JPH0562414B2 - - Google Patents

Info

Publication number
JPH0562414B2
JPH0562414B2 JP20252684A JP20252684A JPH0562414B2 JP H0562414 B2 JPH0562414 B2 JP H0562414B2 JP 20252684 A JP20252684 A JP 20252684A JP 20252684 A JP20252684 A JP 20252684A JP H0562414 B2 JPH0562414 B2 JP H0562414B2
Authority
JP
Japan
Prior art keywords
pressure
container
molded body
compression molded
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20252684A
Other languages
Japanese (ja)
Other versions
JPS6180726A (en
Inventor
Yasukyo Ootani
Masahiro Tsujikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP20252684A priority Critical patent/JPS6180726A/en
Publication of JPS6180726A publication Critical patent/JPS6180726A/en
Publication of JPH0562414B2 publication Critical patent/JPH0562414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Discharge Lamp (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は放電ランプ用焼結電極の製造方法に関
するものである。 従来例の構成とその問題点 従来、放電ランプ用焼結電極の製造方法は、電
極材料として適当な金属粉末と電子放射性物質と
の混合粉末の圧縮成形体を焼結する際に、1気圧
の還元ガス雰囲気中、または真空中で圧縮成形体
を加熱し焼結する方法がとられている。 しかしながら、前者の場合には、多孔質の圧縮
成型体の内部にまで還元ガスが十分にいきわたら
ず、残留ガスや焼結の際に発生する不純ガスによ
つて、圧縮成形体内部が酸化するという問題があ
つた。とくに、電子放射性物質としてアルカリ土
類金属等の炭酸塩を用いた圧縮成形体の焼結のと
きには、この電子放射性物質が基本金属の存在下
で還元ガスと反応して圧縮成形体から除去されて
しまうという問題があつた。 一方、後者の場合には、前者の場合における問
題は生じないが、とくに電子放射性物質としてア
ルカリ土類金属の炭酸塩を用いるときには、この
炭酸塩の分解により酸化性ガスが発生して圧縮成
形体が酸化され、これを電極に用いた放電ランプ
は良好な特性を有しないので、これを防止するた
めに、焼結時の1回分の圧縮成形体の量を制限す
るとか、焼結時の昇温速度を遅くするとかいつた
生産性阻害の問題があつた。 発明の目的 本発明は良好な特性を有し、かつ量産性に適し
た放電ランプ用焼結電極の製造方法を提供するも
のである。 発明の構成 本発明は容器内に、金属粉末と、アルカリ土類
金属の炭酸塩からなる電子放射性物質との混合粉
末の圧縮成形体を入れ、前記容器内を1×10-3
Torr以下の圧力で真空に排気した後、前記排気
を続けながら、前記容器内に1×10-4〜300Torr
の圧力の還元ガスを導入し、この圧力を維持しな
がら、前記排気を続けて、前記圧縮成形体を焼結
する放電ランプ用焼結電極の製造方法を特徴とす
るものである。 実施例の説明 以下、本発明の実施例について図面を用いて説
明する。 図に示すように、試料として、モリブデン
(Mo)を基体金属とし、これに10重量%のアル
カリ土類金属炭酸塩からなる電子放射性物質を含
有する粉末の圧縮成形体1を、内部にヒータ2を
有する真空排気装置の容器3内に100個入れ、1
×10-5Torr以下の圧力になるまで真空ポンプで
排気を行う。圧縮成形体1の重量は500mg/個で
ある。モリブデンと電子放射性物質とほぼ均一に
混合されている。かかる場合、1×10-3Torrを
越える圧力の排気であれば、圧縮成形体の内部に
残留したガスにより焼結の際に圧縮成形体内部が
酸化されてしまうので、圧力を1×10-3Torr以
下にする必要がある。ついで、容器3内の排気を
続けながら、バリアブル・リークバルブ4を開け
て下表に示した圧力になるまで水素ボンベ5内の
水素ガスを容器3内に導入し、この圧力を維持し
ながら排気を続け、圧縮成形体1をヒータ2で加
熱して焼結を行う。真空ポンプとしては拡散ポン
プ6と油回転ポンプ7とを使用した。排気速度は
いずれも300l/sである。圧力が1×10-2Torr以
下の場合には拡散ポンプ6および油回転ポンプ7
の両方を、1×10-2Torrを越える場合には油回
転ポンプ7のみを稼動させた。なお、拡散ポンプ
6および油回転ポンプ7を稼働させる際には主に
バルブ8および荒引用バルブ9の両方をあけ、ま
た油回転ポンプ7のみを稼動させ際には荒引用バ
ルブ9のみをあける。ヒータ2の昇温速度は10
℃/分とした。室温から昇温し、焼結温度(最高
温度)を1000℃とした。 上記実験結果を下表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method of manufacturing a sintered electrode for a discharge lamp. Conventional structure and its problems Conventionally, in the manufacturing method of sintered electrodes for discharge lamps, a compressed body of a mixed powder of a metal powder and an electron radioactive substance suitable as an electrode material is sintered using a pressure of 1 atm. A method of heating and sintering a compression molded body in a reducing gas atmosphere or in a vacuum is used. However, in the former case, the reducing gas does not sufficiently reach the inside of the porous compression molded body, and the interior of the compression molded body is oxidized by residual gas and impurity gas generated during sintering. There was a problem. In particular, when sintering a compacted compact using a carbonate such as an alkaline earth metal as an electron radioactive substance, this electron radioactive substance reacts with reducing gas in the presence of the base metal and is removed from the compacted compact. I had a problem with putting it away. On the other hand, in the latter case, the problems in the former case do not occur, but especially when carbonates of alkaline earth metals are used as the electron radioactive substance, oxidizing gas is generated due to the decomposition of the carbonates, resulting in the compression molding. is oxidized, and a discharge lamp using this as an electrode does not have good characteristics. To prevent this, the amount of compression molded material for one sintering process may be limited, or the There was a problem with productivity inhibition, such as slowing down the heating rate. OBJECTS OF THE INVENTION The present invention provides a method for manufacturing a sintered electrode for a discharge lamp that has good characteristics and is suitable for mass production. Structure of the Invention The present invention places a compression-molded body of a mixed powder of a metal powder and an electron radioactive substance made of an alkaline earth metal carbonate in a container, and the inside of the container is heated to 1×10 −3
After evacuation to a pressure below Torr, while continuing the evacuation, 1×10 -4 to 300Torr is added to the container.
The present invention is characterized by a method for producing a sintered electrode for a discharge lamp, in which reducing gas is introduced at a pressure of 100 ml, and the compressed compact is sintered by continuing the evacuation while maintaining this pressure. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in the figure, as a sample, a compression molded body 1 of powder containing molybdenum (Mo) as a base metal and an electron radioactive substance made of 10% by weight of an alkaline earth metal carbonate is placed inside. Place 100 pieces in container 3 of a vacuum evacuation device with 1
Evacuate with a vacuum pump until the pressure is below ×10 -5 Torr. The weight of the compression molded product 1 is 500 mg/piece. It is almost uniformly mixed with molybdenum and electron radioactive material. In such a case, if the exhaust pressure exceeds 1×10 -3 Torr, the gas remaining inside the compression molded body will oxidize the inside of the compression molded body during sintering, so the pressure should be reduced to 1×10 -3 Torr. Must be below 3 Torr. Next, while continuing to exhaust the inside of the container 3, open the variable leak valve 4 and introduce the hydrogen gas in the hydrogen cylinder 5 into the container 3 until the pressure shown in the table below is reached, and continue to exhaust while maintaining this pressure. Then, the compression molded body 1 is heated with the heater 2 to perform sintering. A diffusion pump 6 and an oil rotary pump 7 were used as vacuum pumps. The pumping speed was 300 l/s in both cases. If the pressure is below 1×10 -2 Torr, use diffusion pump 6 and oil rotary pump 7.
When the pressure exceeds 1×10 -2 Torr, only the oil rotary pump 7 is operated. Note that when operating the diffusion pump 6 and the oil rotary pump 7, both the valve 8 and the rough intake valve 9 are mainly opened, and when only the oil rotary pump 7 is operated, only the rough intake valve 9 is opened. The heating rate of heater 2 is 10
°C/min. The temperature was raised from room temperature to a sintering temperature (maximum temperature) of 1000°C. The above experimental results are shown in the table below.

