JPH0561966B2 - - Google Patents

Info

Publication number
JPH0561966B2
JPH0561966B2 JP60291941A JP29194185A JPH0561966B2 JP H0561966 B2 JPH0561966 B2 JP H0561966B2 JP 60291941 A JP60291941 A JP 60291941A JP 29194185 A JP29194185 A JP 29194185A JP H0561966 B2 JPH0561966 B2 JP H0561966B2
Authority
JP
Japan
Prior art keywords
copper
soda lime
silanes
compound
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60291941A
Other languages
Japanese (ja)
Other versions
JPS62152515A (en
Inventor
Koichi Kitahara
Takashi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP60291941A priority Critical patent/JPS62152515A/en
Publication of JPS62152515A publication Critical patent/JPS62152515A/en
Publication of JPH0561966B2 publication Critical patent/JPH0561966B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシラン類の除去方法に関し、さらに詳
細には、半導体製造工程などから排出されるガス
中に含有されるシラン類の除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing silanes, and more particularly to a method for removing silanes contained in gases discharged from semiconductor manufacturing processes.

近年、半導体工業の発展とともに、シラン類の
使用量が著しく増加している。シラン類は結晶性
シリコン、アモルフアスシリコン、シリコンナイ
トライド、シリコンカーバイドの製造に使われる
だけでなく、酸化シリコン膜の生成にも用いられ
る。
In recent years, with the development of the semiconductor industry, the amount of silanes used has increased significantly. Silanes are used in the production of crystalline silicon, amorphous silicon, silicon nitride, and silicon carbide, as well as in the production of silicon oxide films.

シラン類としては、モノシランおよびジシラン
が代表的な化合物である。
Typical silanes include monosilane and disilane.

シラン類は燃焼範囲が広くまた条件によつては
空気中で自然発火するので非常に危険であり、ま
た吸入すると人体にも悪影響をおよぼすので、大
気に放出するに先立つて除去する必要がある。
Silanes have a wide flammable range and can spontaneously ignite in the air under certain conditions, making them extremely dangerous and harmful to humans if inhaled, so they must be removed before being released into the atmosphere.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

従来、シラン類を含有する排ガスを処理するに
は、たとえば特開昭56−84619号公報および特開
昭57−94323号公報に示されるように苛性ソーダ
などのアルカリ性水溶液で洗浄して湿式除去する
方法が採用されてきた。しかしながら湿式処理で
は装置が大型化し、またアルカリ性水溶液の取扱
いが危険なため不便であつた。
Conventionally, in order to treat exhaust gas containing silanes, there has been a method of wet removal by washing with an alkaline aqueous solution such as caustic soda, as shown in, for example, JP-A-56-84619 and JP-A-57-94323. has been adopted. However, wet processing is inconvenient because the equipment becomes large and handling of the alkaline aqueous solution is dangerous.

一方、特開昭58−1281468号公報で示されるよ
うに、固型担体に苛性ソーダ水溶液を単独に、ま
たは過マンガン酸カリウムのような酸化剤水溶液
を同時に含浸させてなる乾式吸収処理剤が提案さ
れている。この処理剤を用いた場合には半乾式で
あるから装置を小型化できるメリツトはあるが、
苛性ソーダや過マンガン酸カリが担体の表面に析
出したり、潮解することを繰り返したりするうち
に充填筒の圧力損失が増大したり、場合によつて
は閉塞するトラブルなどを惹き起して、半導体製
造プロセス全体を停止する必要が生じうるなどの
欠点がある。またこの現象とも関係して、ガスが
チヤンネリングし易く、理想的な状態で測定した
データを下廻る除去能力しか得らない場合もあつ
た。
On the other hand, as shown in JP-A-58-1281468, a dry absorption treatment agent has been proposed in which a solid carrier is impregnated with an aqueous solution of caustic soda alone or with an aqueous solution of an oxidizing agent such as potassium permanganate. ing. When this treatment agent is used, it has the advantage of being able to downsize the equipment because it is a semi-dry process.
As caustic soda and potassium permanganate repeatedly precipitate on the surface of the carrier and deliquesce, the pressure loss in the filling cylinder increases, and in some cases, problems such as blockage occur, causing problems such as damage to semiconductors. Disadvantages include that the entire manufacturing process may need to be stopped. Also, related to this phenomenon, gas tends to channel, and in some cases, the removal ability is less than the data measured under ideal conditions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、これら従来技術の欠点を改善す
べく排ガス中などに含有されているシラン類の除
去方法について鋭意検討した結果、ソーダライム
に銅()化合物を担持させてなる除去剤にシラ
ン類を接触させるとシラン類が効率良く除去され
ることを見い出し、本発明を完成した。
In order to improve the shortcomings of these conventional techniques, the present inventors conducted intensive studies on methods for removing silanes contained in exhaust gas, etc., and found that silanes were added to a removal agent made by supporting copper () compounds on soda lime. They have discovered that silanes can be efficiently removed by bringing them into contact with each other, and have completed the present invention.

