JPH0562828B2 - - Google Patents
Info
- Publication number
- JPH0562828B2 JPH0562828B2 JP4883885A JP4883885A JPH0562828B2 JP H0562828 B2 JPH0562828 B2 JP H0562828B2 JP 4883885 A JP4883885 A JP 4883885A JP 4883885 A JP4883885 A JP 4883885A JP H0562828 B2 JPH0562828 B2 JP H0562828B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- silicon substrate
- bridge circuit
- view
- pedestal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Pressure Sensors (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置に関し、特にロボツトの手
などに触覚センサとして使用される半導体装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device used as a tactile sensor in a robot's hand or the like.
近年、安価で高性能なマイクロコンピユータが
普及し、それらを用いることにより様々な産業分
野で自動化あるいはロボツト化が進められつつあ
る。しかし、現在実用化されているロボツトは、
ある定まつた形、定まつた大きさあるいは定まつ
た重さの物体を持ち上げたり、運んだりあるいは
加工、組立等の作業を一定のプログラムによつて
しか行うことができない。
In recent years, inexpensive and high-performance microcomputers have become widespread, and by using them, automation or robotization is progressing in various industrial fields. However, the robots currently in practical use are
Lifting, carrying, processing, and assembling objects of a certain shape, size, or weight can only be carried out according to a certain program.
一方、消費者層の多様化により、多品種少量生
産の傾向が強くなり、FMS(Flexible
Manufacturing System)と呼ばれる自動化技術
の開発が叫ばれている。この様な自動化の流れに
於ては人間の感覚器官に代る様々なセンサをロボ
ツトあるいは自動機械に装備し、制御するための
情報をセンサから取入れる必要がある。そのよう
なセンサの中でもロボツトの指あるいは手に装備
され、対象物に直接触れることにより、対象物の
形状を認識したりあるいはその圧覚から、対象物
の硬さを判断したり、また細かい部品の組立作業
の際の対象物からの力を測定したりするための触
覚センサの必要性が認識されている。 On the other hand, due to the diversification of consumer groups, there is a strong trend towards high-mix, low-volume production, and FMS (Flexible
The development of automation technology called "Manufacturing System" is being called for. In this trend of automation, it is necessary to equip robots or automatic machines with various sensors that replace human sense organs, and to take in information for control from the sensors. Among these sensors, robots are equipped with fingers or hands that can recognize the shape of an object by touching it directly, judge the hardness of the object from the sense of pressure, and detect the fine parts of small parts. There is a recognized need for tactile sensors to measure forces from objects during assembly operations.
従来報告されている触覚センサとしては、感圧
導電性ゴムを用いたもの、マイクロスイツチを用
いたもの、あるいはカーボンフアイバを用いたも
の等様々である(自動化技術第14巻第6号37頁〜
42頁及び61頁〜70頁)。これらの触覚センサは大
きすぎたり、あるいは直線性や再現性が悪かつた
り、あるいはオン−オフ情報しか検出できないと
いう欠点がある。また圧覚分布を測定したりする
場合、単一の圧覚センサをアレイ状に並べる必要
があるが、信号処理のための配線が極めて多くな
り、かつロボツトの指や手の可動部にとりつけら
れた場合、信頼性に劣る。
Various tactile sensors have been reported so far, including those using pressure-sensitive conductive rubber, those using microswitches, and those using carbon fiber (Automatic Technology Vol. 14, No. 6, p. 37 -
42 and 61-70). These tactile sensors have the disadvantage that they are too large, have poor linearity or repeatability, or can only detect on-off information. In addition, when measuring pressure distribution, it is necessary to arrange single pressure sensors in an array, but this requires an extremely large number of wires for signal processing, and when attached to the movable parts of the robot's fingers and hands. , less reliable.
また、ピエゾ抵抗効果を用いた半導体圧力セン
サのダイヤフラム部を直接あるいは間接的に押す
という方法も考えられる。半導体圧力センサを用
いる方法は、感度や直線性に優れ、かつ信号処理
部も集積化可能なため、優れた方法であるが、ダ
イヤフラムの膜厚を一定に制御することが困難で
あることから、アレイ化した場合に、ばらつきが
大きくなる。一方、それを避けるために膜厚を厚
くすると感度が非常に悪くなるという欠点があ
る。 Another possible method is to directly or indirectly press the diaphragm portion of a semiconductor pressure sensor using the piezoresistive effect. The method of using a semiconductor pressure sensor is an excellent method because it has excellent sensitivity and linearity, and the signal processing section can be integrated, but it is difficult to control the thickness of the diaphragm at a constant level. When arrayed, the variation increases. On the other hand, if the film thickness is increased to avoid this, there is a drawback that the sensitivity becomes extremely poor.
本発明の目的は、以上のような従来な欠点を排
した触覚センサ用半導体装置を提供することにあ
る。 An object of the present invention is to provide a semiconductor device for a tactile sensor that eliminates the above-mentioned conventional drawbacks.
本発明の特徴は、シリコン基板にたがいに平行
に形成された二つの貫通孔間のシリコン基板の部
分から成る両端支持の梁と、前記梁の両端を支持
するシリコン基板の部分から成る支持部と、前記
梁上でかつ前記支持部に近い部分に設けられた少
くとも一つの拡散層抵抗と、前記支持部に設けら
れかつ前記梁上の拡散層抵抗とでブリツジ回路も
しくはハーフブリツジ回路を構成する拡散層抵抗
と、前記梁の中央部の上に設けられた突起部とを
含む触覚センサ用の半導体装置にある。
The present invention is characterized by: a beam supported at both ends, which is made up of a portion of the silicon substrate between two through holes formed parallel to each other in the silicon substrate; and a support portion, which is made up of a portion of the silicon substrate, which supports both ends of the beam. , at least one diffusion layer resistor provided on the beam and close to the support portion, and a diffusion layer resistance provided on the support portion and on the beam forming a bridge circuit or a half bridge circuit; A semiconductor device for a tactile sensor includes a layered resistor and a protrusion provided on a central portion of the beam.
次に、本発明の実施例について図面を用いて説
明する。
Next, embodiments of the present invention will be described using the drawings.
第1図a〜dは本発明の第1の実施例の製造方
法を説明するための平面図及び断面図であつて、
第1図aは途中工程における半導体装置の平面
図、第1図bはそのA−A′断面図、第1図cは
次の工程における半導体装置の平面図、第1図d
はそのB−B′断面図である。 1A to 1D are a plan view and a cross-sectional view for explaining the manufacturing method of the first embodiment of the present invention,
FIG. 1a is a plan view of the semiconductor device in an intermediate process, FIG. 1b is a sectional view taken along line A-A', FIG.
is a sectional view taken along line B-B'.
まず、第1図a,bに示すように、シリコン基
板10に幅10μm、長さ100μmの拡散層抵抗11,
12,13,14を形成し、ブリツジ回路用の抵
抗とする。本実施例の場合、抵抗値は一つの抵抗
体で約2KΩである。次に、表面を酸化膜15で
覆う。そして酸化膜15を選択除去して間隔をお
いた平行な二つの窓16,16′をあける。 First, as shown in FIGS. 1a and 1b, a diffusion layer resistor 11 with a width of 10 μm and a length of 100 μm,
12, 13, and 14 are formed to serve as resistors for a bridge circuit. In the case of this embodiment, the resistance value is approximately 2KΩ for one resistor. Next, the surface is covered with an oxide film 15. Then, the oxide film 15 is selectively removed to form two spaced parallel windows 16, 16'.
次に、第1図c,dに示すように、酸化膜15
をマスクにしてシリコン基板10を90℃のヒドラ
ジン液でエツチングして底面まで突抜ける貫通孔
17,17′をあける。 Next, as shown in FIG. 1c and d, the oxide film 15
Using as a mask, the silicon substrate 10 is etched with a 90° C. hydrazine solution to form through holes 17, 17' that penetrate to the bottom surface.
本実施例においては、(110)面方位のシリコン
基板10を異方性エツチング液であるヒドラジン
でエツチングしているので、貫通孔17,17′
のパターン精度は酸化膜15のマスク、即ち窓1
6,16′の精度で決まり、かつ垂直にエツチン
グ除去される。これにより両端支持の梁18が形
成される。次に、アルミニウム配線19を形成
し、表面を保護酸化膜15′を被覆する。アルミ
ニウム配線19は四つの抵抗11〜14を直列に
かつ環状に接続していて、四つの抵抗はブリツジ
回路となつている。そして一組の対角点を入力端
子、他の組の対角点を出力端子としている。 In this embodiment, since the silicon substrate 10 with the (110) plane orientation is etched with hydrazine, which is an anisotropic etching solution, the through holes 17, 17'
The pattern accuracy of the mask of the oxide film 15, that is, the window 1
It is determined with an accuracy of 6.16' and is etched away vertically. As a result, a beam 18 supported at both ends is formed. Next, an aluminum wiring 19 is formed, and the surface is covered with a protective oxide film 15'. The aluminum wiring 19 connects four resistors 11 to 14 in series and in a ring shape, and the four resistors form a bridge circuit. One set of diagonal points are used as input terminals, and the other set of diagonal points are used as output terminals.
次に、本発明の最も重要な部分である突起部2
0を梁18の中央に形成する。この突起部20
は、梁18の寸法が1mm以上の大きさの場合はガ
ラスやシリコンを貼付けても良いが、本実施例の
ように梁18が100μm幅、500μm長さというよう
に小さい寸法の場合は、フイルムレジストを用い
る。本実施例ではフイルムレジストを厚さ100μm
に貼付け、感光させて突起部20を形成した。 Next, the protrusion 2 which is the most important part of the present invention
0 is formed at the center of the beam 18. This protrusion 20
If the dimensions of the beam 18 are 1 mm or more, glass or silicon may be pasted, but if the beam 18 is small, such as 100 μm wide and 500 μm long, as in this example, a film may be used. Use resist. In this example, the film resist has a thickness of 100 μm.
The protrusion 20 was formed by attaching it to the substrate and exposing it to light.
第2図a,bは第1図c,dに示す半導体装置
を搭載する台座の第1の例の平面図及びC−C′断
面図である。 FIGS. 2a and 2b are a plan view and a sectional view taken along the line C-C' of a first example of the pedestal on which the semiconductor device shown in FIGS. 1c and d is mounted.
台座21は中央に開孔22を有し、この開孔2
2に第1図c,dに示す半導体装置の貫通孔1
7,17′と梁18とが位置するように台座の表
面に半導体装置が貼付けられる。貼付け後、表面
をシリコンゴムで被覆して保護する。 The pedestal 21 has an opening 22 in the center, and this opening 2
2 shows the through hole 1 of the semiconductor device shown in FIGS. 1c and d.
The semiconductor device is attached to the surface of the pedestal so that the beams 18 and 7, 17' are located. After pasting, the surface is covered with silicone rubber to protect it.
第3図は本第1の実施例の印加荷重と電気的出
力との関係を示す特性図である。 FIG. 3 is a characteristic diagram showing the relationship between applied load and electrical output in the first embodiment.
横軸は梁18に印加される荷重、縦軸はブリツ
ジの両端における出力電圧を示す。荷重と出力電
圧Vとは非常に良い線型関係にあり、再現性も良
好である。 The horizontal axis shows the load applied to the beam 18, and the vertical axis shows the output voltage at both ends of the bridge. There is a very good linear relationship between the load and the output voltage V, and the reproducibility is also good.
第4図a,bは第1図c,dに示す半導体装置
と搭載する台座の第2の例の平面図及びD−
D′断面図である。 FIGS. 4a and 4b are plan views of the second example of the semiconductor device shown in FIGS. 1c and d and the pedestal on which it is mounted, and D-
It is a sectional view D′.
台座40は凹部41を有し、この凹部41に、
第1図c,dに示す半導体装置の貫通孔17,1
7′及び梁18が位置するように、貼付けられる。
この台座40は、凹部41に底面があるから、梁
18に許容値以上の荷重がかかつても梁18の中
央部が凹部41の底に接触して止まるので梁の撓
みは一定量以上にならず梁の破壊を防ぐことがで
きる。 The pedestal 40 has a recess 41, and in this recess 41,
Through holes 17 and 1 of the semiconductor device shown in FIGS. 1c and d
7' and the beam 18 are attached.
Since this pedestal 40 has a bottom surface in the recess 41, even if a load exceeding the allowable value is applied to the beam 18, the center part of the beam 18 will come into contact with the bottom of the recess 41 and stop, so that the beam will not deflect more than a certain amount. This can prevent damage to the beams.
第5図は本発明の第2の実施例の断面図であ
る。 FIG. 5 is a sectional view of a second embodiment of the invention.
この実施例は、梁18の裏面を少しエツチング
してシリコン基板10の裏面51よりも梁18の
裏面52の方が少し高くなるようにする。この形
状にすると平板の台座が使用でき、また許容値以
上の力が加わつても梁18が平板の台座に接して
止まるから梁18の破壊を防ぐことができるとい
う二つの効果が得られる。 In this embodiment, the back surface of the beam 18 is slightly etched so that the back surface 52 of the beam 18 is slightly higher than the back surface 51 of the silicon substrate 10. With this shape, a flat plate pedestal can be used, and even if a force exceeding an allowable value is applied, the beam 18 stops in contact with the flat plate pedestal, so the beam 18 can be prevented from being destroyed.
上記二つの実施例では、梁の寸法を500μm幅、
500μm長とし、この梁の上に幅10μm、長さ
100μmの抵抗体を作製したが、この寸法に限定さ
れない。また、突起物としてフイルムレジストを
用いたが、材料及び形成方法についてもこれに限
定されない。また、出力電圧は四つの抵抗11〜
14を用い、ブリツジ回路を構成して取出すよう
にしたが、ブリツジ回路の半分だけで構成される
ハーフブリツジ回路、つまり二つの抵抗(例えば
抵抗11と12)を直列に接続し、その接続点と
接地電源とを出力端子、両端を電圧入力端子とす
るハーフブリツジ回路にすることもできる。ハー
フブリツジ回路の場合も第3図に示したものと同
様の相関関係を得ることができる。 In the above two examples, the dimensions of the beam are 500μm wide,
A beam with a width of 10 μm and a length of 500 μm is placed on top of this beam.
Although a 100 μm resistor was fabricated, the size is not limited to this. Furthermore, although a film resist is used as the protrusion, the material and formation method are not limited thereto either. Also, the output voltage is determined by the four resistors 11~
14 was used to construct a bridge circuit and take out the output. However, it is a half-bridge circuit consisting of only half of the bridge circuit, that is, two resistors (for example, resistors 11 and 12) are connected in series, and their connection point is connected to the ground. It is also possible to form a half-bridge circuit in which the power supply is an output terminal and both ends are voltage input terminals. In the case of a half-bridge circuit, a correlation similar to that shown in FIG. 3 can be obtained.
以上詳細に説明したように、本発明は、梁の中
央部に設けた突起物に集中荷重するような構成に
したので、従来と比べて製造工程が非常に簡略化
され、しかも精度の良い触覚センサ用の半導体装
置を得ることができるという効果を有する。
As explained in detail above, the present invention has a configuration in which the load is concentrated on the protrusion provided at the center of the beam, so the manufacturing process is greatly simplified compared to the conventional method, and the tactile sensation with high precision is achieved. This has the effect that a semiconductor device for a sensor can be obtained.
第1図a〜dは本発明の第1の実施例の製造方
法を説明するための平面図及び断面図であつて、
第1図aは途中工程における半導体装置の平面
図、第1図bはそのA−A′断面図、第1図cは
最終工程における半導体装置の平面図、第1図d
はそのB−B′断面図、第2図a,bは第1図c,
dに示す半導体装置を搭載する台座の第1の例の
平面図及び断面図、第3図は第1の実施例の印加
荷重と電気的出力との関係を示す特性図、第4図
a,bは第1図c,dに示す半導体装置を搭載す
る台座の第2の例の平面図及び断面図、第5図は
本発明の第2の実施例の断面図である。
10……シリコン基板、11,12,13,1
4……拡散層抵抗、15……酸化膜、15′……
保護膜、16,16′……窓、17,17′……貫
通孔、18……梁、19……アルミニウム配線、
20……突起部、21……台座、22……開孔、
40……台座、41……凹部、51……基板の裏
面、52……梁の裏面。
1A to 1D are a plan view and a cross-sectional view for explaining the manufacturing method of the first embodiment of the present invention,
FIG. 1a is a plan view of the semiconductor device in an intermediate process, FIG. 1b is a sectional view taken along line A-A', FIG.
is its BB' sectional view, Figure 2 a, b is Figure 1 c,
FIG. 3 is a characteristic diagram showing the relationship between applied load and electrical output of the first embodiment; FIG. 4 is a, b is a plan view and a sectional view of a second example of the pedestal on which the semiconductor device shown in FIGS. 1c and d is mounted, and FIG. 5 is a sectional view of the second embodiment of the present invention. 10... Silicon substrate, 11, 12, 13, 1
4... Diffusion layer resistance, 15... Oxide film, 15'...
Protective film, 16, 16'...Window, 17, 17'...Through hole, 18...Beam, 19...Aluminum wiring,
20... protrusion, 21... pedestal, 22... opening,
40... Pedestal, 41... Recessed portion, 51... Back side of substrate, 52... Back side of beam.
Claims (1)
つの貫通孔間のシリコン基板の部分から成る両端
支持の梁と、前記梁の両端を支持するシリコン基
板の部分から成る支持部と、前記梁上でかつ前記
支持部に近い部分に設けられた少くとも一つの拡
散層抵抗と、前記支持部に設けられかつ前記梁上
の拡散層抵抗とでブリツジ回路もしくはハーフブ
リツジ回路を構成する拡散層抵抗と、前記梁の中
央部の上に設けられた突起部とを含むことを特徴
とする触覚センサ用の半導体装置。1. A beam supported at both ends consisting of a portion of the silicon substrate between two through holes formed parallel to each other in the silicon substrate, a support portion consisting of a portion of the silicon substrate supporting both ends of the beam, and a and at least one diffused layer resistor provided in a portion close to the supporting portion and a diffused layer resistor provided in the supporting portion and on the beam to form a bridge circuit or a half bridge circuit; 1. A semiconductor device for a tactile sensor, comprising: a protrusion provided on a central portion of a beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4883885A JPS61208274A (en) | 1985-03-12 | 1985-03-12 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4883885A JPS61208274A (en) | 1985-03-12 | 1985-03-12 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61208274A JPS61208274A (en) | 1986-09-16 |
JPH0562828B2 true JPH0562828B2 (en) | 1993-09-09 |
Family
ID=12814384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4883885A Granted JPS61208274A (en) | 1985-03-12 | 1985-03-12 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61208274A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07114288B2 (en) * | 1989-09-26 | 1995-12-06 | 株式会社豊田中央研究所 | Semiconductor strain measuring device |
-
1985
- 1985-03-12 JP JP4883885A patent/JPS61208274A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61208274A (en) | 1986-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5489900A (en) | Force sensitive transducer for use in a computer keyboard | |
US4814856A (en) | Integral transducer structures employing high conductivity surface features | |
US4275406A (en) | Monolithic semiconductor pressure sensor, and method of its manufacture | |
US5002901A (en) | Method of making integral transducer structures employing high conductivity surface features | |
US3820401A (en) | Piezoresistive bridge transducer | |
JPH0577304B2 (en) | ||
US7040182B2 (en) | Stress sensor | |
JPH0562828B2 (en) | ||
KR100855603B1 (en) | Tactile sensor and manafacturing method of tactile sensor | |
JPH0562829B2 (en) | ||
EP0161708B1 (en) | Weighing element for a weighing apparatus | |
JPS61224465A (en) | Force sensor and manufacture thereof | |
JPS63113326A (en) | Tactile sensation sensor | |
JPH0562827B2 (en) | ||
JPH09257612A (en) | Force sensor | |
JPH01236659A (en) | Semiconductor pressure sensor | |
JPS629243A (en) | Semiconductor tactile sensor | |
JPS63214631A (en) | Contact force sensor | |
CN117800279A (en) | MEMS pressure-sensitive chip and preparation method thereof | |
JPH0554053B2 (en) | ||
JPS63226073A (en) | Force detector | |
JPS61181930A (en) | Pressure sensor | |
JPH0560269B2 (en) | ||
JPS63122233A (en) | Measuring device for semiconductor integrated circuit | |
JPH0736445B2 (en) | Pressure sensor |