【表】【table】

【表】 焼結前重量−焼結後重量
※1 減量率=
[Table] Weight before sintering - Weight after sintering *1 Weight loss rate =

Claims (1)

【特許請求の範囲】[Claims] 1 容器内に、金属粉末と、アルカリ土類金属の
炭酸塩からなる電子放射性物質との混合粉末の圧
縮成形体を入れ、前記容器内を1×10-3Torr以
下の圧力で真空に排気した後、前記排気を続けな
がら、前記容器内に1×10-4〜300Torrの圧力の
還元ガスを導入し、この圧力を維持しながら、前
記排気を続けて、前記圧縮成形体を焼結すること
を特徴とする放電ランプ用焼結電極の製造方法。
1 A compression molded body of a mixed powder of metal powder and an electron radioactive substance made of carbonate of an alkaline earth metal was placed in a container, and the inside of the container was evacuated to a pressure of 1×10 -3 Torr or less. After that, while continuing the evacuation, a reducing gas at a pressure of 1×10 -4 to 300 Torr is introduced into the container, and while maintaining this pressure, the evacuation is continued to sinter the compression molded body. A method for manufacturing a sintered electrode for a discharge lamp, characterized by:
JP20252684A 1984-09-27 1984-09-27 Manufacture of sintering electrode for discharge lamp Granted JPS6180726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20252684A JPS6180726A (en) 1984-09-27 1984-09-27 Manufacture of sintering electrode for discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20252684A JPS6180726A (en) 1984-09-27 1984-09-27 Manufacture of sintering electrode for discharge lamp

Publications (2)

Publication Number Publication Date
JPS6180726A JPS6180726A (en) 1986-04-24
JPH0562414B2 true JPH0562414B2 (en) 1993-09-08

Family

ID=16458950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20252684A Granted JPS6180726A (en) 1984-09-27 1984-09-27 Manufacture of sintering electrode for discharge lamp

Country Status (1)

Country Link
JP (1) JPS6180726A (en)

Also Published As

Publication number Publication date
JPS6180726A (en) 1986-04-24

Similar Documents

Publication Publication Date Title
EP1098328A3 (en) Method of manufacturing solid electrolytic capacitors
US3584253A (en) Getter structure for electrical discharge and method of making the same
EP0219231B1 (en) Method of sintering compacts
EP0409275B1 (en) Method for fabricating an impregnated type cathode
JPH0562414B2 (en)
US5011742A (en) Article for controlling the oxygen content in tantalum material
GB1123015A (en) A process for producing sintered anodes
NL7500485A (en) HERMETICALLY SEALED ELECTRODE AND TUBE COVER, ALSO A METHOD OF MANUFACTURING THESE.
JPS60186480A (en) Manufacture of press processed matter
GB1441330A (en) Method of hot pressing powder bodies
ES335304A1 (en) Nonevaporative getter
GB1423981A (en) Discharge lamp
US2737607A (en) Incandescible cathode
CN114334417B (en) Preparation method of sintered neodymium-iron-boron magnet
US3004816A (en) Hydrogen breakdown of cathodes
JP2965824B2 (en) Production method of mercury alloy for lamp
GB817066A (en) Improvements in or relating to the manufacture of dispenser cathodes
JPH0963877A (en) Hot press and method and hot pressing rare earth magnet powder
JPS6146433B2 (en)
JP3844985B2 (en) Electric current pressure sintering apparatus and oxide sintering method in electric current pressure sintering apparatus
JP2910426B2 (en) Manufacturing method of tungsten powder sintered body for impregnated cathode
JPH0348253B2 (en)
JPS54162608A (en) Sintering method for titanium
JP3582061B2 (en) Sintered material and manufacturing method thereof
JPH06168661A (en) Manufacture of impregnation type cathode