すなわち本発明は有害成分としてシラン類を含
有するガスと除去剤とを接触させるシラン類の除
去方法において、ソーダライムに銅()化合物
(銅の二価の化合物)を担持させてなる除去剤を
用いることを特徴とするシラン類の除去方法であ
る。
That is, the present invention provides a method for removing silanes in which a gas containing silanes as a harmful component is brought into contact with a removing agent. This is a method for removing silanes characterized by using the method.

本発明は窒素、水素、アルゴン、ヘリウムおよ
び空気などとシラン類との混合ガスに適用され
る。
The present invention is applied to mixed gases of nitrogen, hydrogen, argon, helium, air, etc., and silanes.

本発明によつて除去されるシラン類としては主
にモノシラン、ジシランであるが、ハロゲン化シ
ラン類の除去にも効力を有する。
The silanes removed by the present invention are mainly monosilane and disilane, but it is also effective in removing halogenated silanes.

本発明で使用するソーダライムは、通常、ソー
ダ石灰とよばれるものであり、理化学辞典(岩波
書店1983年の761頁)に記載されているように、
通常、生石灰を水酸化ナトリウムの濃厚溶液に浸
し、加熱してつくつた強い塩基性の白色粒状の固
形物質である。ソーダライムは試薬としても日本
工業規格K8603に規定されている。ソーダライム
の化学成分は水酸化カルシウムが主であり、これ
に少量の水酸化ナトリウムが含有されている物質
であり、ソーダライムの名称で市販もされてい
る。
The soda lime used in the present invention is usually called soda lime, and as described in the Physical and Chemical Dictionary (Iwanami Shoten 1983, p. 761),
It is a strongly basic, white, granular solid substance that is usually made by soaking quicklime in a concentrated solution of sodium hydroxide and heating it. Soda lime is also specified as a reagent in Japanese Industrial Standard K8603. The chemical component of soda lime is mainly calcium hydroxide, which also contains a small amount of sodium hydroxide, and is also sold commercially under the name soda lime.

これらの市販のソーダライムは不定形の粒状や
顆粒状であり、100〜200℃で遊離される水分を19
%以下含んでいる。本発明では、この水分を蒸発
させて用いても良いが、シラン類の浄化能力の点
からみるとそのまま水分を保たせる方が好まし
い。
These commercially available soda limes are in the form of irregularly shaped granules or granules, and the moisture released at 100 to 200℃ is reduced to 19%.
Contains less than %. In the present invention, this water may be used after being evaporated, but from the viewpoint of the purifying ability of the silanes, it is preferable to keep the water as it is.

ソーダライムの粒の大きさは、通常1号品とし
て市販されているものは約1.5〜3.5mm、2号品は
約3.5〜5.5mm、3号品は約5.5〜7.0mm、元素分析
用は約1.5〜2.5mmでありこれらのいずれを用いて
もよい。
The particle size of soda lime is usually about 1.5 to 3.5 mm for commercially available No. 1 products, about 3.5 to 5.5 mm for No. 2 products, about 5.5 to 7.0 mm for No. 3 products, and for elemental analysis. The diameter is approximately 1.5 to 2.5 mm, and any of these may be used.

本発明でソーダライムに担持させる銅()化
合物としては、酸化銅、水酸化銅および塩基性炭
酸銅などがあり、これらの一種または二種以上の
混合物である。酸化銅としては本来の酸化銅であ
るCuOと、水和酸化銅と呼ばれるCuO・nH2Oと
いう化合物群が知られているが、これら両者共に
有効である。
In the present invention, the copper() compound supported on soda lime includes copper oxide, copper hydroxide, basic copper carbonate, etc., and these compounds are one type or a mixture of two or more types. As copper oxide, CuO, which is the original copper oxide, and a compound group called CuO·nH 2 O, which is called hydrated copper oxide, are known, and both of these are effective.

