JPH0561941B2 - - Google Patents
Info
- Publication number
- JPH0561941B2 JPH0561941B2 JP60284342A JP28434285A JPH0561941B2 JP H0561941 B2 JPH0561941 B2 JP H0561941B2 JP 60284342 A JP60284342 A JP 60284342A JP 28434285 A JP28434285 A JP 28434285A JP H0561941 B2 JPH0561941 B2 JP H0561941B2
- Authority
- JP
- Japan
- Prior art keywords
- blood
- layer
- addition
- carbon dioxide
- silicone rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000008280 blood Substances 0.000 claims description 62
- 210000004369 blood Anatomy 0.000 claims description 61
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 44
- 238000003860 storage Methods 0.000 claims description 23
- 239000001569 carbon dioxide Substances 0.000 claims description 22
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 21
- 229920002379 silicone rubber Polymers 0.000 claims description 19
- 239000004945 silicone rubber Substances 0.000 claims description 19
- -1 polyethylene Polymers 0.000 claims description 12
- 239000004698 Polyethylene Substances 0.000 claims description 8
- 239000005062 Polybutadiene Substances 0.000 claims description 7
- 229920002857 polybutadiene Polymers 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 239000004814 polyurethane Substances 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 7
- 238000012644 addition polymerization Methods 0.000 claims description 6
- 239000010836 blood and blood product Substances 0.000 claims description 5
- 229940125691 blood product Drugs 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 36
- 239000010410 layer Substances 0.000 description 32
- 230000035699 permeability Effects 0.000 description 31
- 210000003743 erythrocyte Anatomy 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 8
- 229920001296 polysiloxane Polymers 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000004800 polyvinyl chloride Substances 0.000 description 6
- 229920000915 polyvinyl chloride Polymers 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000012503 blood component Substances 0.000 description 4
- 239000005038 ethylene vinyl acetate Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229930024421 Adenine Natural products 0.000 description 3
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229960000643 adenine Drugs 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- IJRKANNOPXMZSG-SSPAHAAFSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O IJRKANNOPXMZSG-SSPAHAAFSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000034659 glycolysis Effects 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 2
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000003761 preservation solution Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- XOHUEYCVLUUEJJ-UHFFFAOYSA-N 2,3-Bisphosphoglyceric acid Chemical compound OP(=O)(O)OC(C(=O)O)COP(O)(O)=O XOHUEYCVLUUEJJ-UHFFFAOYSA-N 0.000 description 1
- RSGFPIWWSCWCFJ-VAXZQHAWSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;phosphoric acid Chemical compound OP(O)(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O RSGFPIWWSCWCFJ-VAXZQHAWSA-N 0.000 description 1
- WWUVJRULCWHUSA-UHFFFAOYSA-N 2-methyl-1-pentene Chemical compound CCCC(C)=C WWUVJRULCWHUSA-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 125000005376 alkyl siloxane group Chemical group 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000002577 cryoprotective agent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000004023 fresh frozen plasma Substances 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012793 heat-sealing layer Substances 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920006136 organohydrogenpolysiloxane Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001843 polymethylhydrosiloxane Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 239000003634 thrombocyte concentrate Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Medical Preparation Storing Or Oral Administration Devices (AREA)
Description
〔産業上の利用分野〕
本発明は、全血、赤血球濃厚液、血小板濃厚液
等の血液及び血液製剤の保存用容器に関するもの
である。
〔従来技術〕
血液、特に全血及び赤血球の保存は従来、ガラ
ス製容器またはポリ塩化ビニル製バツグに採血
し、冷蔵庫内で4〜6℃の低温で保存されて来
た。特に塩化ビニル製バツグは、柔軟で透明性が
よく、高圧蒸気滅菌に耐える耐熱性と、血液保存
中の低温に耐える耐寒性、血液成分分離のための
種々の操作に耐える機械的強度を有しており、更
には加工性、衛生性に優れている為、広く世界中
で使用されて来た。血液の保存性も、ガラス製容
器に比べて優れていることが知られている。しか
しながら、この様なポリ塩化ビニル製バツグで保
存しても、赤血球機能、特に赤血球の酸素運搬能
が保存日数と共に低下する為、現在ではその保存
日数は国内では21日間と定められている。しか
し、2週間を過ぎたものでは機能低下が著しく、
特に血漿成分の少ない赤血球濃厚液において、そ
の劣化は顕著であり臨床上問題になつている。
一方、血小板製剤は凝血機能の付与を目的とし
て近年その需要が著しく増大しているものの、保
存開始後短時間で血小板が持つ機能である粘着
能、凝集能が失われる為、その有効期間は日本で
は採血から常温で48時間と定められているが、そ
の期間では事実上半分以上が機能を失つている。
赤血球の持つ血液酸素運搬能、及び血小板の持つ
凝血能を長く保たせることは、貴重な人血資源の
有効利用に役立つばかりでなく、輸血効果そのも
のを左右する根本的な重要問題であり、従来より
熱心に研究がなされて来ている。
保存赤血球の酸素運搬能を長期間保持するため
の研究の多くは保存液に関するものであり、イノ
シン、アデニン、アデノシンなどを保存液に添加
する方法が提案されている。特にアデニンについ
ては、Lee Woodらが、“Transfusion”,Vol.11,
No.3,p.123(1971)で、酸性クエン酸塩−ブドウ
糖溶液とアデニンとを一緒に使用することにより
35日間保存できること、そしてこの方法がスウエ
ーデンで主要な貯蔵法となつていることを報告し
ている。また、PHの影響が大きいことは、“J.
Lab.and Clin.Medicine”,Vol.80,No.5,p.723
〜728(1972)に報告されており、且つ、血液保存
容器に使用される合成樹脂の気体透過性が、血液
または血液製剤の機能に大きな影響を与えること
が報告されている。即ち、保存血の糖代謝によつ
て発生した二酸化炭素ガスが容器内に蓄積される
ような、二酸化炭素ガス透過性の劣る容器におい
ては保存血のPH低下を来たし、血液血球成分の機
能低下が著しい。
ここで述べられた事を基礎にして、Dow
Corning社は特開昭53−20683号公報に、Ca
(OH)2が配合された硬化シリコーンゴムに接触
した状態で血液を保存する血液貯蔵袋を提案し、
40日以上赤血球の機能を保持できることを開示し
ている。更にここでは振盪の効果も提示している
が、厳密な意味での素材の気体透過度にはふれて
いない。また、PHが高く保たれる方が有利である
ことから、抗凝固剤としてPHの緩衝効果の高い
CPD液(Citrate−Phosphate−Dextrose)が、
ACD液(Acid−Citrate−Dextrose)よりも優れ
ていると言うことが判り、CPD液を使つた保存
方法が実用化されてきた。更に浜崎らにより
PEP(Phospho−Enol−Pyruvate)を、ACD血、
CPD血(夫々、ACD液、CPD液を添加した血液)
に添加することにより、赤血球の2,3−DPG
レベルが高く保たれると言う報告がなされている
が、操作が煩雑、加熱滅菌ができないなどのため
実用化されていない。
この他−30℃、−80℃、−198℃等の極低温で凍
結状態で使われる凍結血液バツグがあり、これら
の目的にはポリイミド、フツ素系樹脂、延伸ポリ
エチレン等のフイルムよりなるバツグが提案され
ている。貴重な血液の保存日数の延ばすことは、
資源の有効利用上重要なことである。凍結状態で
は少なくとも6ケ月間またはそれ以上の期間赤血
球を保存することが可能で、既に稀な血液型の血
液、血液分画成分の保存については実用化されて
いる。しかしながら、血液を凍結させる際に添加
するグリセロール等の凍害防止剤を除去するのに
多くの手数がかかり、回収効率も低いことが知ら
れており、新鮮凍結血漿を除いては普及するまで
には至つていない。
血小板については、Murphy and Gardnerが、
“Blood”,Vol.46,p.209〜218(1975)で、血小
板濃厚液を保存する際に、塩化ビニル樹脂製の容
器を用いるとPH低下をきたし、血小板の寿命の低
下をきたすが、ポリエチレン製の容器を用いた場
合にはPH低下が少ないことを開示している。さら
に血小板の寿命を維持するために必要な条件を研
究した結果、(1)血小板の解糖作用によつて発生し
た乳酸がPHを低下させ、PHの低下速度が血小板の
数にほぼ逆比例すること、(2)血小板の代謝によつ
て発生した二酸化炭素ガスを貯蔵容器の外に逃が
し、容器内の酸素分圧を高くすると解糖作用が抑
制されること、(3)保存用容器の材料として気体透
過性のよいポリエチレンを使用すると有利である
が、塩化ビニル樹脂についてもそれを薄くして気
体が透過し易くすれば同様な効果があること、を
明らかにしている。
このような事実に基づいて、特開昭58−29465
号公報では、エチレンとα−オレフインのポリマ
ー、イオノマーならびにイオノマー/ポリエステ
ル・エラストマーと線状低密度ポリエチレン・エ
ラストマーのラミネートもしくは共押出物(以下
オレフイン系樹脂という)から作られた血小板貯
蔵容器を開示している。ここでは、二酸化炭素ガ
スの透過量が3870〜約7000ml/m2・24hr・atm
で、且つ酸素の透過係数が約1500ml/m2・24hr・
atm以上である容器を提示しており、3870ml/
m2・24hr・atm以下の二酸化炭素ガス透過係数で
は二酸化炭素ガスを充分に容器の外に逃がすこと
ができず、逆に7000ml/m2・24hr・atmより著し
く過大であると血小板を含む液体のPHが7.5以上
になり、その寿命の低下をきたすとしている。し
かしながら、この容器は赤血球の保存には溶血を
起し易く不向きである。
また特開昭59−189154号公報では、線状ポリエ
ステル、エチレン系共重合体等の高分子可塑剤の
存在下に、スチレン−ブタジエン共重合体およ
び/またはその誘導体に塩化ビニル系モノマーを
反応させて得られたグラフト共重合体および安定
剤よりなる樹脂組成物を提案している。ここでは
二酸化炭素ガス透過係数について、2.5〜9.0×103
ml/m2・24hr・atmであることを規定している。
しかしながら、二酸化炭素ガスの透過係数は0.4
mm厚で3000ml/m2・24hr・atmがやつとであり、
高ガス透過性にするためには、0.2mm以下の厚み
にすることが必要で、これのみでは強度面で不安
がある。
更に、血液バツグへの血小板の粘着の防止、及
びポリ塩化ビニル系バツグにおけるDOP可塑剤
による血小板凝集能の低下を防止する目的で、特
開昭59−197256にてはアミノアルキルシロキサン
−ジメチルシロキサン系アルキルシロキサン単位
を主体とするシリコーン樹脂を、熱接着性を疎外
しない程度に薄く覆つたポリ塩化ビニル製バツ
グ、特開昭56−116466号公報及び特開昭56−
116469号公報にはポリ塩化ビニルの表層の少なく
とも一部に架橋層を有し、且つ架橋層の上に線状
構造のオルガノポリシロキサンの層が形成された
塩化ビニル系樹脂からなる血液バツグが提案され
ている。しかしながら、これらのシリコーン樹脂
は皮膜の強度は弱く亀裂が入ることがある。
本発明者らは、血液、特に全血及び赤血球濃厚
液の保存について検討した結果、薄膜のポリ塩化
ビニル製またはポリエチレン製樹脂容器に充填さ
れた血液及び赤血球濃厚液を4〜6℃で保存する
と、その細胞成分がその機能を十分保持しつつ相
当長期間保存できること、その時血液中の二酸化
炭素ガス分圧が低く保たれていること、PHの低下
が少ない事を見い出し、また、血小板について
は、既知のごとく高い二酸化炭素ガス透過性を持
つた容器であれば血小板の保存性が優れるという
事実に基づき、各種保存容器について検討を加え
た結果本発明を完成するに至つた。
これらの高ガス透過性を与える血液保存用容器
として、本発明者らは先に、特願昭59−145948号
および特願昭59−145949号に、単体もしくは複合
フイルムによる血液保存用容器を提案した。特願
昭59−145948号は、特に血液適合性に優れた付加
