JPH0561858B2 - - Google Patents

Info

Publication number
JPH0561858B2
JPH0561858B2 JP59154901A JP15490184A JPH0561858B2 JP H0561858 B2 JPH0561858 B2 JP H0561858B2 JP 59154901 A JP59154901 A JP 59154901A JP 15490184 A JP15490184 A JP 15490184A JP H0561858 B2 JPH0561858 B2 JP H0561858B2
Authority
JP
Japan
Prior art keywords
furnace
reference value
value
current
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59154901A
Other languages
Japanese (ja)
Other versions
JPS6135113A (en
Inventor
Yoshuki Myamoto
Akira Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP15490184A priority Critical patent/JPS6135113A/en
Publication of JPS6135113A publication Critical patent/JPS6135113A/en
Publication of JPH0561858B2 publication Critical patent/JPH0561858B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Control Of Resistance Heating (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、セラミツクなどの素材の焼成炉や
真空高温炉などに適用して好適な高温炉の漏電検
出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a leakage detection device for a high-temperature furnace suitable for application to a firing furnace for materials such as ceramics, a vacuum high-temperature furnace, and the like.

〔従来技術〕[Prior art]

炉内の温度が2000℃以上にもなる高温炉の断熱
材にはカーボンウールが使用される。この場合、
カーボンウールが良導体であると同時に、2000℃
以上で使用でできる絶縁物がないために、カーボ
ンウールとヒータとの間には絶縁空間を設けてい
る。そして、この空間は、低温域ではほぼ無限大
の抵抗値を示している。
Carbon wool is used as insulation material for high-temperature furnaces where the temperature inside the furnace reaches over 2000℃. in this case,
Carbon wool is a good conductor and at the same time
Since there is no insulating material that can be used in the above, an insulating space is provided between the carbon wool and the heater. This space exhibits an almost infinite resistance value at low temperatures.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記絶縁空間の温度が上昇すると、
熱電子放射による電流や、熱電子との衝突によつ
て生じたイオン電流が増加し、1800℃を超える
と、これらの漏れ電流が急激に増大し、遂には放
電現象に至つてヒータや断熱材等を損傷してしま
うという問題があつた。
By the way, when the temperature of the insulation space rises,
Current due to thermionic radiation and ion current generated by collision with thermionic electrons increase, and when the temperature exceeds 1800°C, these leakage currents increase rapidly, eventually leading to a discharge phenomenon that causes damage to heaters and insulation materials. There was a problem that the product could be damaged.

この発明は、上記問題点を解決しようとするも
のである。
This invention attempts to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための、この発明は、ヒ
ータに電流を供給する変圧器の出力電圧を出力電
流で除することによつて、ヒータを含めた実際の
負荷抵抗値を求め、この負荷抵抗値を基準値と比
較することによつて漏れ電流の大きさを判断し、
警報を出力することを前提とし、前記負荷抵抗値
と比較される基準値を、炉内の真空度が低い場合
あるいは炉内に雰囲気ガスがある場合において一
定値の比較抵抗値として設定される第1基準値
と、炉内が高真空である場合において炉内温度の
上昇とともに一定の勾配で上昇する比較抵抗値と
して設定される第2基準値との2種類とすること
により、より適正な漏電検出を行う構成としたこ
とを特徴とする。
In order to solve the above problems, this invention calculates the actual load resistance value including the heater by dividing the output voltage of the transformer that supplies current to the heater by the output current, and calculates the actual load resistance value including the heater. Determine the magnitude of the leakage current by comparing the value with a reference value,
On the premise that an alarm is output, the reference value to be compared with the load resistance value is set as a constant comparison resistance value when the degree of vacuum in the furnace is low or when there is atmospheric gas in the furnace. By setting two types, the first reference value and the second reference value, which is set as a comparative resistance value that increases at a constant gradient as the temperature inside the furnace increases when the furnace is in high vacuum, more appropriate leakage can be achieved. It is characterized by having a configuration that performs detection.

〔作 用〕[Effect]

上記構成において、変圧器の出力電圧をV、出
力電流をIとし、ヒータの実際の抵抗値をR、漏
れ電流に相当する抵抗分(漏れ抵抗)の値をRa
とすれば、これらの抵抗値R,Raは並列に接続
された形となるから(第1図参照)、変圧器出力
端にはこれらの合成抵抗値rが接続されたことに
なり、 r=V/I=R Ra/R+Ra ……(1) が成り立つ。そして、炉内の温度が余り高くない
ときには、Ra→∞としてよいから、 r=R ……(2) となり、合成抵抗値rはヒータ抵抗値Rと一致す
る。ここで、高温抵抗加熱炉で広く使用されてい
るグラフアイトヒータの抵抗値Rは、第2図に示
すように、ある温度以上では略直線的に上昇する
から、合成抵抗値rも略直線的に上昇する。
In the above configuration, the output voltage of the transformer is V, the output current is I, the actual resistance value of the heater is R, and the value of the resistance corresponding to the leakage current (leakage resistance) is R a
Then, since these resistance values R and R a are connected in parallel (see Figure 1), the combined resistance value r is connected to the output terminal of the transformer, and r =V/I=R R a /R + R a ...(1) holds true. Then, when the temperature inside the furnace is not very high, R a →∞ may be set, so r=R (2), and the combined resistance value r matches the heater resistance value R. Here, as shown in Figure 2, the resistance value R of the graphite heater widely used in high-temperature resistance heating furnaces increases approximately linearly above a certain temperature, so the combined resistance value r also increases approximately linearly. rise to

ところで、炉内温度が上昇すると、熱電子流や
イオン流によつて漏れ抵抗値Raが次第に低下し、
放電直前に至ると急激に低下する。従つて、合成
抵抗値rも急激に低下し、この値が基準値Cより
も小さくなつたときには(r<Cのときには)警
報が出力され、放電によるヒータや断熱材の損傷
を未然に防止することができる。
By the way, as the temperature inside the furnace increases, the leakage resistance value R a gradually decreases due to thermionic current and ion current.
It drops rapidly just before discharge. Therefore, the combined resistance value r also rapidly decreases, and when this value becomes smaller than the reference value C (when r<C), an alarm is output to prevent damage to the heater and insulation material due to discharge. be able to.

この場合、上記基準値の設定方法としては、 (1) 予め定めた一定値c1を基準値とする第1の
方法(第3図参照)と、 (2) 炉内温度によつて変化する値(たとえば、炉
内温度によつて直線的に上昇する値)c2を基
準値とする第2の方法(第4図参照)と がある。すなわち、炉内の真空度が低い場合、あ
るには、雰囲気ガスがある場合には、前記漏れ抵
抗値Ra、従つて合成抵抗値rの低下が急激であ
るため、上記第1の方法で十分に検出可能である
が、高真空の場合には、熱電子流は大きいものの
気体分子が少ないため、漏れ抵抗値Ra、合成抵
抗値rの低下が緩慢になり、第1の方法では検出
することができない。そこで、炉内温度に応じて
基準値を変化させる第2の方法によつて目的を達
成する。こうして、炉の使用態様によつて第1、
第2の方法を使い分けることによつて、十全な漏
電検出を行うことができる。
In this case, the methods for setting the above reference value are: (1) the first method in which a predetermined constant value c1 is used as the reference value (see Figure 3), and (2) a value that changes depending on the temperature inside the furnace. There is a second method (see FIG. 4) that uses c2 as a reference value (for example, a value that increases linearly depending on the temperature inside the furnace). That is, when the degree of vacuum in the furnace is low, or in some cases when there is atmospheric gas, the leakage resistance value R a , and therefore the combined resistance value r, decreases rapidly. However, in the case of high vacuum, although the thermionic current is large, there are few gas molecules, so the leakage resistance value R a and the combined resistance value r decrease slowly, and the first method cannot detect it. Can not do it. Therefore, the objective is achieved by a second method of changing the reference value according to the temperature inside the furnace. In this way, depending on how the furnace is used,
By properly using the second method, sufficient leakage detection can be performed.

〔実施例〕〔Example〕

以下、図面を参照して、本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例の構成を示すブロ
ツク図である。この図において、符号1は変圧器
であり、その出力側(2次側)にはヒータ2(抵
抗値R)が接続されている。このヒータ2には、
熱電子流やイオン流による漏れ電流Iaに対応する
漏れ抵抗3(抵抗値Ra)が並列に入つた形とな
り、ヒータ2に流れる電流をI1とすると、変圧器
1から流出する電流Iは、 I=I1+Ia ……(3) となる。この出力電流Iは、変流器4によつて検
出された後、電流変換器5によつて後段の電子回
路に適合する値に変換される。そして、電圧変換
器6によつて適宜の値に変換された、変圧器1の
出力電圧Vとともに、除算器7に供給され、ここ
でV÷Iなる演算が行われ、(1)式に示す合成抵抗
値rが求められる。こうして、除算器7から出力
された合成抵抗値rは、比較器8,9へ供給さ
れ、基準値C1(第1基準値)、C2(第2基準
値)とそれぞれ比較される。ここで基準値C1は
一定値、基準値C2は温度とともに一定の勾配a
で上昇する値であり、基準値C2は、炉内温度信
号10に基づいて関数発生器11が形成し、比較
器9へ供給する。そして、合成抵抗値rが基準値
C1より小さくなつたときには比較器8が、C2
より小さくなつたときには比較器9が、オアゲー
ト12を介して警報器13を起動し、鳴動させ
る。
FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention. In this figure, reference numeral 1 is a transformer, and a heater 2 (resistance value R) is connected to its output side (secondary side). This heater 2 has
A leakage resistance 3 (resistance value R a ) corresponding to the leakage current I a due to thermionic current or ion flow is connected in parallel, and if the current flowing through the heater 2 is I 1 , the current I flowing out from the transformer 1 is I=I 1 +I a ...(3). This output current I is detected by a current transformer 4, and then converted by a current converter 5 to a value suitable for a subsequent electronic circuit. The output voltage V of the transformer 1, which has been converted into an appropriate value by the voltage converter 6, is then supplied to the divider 7, where the calculation V÷I is performed, as shown in equation (1). A combined resistance value r is determined. In this way, the combined resistance value r output from the divider 7 is supplied to comparators 8 and 9, and compared with reference values C1 (first reference value) and C2 (second reference value), respectively. Here, the reference value C1 is a constant value, and the reference value C2 is a constant slope a with temperature.
The reference value C2 is generated by the function generator 11 based on the furnace temperature signal 10 and is supplied to the comparator 9. Then, when the combined resistance value r becomes smaller than the reference value C1, the comparator 8
When it becomes smaller, the comparator 9 activates the alarm 13 via the OR gate 12 to make it sound.

このような構成において、炉内の温度が上昇
し、漏れ抵抗値Raが急激に低下すると、変圧器
1の出力電流Iが急増し、合成抵抗値rが急激に
低下する(第3図、第4図参照)。そして、すで
に述べたように、炉内の真空度が高いときには比
較器9がr<C2を検出して警報器13を起動す
る一方、炉内の真空度が低いか雰囲気ガスがある
場合は、比較器8がr<C1を検出して警報器1
3を起動する。これによつて警報器13から警報
が出力され、自動あるいは人手によつて変圧器1
の出力電圧Vを急激に低下させたり、出力電流I
を遮断する処置がとられ、放電によるヒータや断
熱材の損傷を未然に防止することができる。
In such a configuration, when the temperature inside the furnace rises and the leakage resistance value R a rapidly decreases, the output current I of the transformer 1 rapidly increases, and the combined resistance value r rapidly decreases (Fig. 3, (See Figure 4). As already mentioned, when the degree of vacuum in the furnace is high, the comparator 9 detects r<C2 and activates the alarm 13, while if the degree of vacuum in the furnace is low or there is atmospheric gas, Comparator 8 detects r<C1 and alarm 1
Start 3. As a result, an alarm is output from the alarm device 13, and the transformer 1 is automatically or manually activated.
If the output voltage V of
This prevents damage to the heater and insulation material due to electrical discharge.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、炉のヒータ
に電流を供給する変圧器の出力電圧を、その出力
電流によつて除し、この値が基準値を逸脱したと
きに警報を出す構成とされているとともに、前記
基準値を、炉内の真空度が低い場合あるいは炉内
に雰囲気ガスがある場合において一定値の比較抵
抗値として設定された第1基準値と、炉内が高真
空である場合において炉内温度の上昇とともに一
定の勾配で上昇する比較抵抗値として設定された
第2基準値とするので、炉内の真空度の高低によ
り漏れ抵抗値の低下に緩急の差があつても、放電
によるヒータや断熱材の損傷を未然に防止するこ
とができ、十全な漏電検出を行うことが可能とな
る。
As explained above, the present invention has a structure in which the output voltage of a transformer that supplies current to a furnace heater is divided by its output current, and an alarm is issued when this value deviates from a reference value. At the same time, the reference value is a first reference value set as a comparative resistance value of a constant value when the degree of vacuum in the furnace is low or when there is atmospheric gas in the furnace, and when the inside of the furnace is under high vacuum. The second reference value is set as a comparative resistance value that increases at a constant gradient as the temperature inside the furnace increases, so even if there is a difference in the speed at which the leakage resistance value decreases depending on the degree of vacuum inside the furnace. , it is possible to prevent damage to the heater and the heat insulating material due to discharge, and it is possible to perform sufficient leakage detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の構成を示すブロ
ツク図、第2図はグラフアイト製ヒータの温度と
抵抗値との関係を示すグラフ、第3図は炉内の真
空度が低いか雰囲気ガスがある場合の合成抵抗値
rと炉内温度との関係および基準値C1を示すグ
ラフ、第4図は炉内真空度が高い場合の合成抵抗
値rと路内温度との関係および基準値C2を示す
グラフである。 1…変圧器、2…ヒータ、3…漏れ抵抗、4…
変流器、5…電流変換器(以上4,5は電流検出
手段)、6…電圧変換器(電圧検出手段)、7…除
算器(演算手段)、8,9…比較器(比較手段)、
11…関数発生器(基準値発生手段)、13…警
報器、C1,C2…基準値。
Fig. 1 is a block diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a graph showing the relationship between the temperature and resistance value of the graphite heater, and Fig. 3 is a graph showing whether the degree of vacuum in the furnace is low. A graph showing the relationship between the combined resistance value r and the temperature in the furnace when there is atmospheric gas and the reference value C1. Figure 4 shows the relationship between the combined resistance value r and the temperature in the passageway and the standard when the degree of vacuum in the furnace is high. It is a graph showing the value C2. 1...Transformer, 2...Heater, 3...Leakage resistance, 4...
Current transformer, 5... Current converter (4 and 5 above are current detection means), 6... Voltage converter (voltage detection means), 7... Divider (calculation means), 8, 9... Comparator (comparison means) ,
11...Function generator (reference value generation means), 13...Alarm device, C1, C2...Reference value.

Claims (1)

【特許請求の範囲】 1 炉内に設置されたヒータと、このヒータに電
流を供給する変圧器とを具備してなる高温炉にお
いて、前記変圧器から流出する電流を検出する電
流検出手段と、前記変圧器の出力電圧を検出する
電圧検出手段と、前記出力電圧を前記電流で除算
する演算手段と、前記除算結果が基準値を逸脱し
たときに警報回路を起動する比較手段と、前記基
準値を前記比較手段に供給する基準値発生手段と
を具備し、 前記基準値を、炉内の真空度が低い場合あるい
は炉内に雰囲気ガスがある場合において一定値の
比較抵抗値として前記除算結果と比較される第1
基準値と、炉内が高真空である場合において炉内
温度の上昇とともに一定の勾配で上昇する比較抵
抗値として前記除算結果と比較される第2基準値
との2種類とすることを特徴とする高温炉の漏電
検出装置。
[Scope of Claims] 1. In a high-temperature furnace comprising a heater installed in the furnace and a transformer that supplies current to the heater, current detection means for detecting the current flowing out from the transformer; Voltage detection means for detecting the output voltage of the transformer, calculation means for dividing the output voltage by the current, comparison means for activating an alarm circuit when the division result deviates from a reference value, and the reference value. and a reference value generating means for supplying the reference value to the comparison means, and converting the reference value to the division result as a comparative resistance value of a constant value when the degree of vacuum in the furnace is low or when there is atmospheric gas in the furnace. The first compared
It is characterized by having two types of values: a reference value and a second reference value, which is compared with the division result as a comparison resistance value that increases at a constant gradient as the temperature inside the furnace increases when the inside of the furnace is in high vacuum. Electrical leakage detection device for high temperature furnaces.
JP15490184A 1984-07-25 1984-07-25 Leakage detector of high temperature furnace Granted JPS6135113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15490184A JPS6135113A (en) 1984-07-25 1984-07-25 Leakage detector of high temperature furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15490184A JPS6135113A (en) 1984-07-25 1984-07-25 Leakage detector of high temperature furnace

Publications (2)

Publication Number Publication Date
JPS6135113A JPS6135113A (en) 1986-02-19
JPH0561858B2 true JPH0561858B2 (en) 1993-09-07

Family

ID=15594435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15490184A Granted JPS6135113A (en) 1984-07-25 1984-07-25 Leakage detector of high temperature furnace

Country Status (1)

Country Link
JP (1) JPS6135113A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137595U (en) * 1986-02-24 1987-08-29
JPH0634375B2 (en) * 1989-07-20 1994-05-02 株式会社フォレスト Heater burnout alarm
JPH0353483A (en) * 1989-07-20 1991-03-07 Fuoresuto:Kk Heater failure alarm
JPH0357180A (en) * 1989-07-25 1991-03-12 Fuoresuto:Kk Temperature regulating device equipped with heater failure alarm

Also Published As

Publication number Publication date
JPS6135113A (en) 1986-02-19

Similar Documents

Publication Publication Date Title
EP0728991B1 (en) A compensating circuit for a flame rod structure
US5969505A (en) Charging system for charging capacitors of a capacitor bank
Bright Junction transistors used as switches
CA1226613A (en) Diagonally electricity-feeding, band form, electrically heat-generating apparatus
JPH0561858B2 (en)
US3302685A (en) Device for detecting burner flame
US2501499A (en) Electric heating device and control therefor
US2991346A (en) Apparatus for drying electrical installations
JPS6132375A (en) Device for protecting electric furnace
US3940639A (en) MHD generator with uniform voltage distribution
Graneau et al. Voltage surge performance of vacuum-insulated cryo-cable
CN103140444B (en) Method and apparatus for igniting silicon rods outside a cvd-reactor
JP2589929Y2 (en) Heating furnace heater
Janes et al. High‐Power Pulse Steepening by Means of Exploding Wires
Warren et al. Resistance heated sublimator
US20080225445A1 (en) Arc-discharge protection device with temperature detection mode
JPH01114916A (en) Power unit
JPH06318505A (en) Sorting method for zinc oxide element
JPS6017990B2 (en) firing furnace
SU542183A1 (en) The device &#34;foscar&#34; automatic regulation of the ore-smelting electric furnace
SU1546502A1 (en) Method of operating variable-atmosphere furnace with electric heaters
JPS57153230A (en) Detecting device for abnormal temperature of gas insulating apparatus
LEVIN et al. Calculation of the characteristics of stabilized heating of gases by an electric arc at high pressures(Electrical and thermal characteristics of stabilized gas heating by electric arc at high pressures calculated by successive approximation)
JPH06104200A (en) Heating apparatus for ion-implantation substrate
Van Hoesen et al. Automatic control of electrical precipitation rectifiers