これらの銅()化合物は、ソーダライムに対
し、Cuとしての担持量は通常0.1%〜50%、好ま
しくは1%〜30%とされる。銅としての担持量が
0.1%よりも少ない場合には、除去剤の能力はソ
ーダライムのそれと大差なく、また50%より多く
担持させるのは、物理的に困難であつて、銅
()化合物のソーダライムからの剥離が起り易
いばかりでなく、ガス中のシラン類の濃度が高い
ときには発熱によつて温度が上昇し、粉化や銅
()化合物の金属銅への還元などを生じ、除去
剤の能力を低下させる。
The amount of these copper () compounds supported as Cu relative to soda lime is usually 0.1% to 50%, preferably 1% to 30%. The amount of copper supported is
When the amount is less than 0.1%, the ability of the remover is not much different from that of soda lime, and it is physically difficult to support more than 50%, and the removal of the copper() compound from the soda lime is difficult. Not only is this easy to occur, but when the concentration of silanes in the gas is high, the temperature rises due to heat generation, causing powdering and reduction of the copper() compound to metallic copper, reducing the ability of the removal agent.

本発明で用いる銅()化合物は、それぞれの
化合物の従来公知の種々の方法によつて調製され
うる。
The copper() compounds used in the present invention can be prepared by various conventionally known methods for each compound.

例えば硫酸銅、硝酸銅、塩化銅または酢酸銅な
どの銅()塩と水酸化アルカリとの中和反応に
よつて調製される水酸化銅、および水酸化銅と炭
酸アルカリとの中和反応によつて調製される塩基
性炭酸銅、あるいはこのようにして調製された水
酸化銅または塩基性炭酸銅を焼成して調製される
酸化銅などである。
For example, copper hydroxide prepared by the neutralization reaction of a copper salt such as copper sulfate, copper nitrate, copper chloride or copper acetate with an alkali hydroxide, and the neutralization reaction of a copper hydroxide with an alkali carbonate. These include basic copper carbonate prepared in this manner, and copper oxide prepared by calcining copper hydroxide or basic copper carbonate thus prepared.

銅()化合物の担持量が、ソーダライムに対
しCuとして5%以下に止める場合には、出発物
質として硫酸銅、硝酸銅、塩化銅または酢酸銅な
どを水溶液の形でソーダライムに含浸させて前記
の銅()化合物をソーダライム状に析出させる
ことは可能である。しかし、この方法よりも前述
したような酸基を中和して得られる化合部を別途
合成してから担持させる方が好ましい。
If the amount of copper () compound supported is limited to 5% or less as Cu in soda lime, soda lime is impregnated with starting materials such as copper sulfate, copper nitrate, copper chloride, or copper acetate in the form of an aqueous solution. It is possible to precipitate the copper() compound mentioned above in the form of soda lime. However, rather than this method, it is preferable to separately synthesize a compound obtained by neutralizing acid groups as described above and then support the compound.

銅()化合物をソーダライムに担持させるに
は乾式法と湿式法が可能でありどちらも有効であ
るが、乾式法の法が工業的には幾分有利である。
乾式法の一例としては酸化銅、塩基性炭酸銅など
の銅()化合物の粉末をソーダライムにまぶす
ことによつて容易に担持させることができる。湿
式法の一例としては、銅()化合物のペースト
をソーダライムにまぶす方法がある。この湿式法
では、銅()化合物をソーダライムにまぶしな
がら乾燥させる必要があるので、工業的には不利
な点があるがシラン類の除去に関しては乾式法と
同様な効力を有する。
A dry method and a wet method are possible for supporting a copper() compound on soda lime, and both are effective, but the dry method is somewhat advantageous from an industrial perspective.
As an example of a dry method, powder of a copper compound such as copper oxide or basic copper carbonate can be easily supported by sprinkling it on soda lime. An example of a wet method is a method in which soda lime is sprinkled with a paste of a copper compound. This wet method has disadvantages from an industrial perspective, since it is necessary to dry the copper() compound while sprinkling it on soda lime, but it is as effective as the dry method in terms of removing silanes.

本発明において銅()化合物をソーダライム
に担持させてなる除去剤は従来提案されているシ
ラン除去剤とは異なり、主成分がソーダライムの
水酸化カルシウムと銅()化合物なので、潮解
性はなく、またこのため再析出などによる充填筒
の閉塞の惧れもなく、長期間に渉る使用に十分耐
える。また従来提案されている除去剤よりも、除
去能力が大きくこの点からも有利である。
In the present invention, the removing agent made by supporting a copper() compound on soda lime is different from conventionally proposed silane removers because its main components are calcium hydroxide from soda lime and a copper() compound, so it does not have deliquescent properties. Moreover, there is no fear of clogging of the filling cylinder due to redeposition, etc., and it can withstand use for a long period of time. It also has a greater removal ability than conventionally proposed removers, and is advantageous in this respect as well.

さらに被処理ガス中にシラン類に加えアルシ
ン、ホスフイン、ジボランおよびセレン化水素な
どの水素化物系ガスが含有されている場合にはこ
れらもシラン類とともに除去できるという利点も
ある。
Furthermore, when the gas to be treated contains hydride gases such as arsine, phosphine, diborane, and hydrogen selenide in addition to silanes, there is an advantage that these can also be removed together with the silanes.

本発明においてソーダライムに銅()化合物
を担持させてなる除去剤は除去筒内に充填されて
固定床として用いられる。シラン類を含有するガ
スはこの除去剤筒内に流され、除去剤と接触させ
ることにより、有害成分であるシラン類が除去さ
れ、被処理ガスは浄化される。
In the present invention, a removing agent made of soda lime supporting a copper (2) compound is packed into a removing cylinder and used as a fixed bed. The gas containing silanes is flowed into the removal agent cylinder and brought into contact with the removal agent, thereby removing harmful components such as silanes and purifying the gas to be treated.

本発明の除去方法が適用される被処理ガス中に
含有されるシラン類の濃度およびガスの流速に制
限はないが一般に濃度が高い程流速を小さくする
ことが好ましい。
Although there are no restrictions on the concentration of silanes contained in the gas to be treated and the gas flow rate to which the removal method of the present invention is applied, it is generally preferable to decrease the flow rate as the concentration increases.

例えばモノシランについて、その濃度が10〜
100%のときは、被処理ガスの空筒線速度は通常
は10cm/sec以下、好ましくは1cm/sec以下とさ
れる。また濃度が10%未満の場合には、空筒線速
度を200cm/sec以下とするのが好ましい。
For example, regarding monosilane, its concentration is 10~
When it is 100%, the cylinder linear velocity of the gas to be treated is usually 10 cm/sec or less, preferably 1 cm/sec or less. Further, when the concentration is less than 10%, it is preferable that the linear velocity of the blank tube is 200 cm/sec or less.

本発明の除去方法を適用しうる被処理ガスは、
通常は乾燥状態であるが、湿潤状態であつても除
去筒内で結露する程、湿つていなければ良い。
The gases to be treated to which the removal method of the present invention can be applied are:
Usually it is in a dry state, but even if it is in a wet state, it is fine as long as it is not so wet that dew condenses inside the removal cylinder.

被処理ガスと除去剤との接触温度は100℃以上
が好ましい。これより高温になると、ソーダライ
ム中の水分が極めて少なくなつてシラン類の除去
能力が低下することもある。通常は常温ないし室
温でよく、特に加熱や冷却をする必要はない。
The contact temperature between the gas to be treated and the removal agent is preferably 100°C or higher. If the temperature is higher than this, the water content in the soda lime may become extremely low and the ability to remove silanes may decrease. Normally, room temperature or room temperature is sufficient, and there is no need for particular heating or cooling.

被処理ガスの圧力は常圧、減圧、加圧のいずれ
でも良いが、通常は20Kg/cm2abs以下であり、好
ましくは0.001〜10Kg/cm2absの範囲である。
The pressure of the gas to be treated may be normal pressure, reduced pressure, or increased pressure, but is usually 20 kg/cm 2 abs or less, preferably in the range of 0.001 to 10 kg/cm 2 abs.

〔発明の効果〕 本発明の除去方法によれば半導体製造工程など
から排出されるシラン類を有害成分として含有す
るガスからこれらの有害成分を、乾燥状態でしか
も低温で効率良く除去しうる。
[Effects of the Invention] According to the removal method of the present invention, harmful components such as silanes can be efficiently removed from gases containing harmful components such as silanes discharged from semiconductor manufacturing processes in a dry state and at low temperatures.

実施例 1 硫酸銅と水酸化ナトリウムのそれぞれの水溶液
を混合して水酸化銅の沈殿を生成させた。次いで
良く洗浄した後乾燥させ、次いで焼成して酸化銅
を調製した。この酸化銅を市販の1号ソーダライ
ムにまぶして8%担持させた。
Example 1 Aqueous solutions of copper sulfate and sodium hydroxide were mixed to form a precipitate of copper hydroxide. Next, it was thoroughly washed, dried, and then fired to prepare copper oxide. This copper oxide was sprinkled on commercially available No. 1 soda lime to make it carry 8% of the copper oxide.

内径19φ、長さ400で第1図に示したような
円筒状の石英製のリアクター10に塩基性炭酸銅を
変色成分とする検知剤(検知下限界シラン
10ppm)を1cm(8.5ml、約8g)充填し、次に
その上に上記で調製した酸化銅担持のソーダライ
ムを充填長10cm(85ml、約78g)充填し、更に同
様に検知剤と除去剤とを交互に3回繰り返し積み
重ねて充填し、最後に検知剤を1cm充填した。リ
アクター10の上部から4.5%モノシランを含有
する水素ガスを常温で170ml/min(空筒線速度1
cm/sec)で流通させ第1図における検知剤6が
変色するまでの時間を測定した結果は345分であ
つた。これはモノシランの処理能力が31/除
去剤に相当する。
A cylindrical quartz reactor 10 with an inner diameter of 19φ and a length of 400 mm as shown in Fig.
10ppm) was filled to 1 cm (8.5 ml, about 8 g), and then the copper oxide-supported soda lime prepared above was filled to a filling length of 10 cm (85 ml, about 78 g), and then the detection agent and removal agent were added in the same way. These steps were alternately repeated three times and filled, and finally, 1 cm of the detection agent was filled. Hydrogen gas containing 4.5% monosilane was supplied from the top of reactor 10 at room temperature at 170 ml/min (cavity linear velocity 1
The time required for the detection agent 6 shown in FIG. 1 to change color after flowing at a rate of 345 minutes (cm/sec) was 345 minutes. This corresponds to a monosilane treatment capacity of 31/removal agent.

実施例 2 硫酸銅と炭酸ナトリウムのそれぞれの水溶液を
混合して塩基性炭酸銅の沈殿を生成させた。次い
で良く洗浄した後乾燥させ、塩基性炭酸銅の粉末
を調製した。この塩基性炭酸銅を市販のソーダラ
イムにまぶして15%担持させた。
Example 2 Aqueous solutions of copper sulfate and sodium carbonate were mixed to form a basic copper carbonate precipitate. Next, it was thoroughly washed and dried to prepare basic copper carbonate powder. This basic copper carbonate was sprinkled on commercially available soda lime to obtain a 15% loading.

実施例1と同じリアクター10に、実施例1の
酸化銅担持ソーダライムの代りに、こゝで調製し
た塩基性炭酸銅担持のソーダライムを充填した他
は実施例1と全く同様に充填した。
The same reactor 10 as in Example 1 was filled in exactly the same manner as in Example 1, except that the basic copper carbonate-supported soda lime prepared here was filled in place of the copper oxide-supported soda lime of Example 1.

リアクター10の上部から4.5%モノシランを
含有する窒素ガスを常温で170ml/min(空筒線速
度1cm/sec)で流通させ第1図における検知剤
6が変色するまでの時間を測定した結果は345分
であつた。これはモノシランの処理能力が31/
吸着剤に相当する。
Nitrogen gas containing 4.5% monosilane was passed from the top of the reactor 10 at room temperature at 170 ml/min (empty linear velocity 1 cm/sec), and the time taken for the detection agent 6 in Fig. 1 to change color was measured, and the result was 345. It was hot in minutes. This means that the processing capacity of monosilane is 31/
Corresponds to an adsorbent.

実施例 3 硫酸銅と水酸化ナトリウムのそれぞれの水溶液
を混合して水酸化銅の沈殿を生成させた。次いで
良く洗浄した後、乾燥させた水和酸化銅を生成さ
せた。この水和酸化銅を市販の1号ソーダライム
にまぶして15%担持させた。
Example 3 Aqueous solutions of copper sulfate and sodium hydroxide were mixed to form a copper hydroxide precipitate. Then, after thorough washing, dried hydrated copper oxide was produced. This hydrated copper oxide was sprinkled on commercially available No. 1 soda lime to achieve a 15% loading.

実施例1の酸化銅担持ソーダライムの代りに、
ここで調製した水和酸化銅担持のソーダライムを
充填した他は実施例2と全く同様に充填した。
Instead of copper oxide-supported soda lime in Example 1,
Filling was carried out in exactly the same manner as in Example 2, except that the soda lime supporting hydrated copper oxide prepared here was filled.

リアクター10の上部から1%モノシランを含
有する水素ガスを常温で850ml/min(空筒線速度
5cm/sec)で流通させ第1図における検知剤6
が変色するまでの時間を測定すると285分であつ
た。これはモノシランの処理能力が29/吸着
剤に相当する。
Detecting agent 6 in FIG.
The time it took for the color to change was measured and was 285 minutes. This corresponds to a monosilane treatment capacity of 29/adsorbent.

比較例 1 実施例1の酸化銅担持ソーダライムの代りに1
号ソーダライムを用いる他は実施例1と全く同様
に充填した。
Comparative Example 1 1 in place of the copper oxide-supported soda lime of Example 1
Filling was carried out in the same manner as in Example 1, except that No. 1 soda lime was used.

リアクター10の上部から1%モノシランを含
有する水素ガスを常温で850ml/min(空筒線速度
5cm/sec)で流通させ第1図における検知剤6
が変色するまでの時間を測定すると175分であつ
た。これはモノシランの処理能力が17/ソー
ダライムに相当する。
Detecting agent 6 in FIG.
The time it took for the color to change was measured and was 175 minutes. This corresponds to a monosilane treatment capacity of 17/soda lime.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は除去剤および検知剤が充填されたリア
クターの側面図である。 図において、1,2,3および4……除去剤、
5,6,7,8および9……検知剤、ならびに1
0……リアクター。
FIG. 1 is a side view of a reactor filled with removal agent and detection agent. In the figure, 1, 2, 3 and 4...removal agent,
5, 6, 7, 8 and 9...detecting agent, and 1
0...Reactor.

Claims (1)

【特許請求の範囲】[Claims] 1 有害成分としてシラン類を含有するガスと除
去剤とを接触させるシラン類の除去方法におい
て、ソーダライムに銅()化合物を担持させて
なる除去剤を用いることを特徴とするシラン類の
除去方法。
1. A method for removing silanes in which a removal agent is brought into contact with a gas containing silanes as a harmful component, the method comprising using a removal agent made by supporting a copper() compound on soda lime. .
JP60291941A 1985-12-26 1985-12-26 Removal of silanes Granted JPS62152515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291941A JPS62152515A (en) 1985-12-26 1985-12-26 Removal of silanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291941A JPS62152515A (en) 1985-12-26 1985-12-26 Removal of silanes

Publications (2)

Publication Number Publication Date
JPS62152515A JPS62152515A (en) 1987-07-07
JPH0561966B2 true JPH0561966B2 (en) 1993-09-07

Family

ID=17775438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291941A Granted JPS62152515A (en) 1985-12-26 1985-12-26 Removal of silanes

Country Status (1)

Country Link
JP (1) JPS62152515A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182088A (en) * 1990-09-07 1993-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Removal of gaseous hydrides
JP3347478B2 (en) * 1994-06-13 2002-11-20 日本パイオニクス株式会社 Exhaust gas purification method
JP5498660B2 (en) * 2008-03-03 2014-05-21 大陽日酸株式会社 Silane disinfectant and method

Also Published As

Publication number Publication date
JPS62152515A (en) 1987-07-07

Similar Documents

Publication Publication Date Title
EP0673669B1 (en) Cleaning method for harmful gases
EA002045B1 (en) Decarbonating gas streamsusing zeolite adsorbents
JP2001338910A (en) Abatement agent for halogen type gas, abatement method and its use
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
JPH05237324A (en) Method for purifying harmful gas
JPH0561966B2 (en)
JP2691927B2 (en) How to remove harmful components
JP2011200750A (en) Method for removing halogen-based gas
KR20010061933A (en) Cleaning agent and cleaning process of harmful gas
JP3701741B2 (en) Hazardous gas purification agent
JP3260825B2 (en) How to purify harmful gases
JPS62152516A (en) Removal of silanes
JPH0457368B2 (en)
JPS6190726A (en) Removing agent
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JP2700412B2 (en) Hydride gas purification method
JPH0687943B2 (en) Exhaust gas purification method
JPH074506B2 (en) Exhaust gas purification method
JPH07284631A (en) Noxious gas cleaning agent
JPS621439A (en) Removal of noxious component
JP2002370013A (en) Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JP3154340B2 (en) Method for purifying germanium hydride
JPH08206445A (en) Purification of exhaust gas
JP2608394B2 (en) Remover
JP2001190965A (en) Purifying agent for poisonous gas and purification method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees