【発明の詳細な説明】[Detailed description of the invention]
(産業上の利用分野)
本発明は、伸びの少ない撚糸コードを抗張体と
して用いた歯付ベルトに関する。
(従来の技術)
従来より、例えば自動車のエンジンのオーバー
ヘツドカムシヤフトの駆動に用いるタイミングベ
ルトとしての歯付ベルトでは、走行中にベルト幅
方向に大きく触れるという蛇行の問題がある。
(発明が解決しようとする架台)
そのようなベルトの蛇行対策としては、
(i)S撚り、Z撚りの心体を交互に埋設する、(ii)
心体の巻ピツチを小さくし、心体の巻角度を小さ
くするなどの手法が知られているが、(i)の手法で
は撚り方向の異なる心体を製造する必要があり、
作業が複雑になるとともに、ベルト成型時に心体
の転がり方向が逆となるため、巻ピツチが乱れた
ベルトとなり、ベルト寿命が著しく低下する。ま
た、(ii)の手法では、心体同士が接近し心体の接着
力が激減するし、また心体の径を小さくすればそ
のようなことはないが、ベルト全体として所望の
抗張力が得られない。
そこで、発明者が鋭意研究を重ねた結果、後述
の下撚り角度がベルトの振れに大きく影響するこ
とを見い出し、本発明を開発するに至つたのであ
る。
また、自動車のエンジンの高性能化に伴い、そ
れに用いられるベルトの長寿命化が要求されつつ
あり、上述した歯付ベルトにおいて、心体の耐屈
曲疲労性を向上させ、ベルト寿命を延ばす試みが
いろいろなされているが、十分に満足することが
できる結果が得られていないのが現状である。
ところで、動力伝動用ベルトとして、上撚り方
向と同一方向に下撚りされた複数本のガラス繊維
ストランドを更に所要本数集めて上撚りしてな
り、かつその上撚り係数は0.60〜1.50で、下撚り
が前記上撚り係数に対しその1/4〜1/2とし、抗張
体の疲労性を向上させるものが提案されている
(特開昭59−19744号公報参照)。
本発明は、ベルト幅方向の振れが抑制され、蛇
行が防止された歯付ベルトを提供することを目的
とする。
(課題を解決するための手段)
本発明は、抗張体として撚糸コードを有し、該
撚糸コードがベルト長さ方向に対して傾斜してス
パイラル状に埋設された歯付ベルトに係るもので
ある。
本発明は、上記目的を達成するために、撚糸コ
ードの上撚り方向が、ベルト長さ方向に関して上
記傾斜の方向と反対側になつており、しかも撚糸
コードの長さ方向に対し下撚り角度が87〜93度で
あり、上撚り係数が3.0〜3.8である構成とする。
(作用)
撚糸コードの長さ方向に対し下撚り角度が87〜
93度であるので、走行中のベルト幅方向の振れが
抑制され、蛇行を防止される。また、上撚り係数
が3.0〜3.8とされているので、オリジナルコード
強力を低下させることなく、強度保持率が高くな
る。
(実施例)
以下、本発明の実施例を図面に沿つて説明す
る。
第1図において、1は歯付ベルト、2は歯付ベ
ルト1の背部1aと歯部1bとを形成する弾性体
としてのゴム構造体、3はゴム構造体2にベルト
長さ方向に対して傾斜してスパイラル状に埋設さ
れた抗張体、4は歯部1bの表面(歯面)に被覆
された歯帆布である。
上記ゴム構造体2は、クロロプレンゴム(ネオ
プレン)、スチレンブタジエンゴム、エピクロロ
ヒドリンゴム、ポリウレタンゴム、水素添加のア
クリロニトリルブタジエンゴム等からなり、ベル
トの使用目的(用途)に適した公知のゴム配合物
で形成される。
上記抗張体3はガラス繊維の撚糸コードからな
り、その構成はECG150−3/13、即ち9μのガラ
スフイラメント糸を200本集めてストランドとし、
このストランドを3本集めて下撚りを行い、これ
を13本集めて下撚り方向とは逆方向に上撚りして
なり、撚糸コードの上撚り方向がベルト長さ方向
に関して、前述した傾斜の方向とは反対側になつ
ており、しかも撚糸コードの長さ方向に対し下撚
り角度が87〜93度で、上撚り係数が3.0〜3.8であ
る。
上記歯帆布4は、6ナイロン、66ナイロン、芳
香族ポリエステル、テトロン、綿、レーヨン、テ
フロン系等の材質は糸若しくは混紡糸を単独又は
組合せて使用し、ベルト歯帆布として要求される
耐摩耗性、摩擦係数を満足するように織成され
る。尚、緯糸に巻縮糸を用いたウーリー帆布の使
用が好適である。
上記歯付ベルト1を製造するには、まず、所望
の綾角度を有する歯帆布4を用意し、この歯帆布
4にRFL、エポキシ系、イソシアネート系等の
周知の接着剤を塗布して接着処理をし、必要に応
じてゴム糊等を更に塗布し、周面に歯部1bに対
応した凹凸形状を有する金型に接着する。その
際、一般的には、緯糸に巻縮糸を用いたウーリー
帆布を歯帆布4として使用しており、布幅方向を
ベルト長さ方向とし、周知の方法で筒状に接合
し、金型に接着する。一方、ウーリー帆布を使用
しないときには、接着処理を施した歯帆布4を金
型の凹凸形状に沿わせて装着する。
上記歯帆布4上に抗張体3をスパイラル状に巻
き付ける。この抗張体3には予め周知の方法にて
接着処理が施されている。続いて、背部1aおよ
び歯部1bのゴム構造体2を構成する所定のゴム
配合物のシートを巻く。
上記のように構成したベルト素材を加硫装置に
入れ、所定の温度で加圧加硫(160℃、30〜60分)
を行う。加硫が完了すると加硫装置より取り出
し、加硫品を金型より抜いて、所定ベルト幅に切
断して歯付ベルト1を得る。
ところで、上撚り係数Kは、
K=(T・√D)/28.7
T:撚り回数/cm
D:デニール
で計算され、また、
下撚り角度αは、抗張体3の軸線に直交する面
についての単糸11の撚り角度で、
α=β+(90°−γ)
で計算される(第2図参照)。
前記抗張体3の軸線に直交する面についての撚
り糸12の撚り角度である角度γは、
tanγ=(100/Tp)/π・Gp
Tp:上撚り数(撚り回数/10cm)
Gp:抗張体6の径(mm)
で計算される。これは、π・Gpが抗張体6の周
長で、100/Tpが1周(1撚り)あたりの撚り長
さになるからである。
同様にして、撚り糸12の軸線に直交する面に
ついての単糸11の撚り角度βは、
tanβ=(100/Tr)/π・Gy
Tr:下撚り数(撚り回数/10cm)
Gy:撚り糸12の径(mm)
で計算される。
尚、上記抗張体3を形成するための素材として
は、ガラス繊維のほか、炭素繊維等の無機繊維、
アラミド繊維等の合成繊維、スチール等の金属繊
維が用いられる。一般的にはデニールの考え方で
問題はないが、ガラス繊維の場合は、総デニール
数については下記のような考え方で算出した。
例えば、ガラスフイラメント糸9μを200本集め
ストランドとして、このストランドを3本集めて
下撚りを掛け、下撚り糸を13本集めて上撚りを掛
けて得た、ECG150−3/13(E:無アルカリガ
ラス、C:長繊維、G:フイラメントの直径9μ、
150:ストランドの大きさ15000ヤード/ポンド)
ではG150の番手が、33.7番手であることから、
総番手数は、
33.7×3×13=1314.3 Tex番手(8/Km)
となり、換算定数によつて換算すると、
9×1314.3=11828.7デニール
即ち、総デニール数は約11830デニールとなる。
また、下撚りでのデニール数は、
11830÷13=910デニール
となる。
続いて、上述した如きベルトについて行つた試
験について説明する。
<試験1>
試験方法
ベルト寸法は、ベルト幅17mm、歯部のピツチ
8.0mm、コードピツチ1.5mm、ベルト長さ40インチ
である。抗張体としてはガラス繊維の撚糸コード
を用い、次表に示す構成とした。
(Industrial Application Field) The present invention relates to a toothed belt using a twisted cord with little elongation as a tensile member. (Prior Art) For example, toothed belts used as timing belts for driving overhead camshafts of automobile engines have had the problem of meandering, in which the belt touches the width of the belt significantly during running. (Frame to be Solved by the Invention) Measures to prevent such belt meandering include (i) alternately embedding S-twist and Z-twist cores; (ii)
Methods such as reducing the winding pitch of the core and the winding angle of the core are known, but method (i) requires manufacturing cores with different twist directions;
In addition to complicating the work, the rolling direction of the core body is reversed during belt forming, resulting in a belt with irregular winding pitches, which significantly shortens belt life. In addition, in method (ii), the core bodies become close to each other and the adhesion force between the core bodies is drastically reduced.Also, if the diameter of the core bodies is made smaller, this will not happen, but the desired tensile strength of the belt as a whole cannot be achieved. I can't. Therefore, as a result of intensive research, the inventor discovered that the angle of first twist, which will be described later, has a large effect on the runout of the belt, and developed the present invention. In addition, as the performance of automobile engines increases, there is a growing demand for longer lifespans for the belts used in them, and attempts have been made to improve the bending fatigue resistance of the core body of the toothed belts mentioned above and extend the belt lifespan. Although various efforts have been made, the current situation is that no fully satisfactory results have been obtained. By the way, a power transmission belt is made by collecting and ply-twisting a plurality of glass fiber strands which have been pre-twisted in the same direction as the ply-twisting direction, and the ply-twisting coefficient is 0.60 to 1.50. It has been proposed that the twist coefficient is set to 1/4 to 1/2 of the above-mentioned ply twist coefficient to improve the fatigue resistance of the tensile body (see Japanese Patent Application Laid-Open No. 1974-1974). An object of the present invention is to provide a toothed belt in which vibration in the belt width direction is suppressed and meandering is prevented. (Means for Solving the Problems) The present invention relates to a toothed belt having a twisted yarn cord as a tensile member, and in which the twisted yarn cord is embedded in a spiral shape at an angle with respect to the belt length direction. be. In order to achieve the above object, the present invention provides that the direction of the first twist of the twisted yarn cord is opposite to the direction of the above-mentioned inclination with respect to the length direction of the belt, and the angle of the first twist with respect to the length direction of the twisted yarn cord is opposite to the direction of the above-mentioned inclination. The angle is 87 to 93 degrees, and the twist coefficient is 3.0 to 3.8. (Function) The angle of the first twist in the length direction of the twisted cord is 87~
Since the angle is 93 degrees, deflection in the width direction of the belt during running is suppressed and meandering is prevented. In addition, since the ply twist coefficient is set to 3.0 to 3.8, the strength retention rate is increased without reducing the strength of the original cord. (Example) Examples of the present invention will be described below with reference to the drawings. In Fig. 1, 1 is a toothed belt, 2 is a rubber structure as an elastic body that forms the back part 1a and tooth part 1b of the toothed belt 1, and 3 is a rubber structure 2 attached to the rubber structure 2 in the belt length direction. The tensile member 4 is a tooth cloth covered with the surface (tooth surface) of the tooth portion 1b, which is embedded in an inclined spiral shape. The rubber structure 2 is made of chloroprene rubber (neoprene), styrene-butadiene rubber, epichlorohydrin rubber, polyurethane rubber, hydrogenated acrylonitrile-butadiene rubber, etc., and is a known rubber compound suitable for the intended use (application) of the belt. is formed. The tensile body 3 is made of a twisted glass fiber cord, and its structure is ECG150-3/13, that is, 200 9μ glass filament threads are collected into a strand.
Three of these strands are collected and first-twisted, and 13 strands are collected and final-twisted in the opposite direction to the first-twisting direction. Moreover, the first twist angle is 87 to 93 degrees with respect to the length direction of the twisted cord, and the first twist coefficient is 3.0 to 3.8. The toothed canvas 4 is made of nylon 6, nylon 66, aromatic polyester, Tetron, cotton, rayon, Teflon, etc., using yarn or blended yarn alone or in combination, and has the abrasion resistance required as a belt toothed canvas. , is woven to satisfy the friction coefficient. In addition, it is preferable to use a woolly canvas using curled yarn for the weft. To manufacture the toothed belt 1, first, a toothed canvas 4 having a desired winding angle is prepared, and a well-known adhesive such as RFL, epoxy, isocyanate, etc. is applied to this toothed canvas 4 for bonding. Then, if necessary, rubber glue or the like is further applied, and the mold is bonded to a mold having an uneven shape corresponding to the toothed portion 1b on the circumferential surface. At that time, generally a woolly canvas using crimped yarn as the weft is used as the toothed canvas 4, the width direction of the cloth is the length direction of the belt, the cloth is joined into a cylindrical shape by a well-known method, and molded into a mold. Glue to. On the other hand, when the woolly canvas is not used, the adhesive-treated tooth canvas 4 is attached along the uneven shape of the mold. The tensile material 3 is spirally wound around the tooth canvas 4. This tensile member 3 has been subjected to adhesive treatment in advance by a well-known method. Subsequently, a sheet of a predetermined rubber compound constituting the rubber structure 2 of the back portion 1a and tooth portion 1b is rolled up. Place the belt material configured as above into a vulcanizer and vulcanize under pressure at a predetermined temperature (160℃, 30 to 60 minutes)
I do. When the vulcanization is completed, the product is taken out from the vulcanizer, the vulcanized product is pulled out from the mold, and the toothed belt 1 is obtained by cutting it into a predetermined belt width. By the way, the final twist coefficient K is calculated as follows: K=(T・√D)/28.7 T: Number of twists/cm D: Denier, and the final twist angle α is calculated with respect to the plane orthogonal to the axis of the tensile body 3. The twist angle of the single yarn 11 is calculated as α=β+(90°−γ) (see Figure 2). The angle γ, which is the twisting angle of the twisted yarn 12 with respect to the plane perpendicular to the axis of the tensile body 3, is tanγ=(100/Tp)/π・Gp Tp: Number of twists (number of twists/10cm) Gp: Tensile Calculated using the diameter of body 6 (mm). This is because π·Gp is the circumference of the tensile member 6, and 100/Tp is the length of twist per turn (one twist). Similarly, the twisting angle β of the single yarn 11 in the plane orthogonal to the axis of the twisted yarn 12 is tan β = (100/Tr)/π・Gy Tr: Number of lower twists (number of twists/10 cm) Gy: Calculated in diameter (mm). In addition to glass fibers, the materials for forming the tensile body 3 include inorganic fibers such as carbon fibers,
Synthetic fibers such as aramid fibers and metal fibers such as steel are used. Generally, there is no problem with the denier concept, but in the case of glass fiber, the total denier number was calculated using the following concept. For example, collect 200 strands of glass filament thread 9 μ to make a strand, collect 3 of these strands and apply first twist, collect 13 first twist threads and apply final twist to obtain ECG150-3/13 (E: Alkali-free Glass, C: long fiber, G: filament diameter 9μ,
150: Strand size 15000 yards/lb)
So, since the number of G150 is 33.7,
The total count is 33.7 x 3 x 13 = 1314.3 Tex count (8/Km), and when converted using the conversion constant, 9 x 1314.3 = 11828.7 denier, that is, the total denier number is approximately 11830 denier.
Also, the denier number in the first twist is 11830 ÷ 13 = 910 denier. Next, tests conducted on the belt as described above will be explained. <Test 1> Test method Belt dimensions are belt width 17mm, tooth pitch
8.0mm, cord pitch 1.5mm, belt length 40 inches. A twisted glass fiber cord was used as the tensile member, and the structure was as shown in the following table.
【表】
上記本発明例、比較例1、2、3の各ベルトに
ついて、ベルトオリジナル強力、片寄り性、屈曲
疲労試験後の残存強力について調べた。尚、屈曲
疲労試験は、第3図に示すように、4つの歯付プ
ーリ21,22,23,24(何れも歯部24個)
と、4つのテンシヨンプーリ25,26,27,
28(直径32mm)に試料ベルト29を巻回し、張
力2T0=40Kgfの状態で2×107サイクル走行さ
せ、走行完了後にベルト全体を引張り、残存強力
を求めた。尚、1つの歯付プーリ21を駆動プー
リ(回転数5570rpm)とした。
試験結果
次表に示す通りである。[Table] The belts of the above-mentioned examples of the present invention and comparative examples 1, 2, and 3 were examined for their original strength, lopsidedness, and residual strength after the bending fatigue test. The bending fatigue test was conducted using four toothed pulleys 21, 22, 23, and 24 (each with 24 teeth) as shown in Figure 3.
and four tension pulleys 25, 26, 27,
A sample belt 29 was wound around a belt 28 (diameter 32 mm) and run for 2×10 7 cycles at a tension of 2T 0 =40 Kgf. After running, the entire belt was pulled to determine the remaining strength. Note that one toothed pulley 21 was used as a drive pulley (rotation speed: 5570 rpm). Test results are shown in the table below.
【表】【table】
【表】
尚、比較例3のベルトは、屈曲疲労試験中、ベ
ルトがフランジに当たり偏摩耗を生じた。
オリジナルコード強力は、比較例2のベルトで
は低く、しかもバラツキも大きい。これは(i)ピツ
チの乱れ、(ii)S撚り、Z撚りを交互に配列するた
めの張力の乱れ等によると考えられる。
また、比較例1のベルトは、本発明例のベルト
よりも強力が高い、これはコードの撚り回数が少
ないためと考えられる。一方、片寄り性の評価に
おいては、走行初期にフランジに当たり、耐屈曲
疲労試験は規定サイクルまで行うことができず、
ベルトは分解した。比較例3のベルトは、コード
巻きのスパイラル方向と撚り方向とが異なるた
め、バランスがとれずに片寄りを生じた。
本発明例のベルトは、残存強力が大きく、比較
例2のベルトよりもバラツキが小さく、良好な結
果を得た。
<試験2>
試験1における本発明例のベルトにおいて、上
撚り係数を変化させて、オリジナルコード強力と
屈曲疲労試験後の強力保持率とについて調べた。
試験結果は、第4図に示す通りである。尚、上
撚り係数3.4の場合を100として基準とし、指数表
示した。
上撚り係数が大きくなるほど屈曲疲労試験後の
強力保持率は高くなるが、逆にオリジナルコード
強力が低下するので、屈曲疲労試験後の強力保持
率とオリジナルコード強力との両面から、上撚り
係数は3.0〜3.8の範囲が望ましい。尚、片寄り性
については全く問題はなかつた。
<試験3>
試験1における本発明例のベルトにおいて、コ
ードの下撚り角度のみを変化させてベルトの片寄
り性について調べた。
試験システムは、第5図に示すように、駆動プ
ーリ31(回転数600rpm、歯部24個)と従動プ
ーリ32(歯部24個)とに、張力2T0=40Kgfで
もつて試験ベルト33をセツトし、5秒間走行後
の移動距離Lを測定した。
試験結果は、第6図に示す通りであり、下撚り
角度は87°〜93°の範囲内が望ましい。この範囲か
ら出ると、振れが急に大きくなつている。
(発明の効果)
本発明は、上記のように、撚糸コードの長さ方
向に対し下撚り角度が87〜93度となるようにした
ので、走行中のベルト幅方向の振れが抑制され、
蛇行を防止することができ、また、上撚り係数を
3.0〜3.8としているので、オリジナルコード強力
を低下させることなく、長時間走行後のベルトコ
ード強力の低下を防止して、耐屈曲疲労性を高
め、ベルト寿命の向上を図ることができる。[Table] Note that the belt of Comparative Example 3 suffered uneven wear as the belt hit the flange during the bending fatigue test. The strength of the original cord was low in the belt of Comparative Example 2, and the variation was also large. This is thought to be due to (i) disorder of pitch, (ii) disorder of tension due to alternating arrangement of S twist and Z twist, etc. Furthermore, the belt of Comparative Example 1 has higher strength than the belt of the invention example, which is thought to be due to the fewer number of twists of the cord. On the other hand, in the evaluation of off-centeredness, the flange was hit at the beginning of running, and the bending fatigue test could not be performed until the specified cycle.
The belt was disassembled. In the belt of Comparative Example 3, the spiral direction of the cord winding was different from the twisting direction, so the belt was not balanced and shifted. The belt of the present invention example had a large residual strength and had less variation than the belt of Comparative Example 2, and obtained good results. <Test 2> In the belt of the present invention example in Test 1, the original cord strength and the strength retention rate after the bending fatigue test were investigated by changing the ply twist coefficient. The test results are shown in FIG. In addition, the case where the ply twist coefficient is 3.4 is set as 100 and is expressed as an index. As the ply-twist coefficient increases, the strength retention rate after the bending fatigue test increases, but on the contrary, the original cord strength decreases, so the ply-twist coefficient is A range of 3.0 to 3.8 is desirable. Incidentally, there was no problem at all with regard to lopsidedness. <Test 3> In the belt of the present invention example in Test 1, only the pre-twisting angle of the cord was changed to investigate the off-centeredness of the belt. As shown in Fig. 5, the test system sets a test belt 33 between a driving pulley 31 (rotation speed 600 rpm, 24 teeth) and a driven pulley 32 (24 teeth) with a tension of 2T 0 = 40Kgf. Then, the moving distance L after running for 5 seconds was measured. The test results are as shown in FIG. 6, and the pre-twist angle is preferably within the range of 87° to 93°. Once out of this range, the swing suddenly becomes larger. (Effects of the Invention) As described above, in the present invention, since the first twist angle is set to 87 to 93 degrees with respect to the length direction of the twisted yarn cord, the vibration in the belt width direction during running is suppressed.
It can prevent meandering and also improve the ply twist coefficient.
3.0 to 3.8, it is possible to prevent the belt cord strength from decreasing after running for a long time without reducing the original cord strength, thereby increasing the bending fatigue resistance and extending the belt life.
【図面の簡単な説明】[Brief explanation of the drawing]
図面は本発明の実施例を示し、第1図は歯付ベ
ルトの断面図、第2図は抗張体の下撚り角度の説
明図、第3図及び第4図は試験システムの説明
図、第5図及び第6図は試験結果の説明図であ
る。
1……歯付ベルト、1b……歯部、3……抗張
体。
The drawings show embodiments of the present invention; FIG. 1 is a sectional view of a toothed belt, FIG. 2 is an explanatory diagram of the pre-twisting angle of the tensile member, FIGS. 3 and 4 are explanatory diagrams of the test system, FIG. 5 and FIG. 6 are explanatory diagrams of the test results. 1... Toothed belt, 1b... Teeth, 3... Tensile body.