重合型シリコーンゴムが熱可塑性樹脂と強固に接
着する事を応用したもので、血液に直接接触する
面が付加重合型シリコーンゴムより成る血液保存
用容器である。
更に、高ガス透過性で血液適合性に優れた血液
バツグについて検討した結果、二酸化炭素ガス透
過量が10000ml/m2・24hr・atm以上で、かつ実
用的な強度を付与すると共に、オートクレーブに
耐える耐熱性を与える為には、少なくとも一層は
多孔性のフイルムとする必要がある事が判明し
た。耐オートクレーブ性を除外すればEVA、ポ
リウレタン、ポリブタジエン等がその条件を満た
すものであるが、これらの樹脂は100℃以下で軟
化し変形する欠点を有している。また、多孔性フ
イルムを使用すると、水蒸気透過性が高く低温保
存時であつても相当量の水分蒸散をさけることが
できない。
〔発明の目的〕
本発明は、上記のような従来の血液保存用容器
の欠点を改良するため、血液及び血液成分を保存
する場合に血液成分の機能を良好に保つたまま
で、保存可能日数の延長を図ることができる、気
体、特に二酸化炭素ガスの透過性に優れ、かつオ
ートクレーブ処理に耐え、水蒸気透過性の比較的
低いプラスチツク製の血液保存用容器を提供する
事を目的としたものである。
〔発明の構成〕
即ち、本発明は、血液及び血液成分の保存用容
器であつて、血液中の二酸化炭素ガスを容易に排
除できる様に、外層がTPX系樹脂フイルム、中
間層がポリエチレン系、ポリウレタン系、または
ポリブタジエン系樹脂フイルム、血液と直接接触
する内面が付加重合型シリコーンゴム層であつ
て、かつ外層と中間層が付加重合型シリコーンゴ
ムで接着されている事を特徴とする血液保存用容
器である。
TPX樹脂(2−メチルペンテンポリマー)は
耐熱性が130℃以上の透明性に優れた樹脂で、そ
の最も大きな特長はガス透過性に優れている事で
あり、一部変性されたTPX系樹脂は比較的柔軟
性を有しつつ、100μ厚みで50000ml/m2・24hr・
atm以上の二酸化炭素ガス透過性を有する。しか
しながら、この材料の接着性はよくない事が知ら
れている。特願昭59−145948号に示した様にある
種の付加重合型シリコーンは、軟質塩化ビニル樹
脂ばかりでなくPE,EVAやポリブタジエン、ポ
リウレタンとよく接着する事が判明しているが、
さらに本発明者らは、TPX系樹脂についても
TPX系樹脂フイルム表面をコロナ放電処理、UV
処理、もしくは低温プラズマ等のグロー放電処理
する事により強固に接着する事を見い出した。
TPX系樹脂フイルムは機械的強度に優れ、この
様に高ガス透過性でありながら、水蒸気の透過率
はポリエチレンの3倍程度と比較的低透過性であ
り、外層材としての必要な性能を充分有している
ものである。
中間層は、ヒートシール特性を有する材料で、
かつ高ガス透過性および引裂強度に優れた材料が
望ましく、そのような材料としてはポリエチレン
系、特にEVA、ポリウレタン系、ポリブタジエ
ン系、SEBS(スチレン−エチレン−ブタジエン
−スチレンタ−ポリマー)等があげられる。
SEBSを除き耐熱性はいずれも劣るが、本発明に
よる構成では、120℃以下で溶融しなければ形状
維持ができるので特に問題ではない。これらの樹
脂は100μの厚みで二酸化炭素ガス透過量がいず
れも10000ml/m2・24hr・atm以上であり、高ガ
ス透過性を付与するのに適した材料である。
血液と直接接触する内面を構成する付加重合型
シリコーンゴム及び外層フイルムと中間層フイル
ムとを接着する付加重合型シリコーン層は、特願
昭59−145948号に述べた付加重合型シリコーン組
成物、即ちその組成物中にビニル基1ケ当り、ケ
イ素原子に直結した水素原子を1乃至6個与える
に充分な量の、1分子中に該水素原子2ケ以上有
するオルガノ水素ポリシロキサンを含有する付加
重合型シリコーン組成物を使用する事ができる。
特に内層は血液との適合性を付与する為に酸化珪
素等の添加物の少ない組成物を使用する事が好ま
しい。しかし、付加重合型シリコーン組成物でこ
れら熱可塑性樹脂フイルムとの接着のポイントで
ある珪素に直結した水素原子のビニル結合に対す
る比率は特願昭59−32609号に述べた様に少なく
とも0.8以上、好ましくは1.0以上である事が望ま
しい。
最内層の付加重合型シリコーンゴム層は、血液
適合性を付与すると共に、オートクレーブ処理時
中間層の樹脂フイルム同志がこの温度(約120℃)
で溶着する事を防ぎ、かつ中間層フイルムの熱収
縮を防ぐ目的を持つており、少なくとも1μ以上、
好ましくは5μ以上の肉厚を有する事が望ましい。
更に接着層としての付加重合型シリコーンゴム
層は、10μ以上が必要で、好ましくは25μ以上
100μ以下が経済的にも有効である。但し、付加
重合型シリコーンゴムは、二酸化炭素ガスの透過
性が前述した樹脂フイルムに比べて50倍以上大き
く、ガス透過性にはほとんど影響を与えない。
最外層及び中間層のフイルムの厚みは、必要と
されるガス透過性によつて決まつて来るもので特
に限定しないが、最外層フイルム厚み25μ以上
150μ以下、好ましくは50μ〜100μであれば適度な
剛性と強度を付与する事ができる。150μ以上で
は剛性が高くなつて、軟質容器としての特性が失
われ、また25μ以下では強度的に不安がでる。中
間層の厚みは30μ以上300μ以下がよい。中間層が
300μ以上では二酸化炭素ガス透過量を15000ml/
m2・24hr・atm以上にする事が困難であり、逆に
30μ以下では中間層をヒートシール層として使用
する場合に強度が不足すると共に、バツグとして
必要な強度を充分与える事ができない。従つて、
50μ以上150μ以下とするのが望ましい。
本発明による一例として中間層を製袋時の接着
層として使用する場合について述べると、予めコ
ロナ放電処理等接着性向上処理をした2枚の熱可
塑性樹脂フイルムの片側に付加重合型シリコーン
ゴム組成物をコーテイングし、ラミネートし、熱
を加えて付加重合型シリコーンゴム組成物を接着
一体化した後、容器のシール部となる周辺部を残
して、中間層を構成するフイルム側の面に付加重
合型シリコーンゴム組成物をコーテイングし、加
熱により架橋する事ができる。もちろん本法に限
定されるものではなく、ラミネートとコーテイン
グを逆にしてもよい。続いて、中間層の付加重合
型シリコーンゴムをコーテイングしていない面を
合わせ、血液の取り入れ、取り出しのためのポー
ト部をセツトし、ヒートシール又は超音波シー
ル、高周波シール等の常法を用いて溶着して袋体
(容器)を得る事ができる。ポート部が中間層を
形成する材料と同材質の場合には、上述の方法で
接着してもよいし、他の材質の場合には付加重合
型シリコーンゴムをコーテイングして接着しても
よい。
本発明による構成を用いれば、水蒸気透過率を
30g/m2・24hr・atm以下にコントロールでき、
また中間層に低軟化点の材料を使用しているにも
かかわらずオートクレーブ処理時の温度でフイル
ム同志の癒着、変形等の問題が全くなく、二酸化
炭素ガスの透過量も数千〜数万ml/m2・24hr・
atmの範囲で自由に変えることができ、血液の保
存用容器として優れた性能を与えることができ
る。更に厚生省の規格であるデイスポーザブル血
液セツト基準を充分満足させうる強度等の性能を
付与する事ができる。
〔発明の効果〕
本発明に従うと、二酸化炭素ガスの透過量が
3000〜50000ml/m2・24hr・atmの範囲で自由に
コントロールでき、また強度的にも血液保存用容
器として必要な強度を有しており、更に耐熱性に
劣る樹脂層を中間層として使用しているにも抱ら
ず、オートクレーブ処理に耐える耐熱性を有して
おり、全血、濃厚赤血球液、血小板濃厚液等血液
及び血液製剤の保存用容器として好適である。
〔実施例〕
以下、実施例により本発明をさらに具体的に説
明する。
TPXフイルム220(三井石油化学製)厚さ50μ及
び100μに予めコロナ処理を施した後、25℃に於
ける粘度が18000csで、分子鎖両末端がジメチル
ビニルシリル基であるジメチルポリシロキサン
100部に対して、トリメチルシロキサン単位
10mol%、ジメチルシロキサン単位40mol%、メ
チル水素シロキサン単位50mol%からなるポリシ
ロキサン6部、シリカ20部、及び塩化白金酸のイ
ソプロピルアルコール溶液(白金分1%)を0.2
部加えてなる付加重合型シリコーン組成物を
100μの厚みでコーテイングした。これにポリウ
レタン(武田薬品工業製−タケラツク895)、
EVA(三井石油化学製−460,660)ポリブタジエ
ン(日本合成ゴム製−RB820)の50μ及び100μの
フイルムを夫々張り合わせ、90℃、2時間加熱し
て複合フイルムを得た。次いで、本複合フイルム
のポリウレタン、EVA及びポリブタジエン側の
容器の内面が血液と直接接触する部分のみに、上
述の付加重合型シリコーンゴム組成物をドクター
ブレード法により10μの厚みでコーテイングし、
同様の条件にて架橋させた。
こうして得られた複合フイルムの付加重合型シ
リコーンゴム側を合わせてヒートシールにより製
袋した。この際使用したポート部及びチユーブは
軟質塩化ビニルを使用し、ポート部は付加重合型
シリコーンゴムで接着により取りつけた。
また、得られた複合フイルムの一部を引張強
さ、引裂強さ、二酸化炭素ガス透過性、水蒸気透
過性等の物性テストに使用した。二酸化炭素ガス
の透過度はASTM−D−1434法で、また耐熱性
袋中に水を入れて、オートクレーブで121℃、20
分の高圧滅菌時における、変形、癒着状態を求め
た、その他の特性は厚生省告示第448号(昭和40
年9月28日)により求めた。中間層を構成する樹
脂についてはそれぞれの単体フイルムについて測
定した。また、比較例として現在血液容器に用い
られている塩化ビニル樹脂0.4m/m(スミライト
VMB 7170B−住友ベークライト製)、及び単独
構成の代表例を加え、ガス透過性及び水蒸気透過
性を第1表、耐オートクレーブ性を第2表、引張
強さ及び引裂強さを第3表、血液バツグの試験結
果を第4表に夫々示した。
[Industrial Field of Application] The present invention relates to a container for storing blood and blood products such as whole blood, concentrated red blood cells, and concentrated platelet fluid. [Prior Art] Conventionally, blood, particularly whole blood and red blood cells, has been stored by collecting blood in glass containers or polyvinyl chloride bags and storing the blood in a refrigerator at a low temperature of 4 to 6°C. In particular, vinyl chloride bags are flexible and transparent, have heat resistance that can withstand high-pressure steam sterilization, cold resistance that can withstand low temperatures during blood storage, and mechanical strength that can withstand various operations for separating blood components. Furthermore, it has been widely used all over the world because of its excellent processability and hygienic properties. It is also known that blood can be stored better than glass containers. However, even when stored in polyvinyl chloride bags like this, the function of red blood cells, especially the ability of red blood cells to carry oxygen, declines with the number of days of storage, so the current limit for storage in Japan is 21 days. However, after 2 weeks, the function deteriorates significantly.
In particular, the deterioration of concentrated red blood cells containing few plasma components is remarkable and has become a clinical problem. On the other hand, the demand for platelet preparations has increased significantly in recent years for the purpose of imparting blood clotting functions, but platelets lose their adhesive and aggregating abilities within a short period of time after storage begins, so their shelf life is limited. In Japan, blood is collected for 48 hours at room temperature after blood collection, but in fact more than half of the blood loses its function within that period.
Maintaining the blood oxygen carrying ability of red blood cells and the coagulation ability of platelets for a long time not only helps in the effective use of precious human blood resources, but also is a fundamentally important issue that affects the effectiveness of blood transfusion itself. More and more research is being carried out. Much of the research into preserving the oxygen-carrying ability of stored red blood cells for a long period of time concerns preservation solutions, and methods of adding inosine, adenine, adenosine, etc. to the preservation solution have been proposed. In particular, regarding adenine, Lee Wood et al., “Transfusion”, Vol. 11,
No. 3, p. 123 (1971), by using acidic citrate-glucose solution and adenine together.
They report that it can be stored for 35 days and that this method is the main storage method in Sweden. In addition, the large influence of PH indicates that “J.
Lab.and Clin.Medicine”, Vol.80, No.5, p.723
728 (1972), and it has also been reported that the gas permeability of synthetic resins used in blood storage containers has a significant effect on the function of blood or blood products. In other words, in containers with poor carbon dioxide gas permeability, where carbon dioxide gas generated by glucose metabolism in stored blood accumulates inside the container, the pH of stored blood decreases, and the function of blood cell components decreases. Significant. Based on what has been said here, Dow
In Japanese Patent Application Laid-Open No. 53-20683, Corning
We proposed a blood storage bag that stores blood in contact with cured silicone rubber containing (OH) 2 .
It is disclosed that the function of red blood cells can be maintained for more than 40 days. Furthermore, although the effect of shaking is presented here, the gas permeability of the material is not mentioned in a strict sense. In addition, since it is advantageous to maintain a high pH, it has a high pH buffering effect as an anticoagulant.
CPD liquid (Citrate-Phosphate-Dextrose)
It has been found to be superior to ACD solution (Acid-Citrate-Dextrose), and a preservation method using CPD solution has been put into practical use. Furthermore, Hamasaki et al.
PEP (Phospho-Enol-Pyruvate), ACD blood,
CPD blood (blood added with ACD liquid and CPD liquid, respectively)
2,3-DPG of red blood cells by adding
There have been reports that this method can maintain high levels, but it has not been put to practical use because it is complicated to operate and cannot be sterilized by heat. In addition, there are frozen blood bags that are used in a frozen state at extremely low temperatures such as -30℃, -80℃, and -198℃.For these purposes, bags made of films such as polyimide, fluorine resin, and stretched polyethylene are used. Proposed. Extending the shelf life of precious blood is
This is important for effective use of resources. In a frozen state, it is possible to preserve red blood cells for at least six months or more, and the preservation of blood of rare blood types and blood fraction components has already been put into practical use. However, it is known that it takes a lot of effort to remove cryoprotectants such as glycerol that are added when freezing blood, and the recovery efficiency is low, so it has not been widely used except for fresh frozen plasma. I haven't reached it yet. Regarding platelets, Murphy and Gardner
“Blood”, Vol. 46, p. 209-218 (1975) states that when storing platelet concentrates in containers made of vinyl chloride resin, the pH decreases and the lifespan of platelets is shortened. It is disclosed that when a container made of polyethylene is used, the pH decrease is small. Furthermore, as a result of research into the conditions necessary to maintain the lifespan of platelets, we found that (1) lactic acid generated by platelet glycolysis lowers PH, and the rate of PH decline is approximately inversely proportional to the number of platelets; (2) glycolysis is suppressed by allowing carbon dioxide gas generated by platelet metabolism to escape outside the storage container and increasing the oxygen partial pressure within the container; (3) the material of the storage container. Although it is advantageous to use polyethylene, which has good gas permeability, it has been clarified that vinyl chloride resin can have the same effect if it is made thinner and more gas permeable. Based on these facts, Japanese Unexamined Patent Publication No. 58-29465
The publication discloses a platelet storage container made from a polymer of ethylene and α-olefin, an ionomer, and a laminate or coextrusion of an ionomer/polyester elastomer and a linear low-density polyethylene elastomer (hereinafter referred to as olefin resin). ing. Here, the amount of permeation of carbon dioxide gas is 3870 to about 7000ml/ m2・24hr・atm
And the oxygen permeability coefficient is approximately 1500ml/ m2・24hr・
We present containers that are atm or higher, 3870ml/
If the carbon dioxide gas permeability coefficient is less than m2・24hr・atm, carbon dioxide gas will not be able to escape sufficiently from the container.On the other hand, if the carbon dioxide gas permeability coefficient is significantly higher than 7000ml/ m2・24hr・atm, the liquid containing platelets will fail. It is said that if the pH of the product exceeds 7.5, its lifespan will be reduced. However, this container is unsuitable for storing red blood cells because it tends to cause hemolysis. Furthermore, in JP-A-59-189154, a vinyl chloride monomer is reacted with a styrene-butadiene copolymer and/or its derivative in the presence of a polymer plasticizer such as a linear polyester or an ethylene copolymer. We have proposed a resin composition consisting of a graft copolymer and a stabilizer. Here, the carbon dioxide gas permeability coefficient is 2.5 to 9.0×10 3
ml/ m2・24hr・atm.
However, the permeability coefficient of carbon dioxide gas is 0.4
The thickness is 3000ml/ m2 /24hr/ATM.
In order to achieve high gas permeability, it is necessary to have a thickness of 0.2 mm or less, and with this alone there are concerns about strength. Furthermore, in order to prevent platelets from adhering to blood bags and to prevent a decrease in platelet aggregation ability caused by DOP plasticizers in polyvinyl chloride bags, JP 59-197256 discloses aminoalkylsiloxane-dimethylsiloxane-based A polyvinyl chloride bag covered with a silicone resin containing mainly alkylsiloxane units as thinly as possible without sacrificing thermal adhesive properties, JP-A-56-116466 and JP-A-56-
Publication No. 116469 proposes a blood bag made of a vinyl chloride resin that has a crosslinked layer on at least a portion of the surface layer of polyvinyl chloride, and a layer of organopolysiloxane with a linear structure formed on the crosslinked layer. has been done. However, the film strength of these silicone resins is low and may crack. As a result of studying the preservation of blood, particularly whole blood and concentrated red blood cells, the present inventors found that blood and concentrated red blood cells packed in thin polyvinyl chloride or polyethylene resin containers can be stored at 4 to 6°C. It was discovered that the cell components can be stored for a considerable period of time while retaining their functions sufficiently, that the partial pressure of carbon dioxide gas in the blood is kept low, and that there is little decrease in pH. Based on the well-known fact that platelets can be preserved well in containers with high carbon dioxide gas permeability, the present invention was completed after conducting studies on various storage containers. As a blood storage container that provides these high gas permeability, the present inventors previously proposed a blood storage container made of a single film or a composite film in Japanese Patent Application Nos. 59-145948 and 1987-145949. did. Japanese Patent Application No. 145948/1984 applies the fact that addition polymerization type silicone rubber, which has particularly excellent blood compatibility, strongly adheres to thermoplastic resin. This is a blood storage container consisting of: Furthermore, as a result of studying blood bags with high gas permeability and excellent blood compatibility, we found that the blood bag has a carbon dioxide gas permeability of 10,000 ml/ m2 /24 hr/atm or more, has practical strength, and can withstand autoclaving. It has been found that at least one layer of the film must be porous in order to provide heat resistance. If autoclave resistance is excluded, EVA, polyurethane, polybutadiene, etc. satisfy this condition, but these resins have the disadvantage of softening and deforming at temperatures below 100°C. Furthermore, when a porous film is used, it has high water vapor permeability and a considerable amount of water evaporation cannot be avoided even during low temperature storage. [Object of the Invention] In order to improve the above-mentioned drawbacks of conventional blood storage containers, the present invention aims to improve the shelf life of blood and blood components while maintaining good functions of the blood components. The object of the present invention is to provide a plastic blood storage container that can be used for extended periods, has excellent permeability to gases, particularly carbon dioxide gas, can withstand autoclave treatment, and has relatively low water vapor permeability. . [Structure of the Invention] That is, the present invention is a container for storing blood and blood components, and the outer layer is a TPX resin film, the middle layer is a polyethylene film, For blood storage, comprising a polyurethane or polybutadiene resin film, an addition polymerization silicone rubber layer on the inner surface that comes into direct contact with blood, and an outer layer and an intermediate layer bonded with addition polymerization silicone rubber. It is a container. TPX resin (2-methylpentene polymer) is a highly transparent resin with a heat resistance of 130°C or higher, and its most important feature is its excellent gas permeability. While being relatively flexible, it can handle 50,000ml/ m2・24hr・with a thickness of 100μ.
Has carbon dioxide gas permeability higher than ATM. However, the adhesion properties of this material are known to be poor. As shown in Japanese Patent Application No. 59-145948, it has been found that certain addition-polymerized silicones adhere well not only to soft vinyl chloride resins but also to PE, EVA, polybutadiene, and polyurethane.
Furthermore, the present inventors also investigated the TPX-based resin.
TPX resin film surface corona discharge treatment, UV
It was discovered that strong adhesion can be achieved by treatment or glow discharge treatment such as low-temperature plasma.
TPX resin film has excellent mechanical strength, and although it has high gas permeability, it has a relatively low water vapor permeability, about three times that of polyethylene, and has sufficient performance as an outer layer material. It is something that you have. The middle layer is a material with heat sealing properties,
A material with high gas permeability and excellent tear strength is desirable, and examples of such materials include polyethylene, especially EVA, polyurethane, polybutadiene, and SEBS (styrene-ethylene-butadiene-styrene terpolymer).
