
がなく、海洋、土木、建築、産業材料用の組ひ
も、ロープ等に好適に使用される。
次に本発明に係る連続炭素繊維複合材料を実施
例について更に説明する。
実施例 1
本実施例においては、連続炭素繊維として、東
レ社製T−300−6000−50Bを使用しポリオレフ
イン樹脂としてポリエチレン(NUC−9025)を
使用した。又、本実施例では、第2図に示すクロ
スヘツドダイ11を有する押出し機10を用い、
溶融した前記ポリエチレンをダイ11中へと押出
し機10にて注入しながら前記連続炭素繊維束を
通糸することによつて連続炭素繊維のポリエチレ
ン被覆を行なつた。この時、クロスヘツドダイ1
1の径は1mm、ダイ温度を230℃、炭素繊維束の
通糸速度を20m/minとした。成形された連続炭
素繊維複合材料の径は1.2mmであり、その断面形
状は大略円形であつた。物性は表1に示す通りで
あつた。
実施例 2
クロスヘツドダイの径を2mmとした他は実施例
1と同様に成形を行なつた。成形された連続炭素
繊維複合材料の径は2.1mmであり、その断面形状
は大略円形であつた。物性は表1に示す通りであ
つた。
実施例 3
通糸速度を60m/minとした他は実施例1と同
様に成形を行なつた。成形された連続炭素繊維複
合材料の径は1.0mmであり、その断面形状は大略
円形であつた。物性は表1に示す通りであつた。
実施例 4
ポリエチレンの代りにエチレンビニルアセテー
ト共重合体(NUC−8450)を用いた。他は実施
例1と同様に成形を行なつた。成形された連続炭
素繊維複合材料の径は1.1mmであり、その断面形
状は大略円形であつた。物性は表1に示す通りで
あつた。
実施例 5
ポリエチレンの代りにエチレンエチルアクリレ
ート共重合体(DPDJ−6182)を用いた。他は実
施例1と同様に成形を行なつた。成形された連続
炭素繊維複合材料の径は1.1mmであり、その断面
形状は大略円形であつた。物性は表1に示す通り
であつた。
実施例 6
ポリエチレンの代りにポリプロピレン(J−
209)を用い、ダイ温度を245℃とした。他は実施
例1と同様に成形を行なつた。成形された連続炭
素繊維複合材料の径は1.2mmであり、その断面形
状は大略円形であつた。物性は表1に示す通りで
あつた。
比較例 1
クロスヘツドダイの径を3.0mmとした以外は実
施例1と同様に成形を行なつた。成形された連続
炭素繊維複合材料の径は3.1mmであり、その断面
形状は大略円形であつた。物性は表1に示す通り
であつた。
実施例 7
本実施例は第1図に示す含浸装置を用いて行な
つた。ポリオレフイン樹脂としてはポリエチレン
(NUC−9025)を用い、該ポリエチレンをキシレ
ンに120℃で溶解し20wt%の樹脂含浸溶液Lを調
製した。該溶液を含浸槽2に入れ、120℃に加温
し、実施例1で使用したと同じ炭素繊維束を2
m/minで通糸した。成形品の断面形状は楕円形
状とされ、長径は1.5mm、短径は1.1mmであり、物
性は表2に示す通りであつた。
実施例 8
ポリエチレンの代りにエチレンビニルアセテー
ト共重合体(DQDJ−7197)を用いた。他は実施
例7と同様に成形を行なつた。物性は表2に示す
通りであつた。
実施例 9
ポリエチレンの代りにエチレンエチルアクリレ
ート共重合体(NUC−6070)を用いた。他は実
施例7と同様にして成形を行なつた。物性は表2
に示す通りであつた。
比較例 2
ポリエチレンの代りにビニルエルテル樹脂(リ
ポキシR−802)を用い、含浸槽2の後に引抜ダ
イを設置し、引抜成形を行なつた。引抜ダイの径
は1mmとされた、他は実施例7と同様にして成形
を行なつた。成形された連続炭素繊維複合材料の
断面形状は円形状とされ、径は1mmであり、物性
は表2に示す通りであつた。
比較例 3
ビニルエステル樹脂の代りにエポキシ樹脂(エ
ピコート828)を用い、他は比較例2と同様にし
て引抜き成形を行なつた。成形された連続炭素繊
維複合材料の断面形状は円形状とされ、径は1mm
であり、物性は表2に示す通りであつた。
比較例 4
実施例9で得られた成形品を再度比較例2で使
用した引抜ダイを用い引抜成形を行なつた。成形
された連続炭素繊維複合材料の断面形状は円形状
とされ、径は1mmであり、物性は表2に示す通り
であつた。
表1,2において、引張強度及び屈曲性は次の
如くにして測定された。
引張強度は、第3図及び第4図に図示されるよ
うに、二つのローラに成形された連続炭素繊維複
合材料の両端を巻付け、インストロン社製引張試
験機により破断強度を測定した。表示法としては
破断時の絶対強度をもつて表した。
屈曲性は、第5図に図示されるように、直径80
mmの紙管に一端を粘着テープにて固定し、数回巻
きつけ、他端を50cm垂らした時に巻戻りが起きな
いものを屈曲性良好(○)とし、巻戻るものを不
良(△)巻き付ける時に折れる等巻き付けができ
ないものを(×)として評価した。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention generally relates to carbon fiber composite materials.
In particular, it relates to a composite material of continuous carbon fiber and polyolefin resin. The carbon fiber composite material according to the present invention has characteristics such as excellent handling of carbon fiber bundles, good flexibility, and good shaping, and is particularly suitable for use as a reinforcing material for civil engineering and cables. It can be used for various purposes due to its good properties and post-processing characteristics. Conventional technologies and problems Composite materials made of carbon fiber that are lightweight, have high strength, and have a high modulus of elasticity have attracted attention in various fields.
Various carbon fiber reinforced composite materials have been developed. However, in order to manufacture resin composites with complex shapes, these conventional carbon fiber reinforced composite materials have been developed by adding fillers to thermoplastic resins or thermosetting resins suitable for injection molding, compression molding, etc. Therefore, carbon fibers are used as short fibers and chopped fibers, and do not fully exhibit the strength of continuous long fibers that carbon fibers originally have. Conventionally, continuous carbon fibers have been used for various sporting goods, structural materials for aerospace, and various parts due to their strength and lightness, but such products are made by bundling 500 to 100,000 small-diameter continuous carbon fiber monofilaments. The fiber bundles are immersed singly or in a plurality of bundles together in a resin bath to completely impregnate the fiber bundles with resin, and then shaped into a predetermined shape and completely cured. It was manufactured using the following manufacturing method. Such a manufacturing method has problems with complicated manufacturing steps and difficulty in handling the yarn, and also inevitably increases manufacturing costs, limiting the scope of use of the carbon fiber composite material. In addition, resin-impregnated continuous carbon fiber composite materials conventionally made using thermosetting resins such as unsaturated polyester resins and epoxy resins by the pultrusion method etc. have poor bending performance, and the fibers may break or break after bending. Either the fiber bundle is returned without being shaped. For this reason, continuous carbon fiber composite materials are expected to be used in civil engineering, construction, various cable reinforcing materials, various industrial parts, etc., but sufficient results have not yet been achieved. In addition, especially in the fields of civil engineering and construction, the conventional method of forming uncured resin-impregnated continuous carbon fiber and then curing it is difficult to implement on-site, and it is also difficult to efficiently cure large-scale products. For these reasons, continuous carbon fibers have not been widely used. The inventors of the present invention have conducted extensive research in order to develop continuous carbon fibers that can be easily shaped and are also inexpensive. It has been found that by coating the yarn with a relatively thin wall, a continuous carbon fiber bundle can be obtained which is extremely easy to handle and does not break even when bent. Furthermore, as a result of research experiments, the present inventors found that for the bending performance and yarn handling properties of continuous carbon fiber composite materials, it is important that the continuous carbon fiber bundle has a predetermined void within the fiber bundle. I discovered that. The present invention has been made based on the above-mentioned novel findings. OBJECT OF THE INVENTION An object of the present invention is to provide a continuous carbon fiber composite material that is extremely easy to handle and has excellent bending properties, that is, a composite material of continuous carbon fibers and polyolefin resin. SUMMARY OF THE INVENTION In summary, according to the present invention, there is provided a continuous carbon fiber composite material comprising a continuous carbon fiber bundle coated with a polyolefin resin. According to the present invention, the continuous carbon fiber bundle has a void ratio of 5% or more. Next, the continuous carbon fiber composite material according to the present invention will be explained in more detail. The continuous carbon fiber composite material can be manufactured as follows. When manufacturing the continuous carbon fiber composite material according to the present invention, a fiber bundle made of small-diameter continuous carbon fiber monofilaments is used. As the carbon fiber bundle, various carbon fibers such as pitch type and PAN type carbon fibers and graphite fibers which are available on the market can be used. The continuous carbon fiber bundle consists of monofilament with a diameter of 5 to 15 μm.
Although 500 to 100,000 monofilaments can be bundled together for use, in the present invention, considering the thin coating of resin on the fiber bundle, a fiber bundle made by bundling 1,000 to 30,000 monofilaments is suitable. In addition, fiber bundles are subjected to sizing (sizing agent treatment) in order to make them easier to handle and prevent deterioration, but any ordinary sizing agent can be used, and epoxy-based , ester-based monofilaments with good convergence properties are selected. Also, the sizing processing amount is 0.5~
5%, preferably 1 to 3%. The continuous carbon fiber bundle is continuously supplied from a fiber bundle supply source 1 to a resin impregnation tank 2, as shown in FIG. A resin impregnation solution L is stored in the resin impregnation tank 2, and the solution is preferably prepared by dissolving a polyolefin resin in an organic solvent. In addition, polyolefin resins include high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene vinyl acetate (EVA),
Ethylene ethyl acrylate (EEA), polypropylene (PP), polypropylene copolymer, etc. can be used. As the organic solvent, xylene, toluene, decalin, tetralin, heptane, octane, decane, etc. can be used. The continuous carbon fiber bundle is threaded through the impregnating tank 2 at a predetermined speed, generally 0.1 to 50 m/min, so that the resin is impregnated from the surface of the fiber bundle to the inside. The fiber bundle is fed to a drying oven 5. The solvent is removed in the drying oven 5, and a continuous carbon fiber composite material coated with a thin layer of the polyolefin resin according to the present invention is formed. The continuous carbon fiber composite material according to the present invention having the above-mentioned structure is relatively inexpensive, has appropriate rigidity, and is characterized by good wear resistance and repeated bending fatigue resistance. As a method for thinly coating a continuous carbon fiber bundle with polyolefin resin, in addition to the above-mentioned impregnation method, there is also a method using an extruder 10 having a crosshead die 11, as shown in FIG. According to this method, a continuous carbon fiber composite material having a predetermined cross-sectional shape is obtained by threading a continuous carbon fiber bundle while injecting a molten polyolefin resin into a die 11 using an extruder 10. In any of the above methods, in the continuous carbon fiber composite material of the present invention, the amount of resin attached to the continuous carbon fiber bundle is determined to be sufficient to provide a composite material with sufficient flexibility and no yarn disintegration. important, preferably 20-1000wt% for carbon fiber,
More preferably, it is 30 to 300 wt%. Furthermore, according to the research conducted by the present inventors, sufficient flexibility cannot be obtained in a state where the resin completely penetrates into the fiber bundle and is completely impregnated, and a certain amount of voids are retained inside the fiber bundle. I found that it is good. Using the vacancy rate (ε) shown by the following formula, the vacancy rate is 5%
It is preferably 5% to 50%, more preferably 5% to 50%. ε=[1{(1-w)/dc+w/dp}dr] ×100% Where, dc: Density of carbon fiber dp: Density of polyolefin resin dr: Density of composite material w: Weight fraction of polyolefin resin The weight fraction (w) of the polyolefin resin was determined from the weight loss after firing at 800° C. for 12 hours in a nitrogen gas atmosphere in a firing furnace. Effects of the Invention The polyolefin-coated continuous carbon fiber strand according to the present invention has excellent yarn handling properties and excellent flexibility, is easily post-processed, and is therefore characterized in that it can be used in a wide variety of applications. To illustrate some typical uses of the carbon fiber composite material according to the present invention, it can be wrapped around a cylindrical rod, pipe, etc., and can be used for reinforcing pipe materials, cables, etc. It can be folded in two and can be suitably used for filling fabrics, mats, or hole-shaped parts. It is easily made into fibers and the edges do not come apart even when cut, so it is processed into textiles and widely used for cloths, mats, etc. It can be easily processed into braids and ropes, and even when cut as mentioned above, the cut parts do not come apart, making it suitable for braids, ropes, etc. for marine, civil engineering, architecture, and industrial materials. used. Next, examples of the continuous carbon fiber composite material according to the present invention will be further described. Example 1 In this example, T-300-6000-50B manufactured by Toray Industries, Inc. was used as the continuous carbon fiber, and polyethylene (NUC-9025) was used as the polyolefin resin. Further, in this example, an extruder 10 having a crosshead die 11 shown in FIG. 2 is used,
The continuous carbon fibers were coated with polyethylene by passing the continuous carbon fiber bundle through the continuous carbon fiber bundle while injecting the molten polyethylene into a die 11 using an extruder 10. At this time, cross head die 1
The diameter of No. 1 was 1 mm, the die temperature was 230° C., and the threading speed of the carbon fiber bundle was 20 m/min. The diameter of the molded continuous carbon fiber composite material was 1.2 mm, and its cross-sectional shape was approximately circular. The physical properties were as shown in Table 1. Example 2 Molding was carried out in the same manner as in Example 1 except that the diameter of the crosshead die was 2 mm. The diameter of the molded continuous carbon fiber composite material was 2.1 mm, and its cross-sectional shape was approximately circular. The physical properties were as shown in Table 1. Example 3 Molding was carried out in the same manner as in Example 1 except that the threading speed was 60 m/min. The diameter of the molded continuous carbon fiber composite material was 1.0 mm, and its cross-sectional shape was approximately circular. The physical properties were as shown in Table 1. Example 4 Ethylene vinyl acetate copolymer (NUC-8450) was used instead of polyethylene. The molding was otherwise carried out in the same manner as in Example 1. The diameter of the molded continuous carbon fiber composite material was 1.1 mm, and its cross-sectional shape was approximately circular. The physical properties were as shown in Table 1. Example 5 Ethylene ethyl acrylate copolymer (DPDJ-6182) was used instead of polyethylene. The molding was otherwise carried out in the same manner as in Example 1. The diameter of the molded continuous carbon fiber composite material was 1.1 mm, and its cross-sectional shape was approximately circular. The physical properties were as shown in Table 1. Example 6 Polypropylene (J-
209), and the die temperature was 245°C. The molding was otherwise carried out in the same manner as in Example 1. The diameter of the molded continuous carbon fiber composite material was 1.2 mm, and its cross-sectional shape was approximately circular. The physical properties were as shown in Table 1. Comparative Example 1 Molding was carried out in the same manner as in Example 1 except that the diameter of the crosshead die was 3.0 mm. The diameter of the molded continuous carbon fiber composite material was 3.1 mm, and its cross-sectional shape was approximately circular. The physical properties were as shown in Table 1. Example 7 This example was carried out using the impregnating apparatus shown in FIG. Polyethylene (NUC-9025) was used as the polyolefin resin, and the polyethylene was dissolved in xylene at 120°C to prepare a 20 wt % resin impregnation solution L. The solution was placed in impregnation tank 2, heated to 120°C, and the same carbon fiber bundle used in Example 1 was placed in impregnation tank 2.
The thread was threaded at m/min. The cross-sectional shape of the molded product was an ellipse, the major axis was 1.5 mm, the minor axis was 1.1 mm, and the physical properties were as shown in Table 2. Example 8 Ethylene vinyl acetate copolymer (DQDJ-7197) was used instead of polyethylene. The molding was otherwise carried out in the same manner as in Example 7. The physical properties were as shown in Table 2. Example 9 Ethylene ethyl acrylate copolymer (NUC-6070) was used instead of polyethylene. The molding was otherwise carried out in the same manner as in Example 7. Physical properties are shown in Table 2
It was as shown in. Comparative Example 2 A vinyl ether resin (Lipoxy R-802) was used instead of polyethylene, a pultrusion die was installed after the impregnation tank 2, and pultrusion molding was performed. Molding was carried out in the same manner as in Example 7 except that the diameter of the drawing die was 1 mm. The cross-sectional shape of the molded continuous carbon fiber composite material was circular, the diameter was 1 mm, and the physical properties were as shown in Table 2. Comparative Example 3 Pultrusion molding was carried out in the same manner as in Comparative Example 2 except that an epoxy resin (Epicote 828) was used instead of the vinyl ester resin. The cross-sectional shape of the molded continuous carbon fiber composite material is circular, and the diameter is 1 mm.
The physical properties were as shown in Table 2. Comparative Example 4 The molded product obtained in Example 9 was pultruded again using the pultrusion die used in Comparative Example 2. The cross-sectional shape of the molded continuous carbon fiber composite material was circular, the diameter was 1 mm, and the physical properties were as shown in Table 2. In Tables 1 and 2, tensile strength and flexibility were measured as follows. The tensile strength was determined by winding both ends of the continuous carbon fiber composite material around two rollers, as shown in FIGS. 3 and 4, and measuring the breaking strength using a tensile tester manufactured by Instron. The method of display is the absolute strength at break. The flexibility is as shown in Figure 5, with a diameter of 80 mm.
Fix one end of a mm paper tube with adhesive tape, wrap it several times, and let the other end hang down for 50 cm. If it does not unwind, it is considered to have good flexibility (○), and if it rolls back, it is marked as poor (△). Items that could not be wrapped because they sometimes broke were rated as (x).
【表】【table】
第1図は、本発明に係る連続炭素繊維複合材料
の一つの製造方法を示す概略図である。第2図
は、本発明に係る連続炭素繊維複合材料の他の製
造方法を示す概略図である。第3図及び第4図
は、連続炭素繊維複合材料の引張強度試験方法を
示す側面図及び正面図である。第5図は、連続炭
素繊維複合材料の屈曲性試験方法を示す正面図で
ある。
2……樹脂含浸槽、5……乾燥炉、10……押
出し機、11……クロスヘツドダイ。
FIG. 1 is a schematic diagram showing one method of manufacturing a continuous carbon fiber composite material according to the present invention. FIG. 2 is a schematic diagram showing another method of manufacturing a continuous carbon fiber composite material according to the present invention. 3 and 4 are a side view and a front view showing a tensile strength testing method for continuous carbon fiber composite materials. FIG. 5 is a front view showing a method for testing the flexibility of continuous carbon fiber composite materials. 2...Resin impregnation tank, 5...Drying oven, 10...Extruder, 11...Crosshead die.
Claims (1)
成される連続炭素繊維束に、空〓率が5%以上と
なるように、ポリオレフイン樹脂を含浸させ、被
覆して成る連続炭素繊維複合材料。 2 空〓率が5〜50%である特許請求の範囲第1
項記載の連続炭素繊維複合材料。 3 ポリオレフイン樹脂は、高密度ポリエチレン
(HDPE)、低密度ポリエチレン(LDPE)、直鎖
状低密度ポリエチレン(LLDPE)、エチレンビニ
ルアセテート(EVA)、エチレンエチルアクリレ
ート(EEA)、ポリプロピレン(PP)等である
特許請求の範囲第1項又は第2項に記載の連続炭
素繊維複合材料。[Claims] 1. A continuous carbon fiber obtained by impregnating and coating a continuous carbon fiber bundle formed by bundling a plurality of carbon fiber monofilaments with a polyolefin resin so that the void ratio is 5% or more. Composite material. 2 Claim 1 in which the void ratio is 5 to 50%
Continuous carbon fiber composite material as described in Section. 3 Polyolefin resins include high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene vinyl acetate (EVA), ethylene ethyl acrylate (EEA), polypropylene (PP), etc. A continuous carbon fiber composite material according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP351086A JPS62288633A (en) | 1986-01-13 | 1986-01-13 | Composite material of continuous carbon fiber and polyolefin resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP351086A JPS62288633A (en) | 1986-01-13 | 1986-01-13 | Composite material of continuous carbon fiber and polyolefin resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62288633A JPS62288633A (en) | 1987-12-15 |
JPH0562894B2 true JPH0562894B2 (en) | 1993-09-09 |
Family
ID=11559354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP351086A Granted JPS62288633A (en) | 1986-01-13 | 1986-01-13 | Composite material of continuous carbon fiber and polyolefin resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62288633A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101402203B1 (en) * | 2013-01-23 | 2014-05-30 | 김병진 | Rail structure of sliding blast proof door |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2876028B2 (en) * | 1988-09-16 | 1999-03-31 | 株式会社アクロス | Unidirectional preform sheet and method of manufacturing the same |
JP2646140B2 (en) * | 1989-11-21 | 1997-08-25 | 株式会社ペトカ | Carbon fiber composite and method for producing the same |
BE1007210A3 (en) * | 1993-06-10 | 1995-04-25 | Dsm Nv | Composition comprising a matrix polymer, fibrous reinforcement AND A BINDER, AND METHOD FOR MOULDING OF SUCH COMPOSITION. |
US20060258810A1 (en) | 2003-07-31 | 2006-11-16 | Mitsubishi Rayon Co., Ltd | Carbon fiber bundle process for producing the same and thermoplastic resin composition and molded article thereof |
US8203074B2 (en) * | 2006-10-25 | 2012-06-19 | Advanced Technology Holdings Ltd. | Messenger supported overhead cable for electrical transmission |
JP2018197412A (en) * | 2017-05-24 | 2018-12-13 | 東邦化成株式会社 | Multifunctional fibrous member |
-
1986
- 1986-01-13 JP JP351086A patent/JPS62288633A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101402203B1 (en) * | 2013-01-23 | 2014-05-30 | 김병진 | Rail structure of sliding blast proof door |
Also Published As
Publication number | Publication date |
---|---|
JPS62288633A (en) | 1987-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2218907C (en) | Flexible low bulk pre-impregnated tow | |
US5077113A (en) | Filament-reinforced resinous structural rod | |
GB2077880A (en) | Composite plastic pipes and their preparation | |
JPS63205219A (en) | Pultrusion device, pultrusion method and pultruded molded form | |
US20170361546A1 (en) | Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs | |
US9481948B2 (en) | Robust pre-impregnated yarn for manufacturing textile composites | |
KR102595469B1 (en) | Reinforced fiber bundle base material and manufacturing method thereof, and fiber-reinforced thermoplastic resin material using the same and manufacturing method thereof | |
US20220234254A1 (en) | Method for producing a reinforcing bar | |
JPH0562894B2 (en) | ||
JP4533518B2 (en) | Fiber reinforced composite material using high strength and high elongation carbon fiber | |
KR102118285B1 (en) | Towpreg for filament winding and manufacturing method thereof | |
WO2022075265A1 (en) | Fiber-reinforced resin pultruded article and method for producing same | |
JP6717456B2 (en) | Method and apparatus for manufacturing carbon fiber sheet molding compound | |
US20140205831A1 (en) | Flexible reinforcing fiber yarn pre-impregnated with resin | |
EP4253643A1 (en) | Composite material, method for producing same, and method for producing reinforcing fiber base material | |
JPH01174413A (en) | Composite yarn prepreg | |
JPH02308824A (en) | Material for thermoplastic composite | |
US9815224B2 (en) | Carbon fiber reinforcements for sheet molding composites | |
JP2008240170A (en) | Conjugate yarn for reinforcing thermoplastic resin, and method for producing resin-containing strand using the same | |
JP3317358B2 (en) | Composite reinforcing fiber material impregnated with thermoplastic resin | |
JPH06143273A (en) | Molding material and filament winding molded product | |
Venkataraman et al. | Tensile Properties of Glass Roving and Hybrid Tapes | |
US6183864B1 (en) | Thermoplastic resin-combined glass fiber base material and process for its production | |
CA2312467C (en) | Flexible low bulk pre-impregnated tow | |
JP7560282B2 (en) | Seaweed cultivation support and its manufacturing method |