All of them except SEBS have poor heat resistance, but in the structure according to the present invention, this is not a particular problem because the shape can be maintained as long as it does not melt at 120° C. or lower. These resins have a thickness of 100μ and a carbon dioxide gas permeation rate of 10,000ml/m 2 ·24hr·atm or more, making them suitable materials for imparting high gas permeability. The addition-polymerizable silicone rubber constituting the inner surface that comes into direct contact with blood and the addition-polymerizable silicone layer that adheres the outer layer film and the intermediate layer film are the addition-polymerizable silicone compositions described in Japanese Patent Application No. 145948/1980, i.e. Addition polymerization containing an organohydrogenpolysiloxane having two or more hydrogen atoms per molecule in an amount sufficient to provide 1 to 6 hydrogen atoms directly bonded to silicon atoms per vinyl group in the composition. A mold silicone composition can be used.
In particular, it is preferable to use a composition containing less additives such as silicon oxide for the inner layer in order to impart compatibility with blood. However, in addition-polymerizable silicone compositions, the ratio of hydrogen atoms directly bonded to silicon, which is the point of adhesion with these thermoplastic resin films, to vinyl bonds is preferably at least 0.8, as stated in Japanese Patent Application No. 59-32609. is preferably 1.0 or higher. The innermost addition-polymerized silicone rubber layer provides blood compatibility, and the resin film in the middle layer remains at this temperature (approximately 120°C) during autoclaving.
It has the purpose of preventing welding and heat shrinkage of the intermediate layer film, and has a thickness of at least 1μ or more.
Preferably, it has a wall thickness of 5μ or more. Furthermore, the addition polymerized silicone rubber layer as an adhesive layer must have a thickness of 10μ or more, preferably 25μ or more.
A thickness of 100μ or less is economically effective. However, addition-polymerized silicone rubber has carbon dioxide gas permeability that is 50 times or more higher than that of the resin film described above, and has almost no effect on gas permeability. The thickness of the outermost layer and intermediate layer film is determined by the required gas permeability and is not particularly limited, but the outermost layer film thickness should be 25μ or more.
Appropriate rigidity and strength can be imparted if the thickness is 150μ or less, preferably 50μ to 100μ. If it is 150μ or more, the rigidity will become high and the properties as a soft container will be lost, and if it is less than 25μ, there will be concerns about the strength. The thickness of the intermediate layer is preferably 30μ or more and 300μ or less. middle class
For 300 μ or more, reduce the amount of carbon dioxide gas permeation to 15,000 ml/
m2・24hr・atm or more is difficult, and conversely
If the thickness is less than 30μ, the intermediate layer will not have sufficient strength when used as a heat-sealing layer, and will not be able to provide sufficient strength as a bag. Therefore,
It is desirable to set it to 50μ or more and 150μ or less. As an example of the present invention, in the case where the intermediate layer is used as an adhesive layer during bag making, an addition-polymerizable silicone rubber composition is attached to one side of two thermoplastic resin films that have been previously treated to improve adhesion such as corona discharge treatment. After coating, laminating, and applying heat to bond and integrate the addition-polymerized silicone rubber composition, the addition-polymerized silicone rubber composition is applied to the surface of the film that forms the intermediate layer, leaving the peripheral area that will become the seal of the container. A silicone rubber composition can be coated and crosslinked by heating. Of course, the method is not limited to this method, and laminating and coating may be reversed. Next, the surfaces not coated with the addition-polymerized silicone rubber of the middle layer are brought together, and ports for blood intake and extraction are set, using conventional methods such as heat sealing, ultrasonic sealing, and high frequency sealing. A bag (container) can be obtained by welding. If the port portion is made of the same material as the material forming the intermediate layer, it may be bonded by the method described above, or if it is made of another material, it may be bonded by coating with addition polymerized silicone rubber. By using the configuration according to the present invention, the water vapor transmission rate can be reduced.
Can be controlled to below 30g/ m2・24hr・atm,
In addition, even though a material with a low softening point is used for the intermediate layer, there is no problem such as adhesion or deformation of the films at the temperature during autoclaving, and the amount of carbon dioxide gas permeated is several thousand to tens of thousands of ml. / m2・24hr・
It can be freely changed within the ATM range and provides excellent performance as a blood storage container. Furthermore, it is possible to provide performance such as strength that sufficiently satisfies the disposable blood set standards set by the Ministry of Health and Welfare. [Effect of the invention] According to the invention, the amount of permeation of carbon dioxide gas is reduced.
It can be freely controlled within the range of 3,000 to 50,000ml/m 2 / 24hr / atm, and has the strength necessary for a blood storage container. Furthermore, it uses a resin layer with poor heat resistance as an intermediate layer. It has heat resistance that can withstand autoclave treatment, making it suitable as a storage container for blood and blood products such as whole blood, concentrated red blood cell fluid, and concentrated platelet fluid. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. TPX Film 220 (manufactured by Mitsui Petrochemicals) is dimethylpolysiloxane with a viscosity of 18000 cs at 25°C and dimethylvinylsilyl groups at both ends of the molecular chain, after corona treatment is applied to thicknesses of 50μ and 100μ in advance.
Trimethylsiloxane units per 100 parts
6 parts of polysiloxane consisting of 10 mol% dimethylsiloxane units, 40 mol% dimethylsiloxane units, 50 mol% methylhydrogen siloxane units, 20 parts silica, and 0.2 parts of an isopropyl alcohol solution of chloroplatinic acid (platinum content 1%).
Addition polymerization type silicone composition made by adding
Coated with a thickness of 100μ. To this, polyurethane (Takeda Pharmaceutical Company Limited - Takerakku 895),
50μ and 100μ films of EVA (Mitsui Petrochemical Co., Ltd. - 460, 660) and polybutadiene (Japan Synthetic Rubber Co., Ltd. - RB820) were laminated together and heated at 90°C for 2 hours to obtain a composite film. Next, the above-mentioned addition-polymerizable silicone rubber composition was coated to a thickness of 10 μm using a doctor blade method only on the portion of the composite film where the inner surface of the container on the polyurethane, EVA, and polybutadiene sides would be in direct contact with blood.
Crosslinking was carried out under the same conditions. The addition-polymerized silicone rubber sides of the composite film thus obtained were combined and made into a bag by heat sealing. The port and tube used at this time were made of soft vinyl chloride, and the port was attached by adhesion using addition polymerized silicone rubber. In addition, a part of the obtained composite film was used for physical property tests such as tensile strength, tear strength, carbon dioxide gas permeability, and water vapor permeability. The permeability of carbon dioxide gas was determined using the ASTM-D-1434 method, and water was placed in a heat-resistant bag and autoclaved at 121℃ for 20 minutes.
Deformation, adhesion, and other characteristics during high-pressure sterilization for 30 minutes are listed in Ministry of Health and Welfare Notification No. 448 (1966).
(September 28, 2016). The resin constituting the intermediate layer was measured for each single film. In addition, as a comparative example, we used 0.4 m/m of vinyl chloride resin (Sumilite), which is currently used in blood containers.
Table 1 shows gas permeability and water vapor permeability, Table 2 shows autoclave resistance, Table 3 shows tensile strength and tear strength. The test results for each bag are shown in Table 4.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
Claims (1)
層がTPX系樹脂フイルム、中間層がポリエチレ
ン系、ポリウレタン系またはポリブタジエン系樹
脂フイルム、血液または血液製剤と接触する内面
が付加重合型シリコーンゴム層より構成され、か
つ外層と中間層が付加重合型シリコーンゴムで接
着されている事を特徴とする血液の保存用容器。 2 二酸化炭素ガスの透過量が3000ml/m2・
24hr・atm以上の構成であることを特徴とする特
許請求の範囲第1項記載の血液の保存用容器。[Scope of Claims] 1. A storage container for blood or blood products, in which the outer layer is a TPX resin film, the middle layer is a polyethylene, polyurethane, or polybutadiene resin film, and the inner surface that contacts the blood or blood products is addition-polymerized. 1. A container for storing blood, comprising a type silicone rubber layer, and an outer layer and an intermediate layer bonded with addition polymerization type silicone rubber. 2 The permeation amount of carbon dioxide gas is 3000ml/ m2 .
The blood storage container according to claim 1, characterized in that the container has a capacity of 24 hours/atm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60284342A JPS62144660A (en) | 1985-12-19 | 1985-12-19 | Blood preserving container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60284342A JPS62144660A (en) | 1985-12-19 | 1985-12-19 | Blood preserving container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62144660A JPS62144660A (en) | 1987-06-27 |
JPH0561941B2 true JPH0561941B2 (en) | 1993-09-07 |
Family
ID=17677333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60284342A Granted JPS62144660A (en) | 1985-12-19 | 1985-12-19 | Blood preserving container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62144660A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH063602Y2 (en) * | 1988-11-16 | 1994-02-02 | 大日本印刷株式会社 | Medical packaging |
US4992312A (en) * | 1989-03-13 | 1991-02-12 | Dow Corning Wright Corporation | Methods of forming permeation-resistant, silicone elastomer-containing composite laminates and devices produced thereby |
US5800778A (en) | 1995-05-31 | 1998-09-01 | Biomerieux Vitek, Inc. | Sealant for sample holder |
-
1985
- 1985-12-19 JP JP60284342A patent/JPS62144660A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62144660A (en) | 1987-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0168755B1 (en) | Container and method for storing blood | |
Edmunds Jr et al. | Platelet function during cardiac operation: comparison of membrane and bubble oxygenators | |
US6610832B1 (en) | Preserving a hemoglobin blood substitute with a transparent overwrap | |
US20020128182A1 (en) | Preserving a hemoglobin blood substitute with a transparent overwrap | |
JPH05500319A (en) | Blood bag system containing vitamin E | |
Roberts et al. | Toward an artificial endothelium: Development of blood-compatible surfaces for extracorporeal life support | |
CN104507441B (en) | Mixed type blood constituent reservoir bag and the method for manufacturing this bag | |
Moen et al. | Roller and centrifugal pumps compared in vitro with regard to haemolysis, granulocyte and complement activation | |
JP2007175028A (en) | Closed system container for cell culture, kit for closed system cell culture and method for producing closed system container for cell culture | |
Blauvelt et al. | Advances in extracorporeal membrane oxygenator design for artificial placenta technology | |
JPH0561941B2 (en) | ||
KR20040041154A (en) | A steam-sterilizable multilayer film and containers made thereof | |
JP2008011778A (en) | Method for preserving langerhans' islets, container for preserving langerhans' islets and kit for transplanting langerhans' islets | |
Donati et al. | Effects of hemodialysis on activation of lymphocytes: analysis by an in vitro dialysis model. | |
AU2002306533B2 (en) | Container for biological fluid | |
Deppisch et al. | Biocompatibility of the polyamide membranes | |
JPH052334B2 (en) | ||
JPS63202378A (en) | Production of activated killer cell | |
AU2004249194B2 (en) | Processing of platelet-containing biological fluids | |
JPH052333B2 (en) | ||
Yoshioka et al. | A study on limulus amebocyte lysate (LAL) reactive material derived from dialyzers | |
Galletti | Applications of plastics in membrane oxygenators | |
JPH0142214B2 (en) | ||
Scott et al. | Rheumatic pneumonitis: pathologic features | |
JPS6159738B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |