JPH0561092B2 - - Google Patents
Info
- Publication number
- JPH0561092B2 JPH0561092B2 JP2151673A JP15167390A JPH0561092B2 JP H0561092 B2 JPH0561092 B2 JP H0561092B2 JP 2151673 A JP2151673 A JP 2151673A JP 15167390 A JP15167390 A JP 15167390A JP H0561092 B2 JPH0561092 B2 JP H0561092B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- gel coat
- coat layer
- adhering
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000499 gel Substances 0.000 claims description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 15
- 229920006337 unsaturated polyester resin Polymers 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 11
- 239000011347 resin Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 244000215068 Acacia senegal Species 0.000 claims description 8
- 229920000084 Gum arabic Polymers 0.000 claims description 8
- 239000000205 acacia gum Substances 0.000 claims description 8
- 235000010489 acacia gum Nutrition 0.000 claims description 8
- 239000001913 cellulose Substances 0.000 claims description 8
- 229920002678 cellulose Polymers 0.000 claims description 8
- 235000010980 cellulose Nutrition 0.000 claims description 8
- 229920000161 Locust bean gum Polymers 0.000 claims description 6
- 239000000711 locust bean gum Substances 0.000 claims description 6
- 235000010420 locust bean gum Nutrition 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 108010010803 Gelatin Proteins 0.000 claims description 4
- 239000008273 gelatin Substances 0.000 claims description 4
- 229920000159 gelatin Polymers 0.000 claims description 4
- 235000019322 gelatine Nutrition 0.000 claims description 4
- 235000011852 gelatine desserts Nutrition 0.000 claims description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004368 Modified starch Substances 0.000 claims description 3
- 229920000881 Modified starch Polymers 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 235000019426 modified starch Nutrition 0.000 claims description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 20
- 239000011151 fibre-reinforced plastic Substances 0.000 description 20
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 19
- 229910001431 copper ion Inorganic materials 0.000 description 19
- 239000002519 antifouling agent Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229910000570 Cupronickel Inorganic materials 0.000 description 7
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 7
- 239000013535 sea water Substances 0.000 description 7
- 229920003169 water-soluble polymer Polymers 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000002861 polymer material Substances 0.000 description 6
- 230000003373 anti-fouling effect Effects 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 241000238586 Cirripedia Species 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 235000021374 legumes Nutrition 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 235000015170 shellfish Nutrition 0.000 description 2
- 241000254173 Coleoptera Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 241000220485 Fabaceae Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 241000237536 Mytilus edulis Species 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- -1 metrose Polymers 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000020638 mussel Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- PIILXFBHQILWPS-UHFFFAOYSA-N tributyltin Chemical compound CCCC[Sn](CCCC)CCCC PIILXFBHQILWPS-UHFFFAOYSA-N 0.000 description 1
- SBXWFLISHPUINY-UHFFFAOYSA-N triphenyltin Chemical compound C1=CC=CC=C1[Sn](C=1C=CC=CC=1)C1=CC=CC=C1 SBXWFLISHPUINY-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Paints Or Removers (AREA)
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
Description
(産業上の利用分野)
本発明は、海中におけるFRP(繊維強化プラス
チツク)製品への貝類や藻類等の付着を防ぐよう
にしたFRP製品の海生物付着防止法に関するも
のである。
(従来の技術)
従来、海生物付着防止法として、有機錫系の塗
料(トリブチル錫又はトリフエニル錫系塗料)が
多用されていたが、これらは船底塗料等に用いて
きわめて有効であるものの、毒性が強いため、近
年では公害防止上からの規制を受け、継続して使
用することはできない。
そこで、これにかわる無公害性の防汚剤とし
て、従来から経験的にキユポラニツケル(銅−ニ
ツケル合金)に海生物が付着しないことが知られ
ている事実を活用し、銅−ニツケル合金を防汚剤
として、これをFRP(繊維強化プラスチツク)の
ゲルコートの手法で防汚層を設けることにより、
海洋構造物等の海生物付着防止を図るようにする
ことが知られている(例えば、特表昭57−501382
号公報参照)。
(発明が解決しようとする課題)
従来の技術で述べた特表昭57−501382号公報に
記載の手法による防汚ゲルコート層を設けた
FRP板又はFRP管の試料を、実際に香川県直島
と沖縄県牧港の海中に浸漬して海生物の付着状況
を観察したところ、初期の一時期(3〜4ケ月)
は効果らしいものが認められたが、この後は無垢
のFRP板を海中に浸漬させたものと何ら変わり
がなく、浸漬後6ケ月を経過した時点で、直島に
おいてはフジツボ、ムラサキガイ、カキ、チゴケ
ムシ、ヤルプラ等の海生物が多く付着し、また牧
港においてはフジツボが付着して、実用性の点で
は満足できるものではないという問題点を有して
いた。
このように初期の一時期を除いて海生物が付着
する理由としては、銅又は銅系合金に対して海生
物が付着しないのは水中に溶け出す銅イオンを海
生物が嫌い、銅イオンの存在が忌避剤として働く
ためといわれるが、単純にゲルコートの手法で銅
又は銅合金粉を不飽和ポリエステル樹脂、ビニル
エステル樹脂又はエポキシ樹脂等で固めた場合
は、これらの樹脂の耐海水性が良好なため、初め
の一時期だけ銅イオンが水中に溶出するものの、
その濃度は低く、さらに耐海水性の良好な樹脂で
防汚剤を固めているため継続したイオンの溶出が
なされぬためである。
これを別の角度から検討するために、ゲルコー
ト処理したFRP板から切り出した試験片を、一
定量の精製水中に浸漬させて、原子吸光分光装置
で水中の銅イオンを測定したところ結果は第2図
に示す通りで、この第2図からも推察されるよう
に、銅−ニツケル系の防汚剤を含有させた単純な
ゲルコート品では、水中に溶け出す銅イオン濃度
のレベルが低く、且つ濃度のピークが2〜3ケ月
で生じ、以後は濃度が低下する傾向にあり、これ
は使用した不飽和ポリエステル樹脂の耐海水性が
良いため銅−ニツケル系防汚剤を樹脂が包み込ん
でしまい、有効なかたちで長期的に銅イオンを溶
解できないためと考えられる。この実験で用いた
不飽和ポリエステル樹脂は、軟質のオルソフタル
酸系ポリエステル樹脂(日立化成工業(株)製、PS
−15)であり、これは不飽和ポリエステル樹脂の
中では比較的添加物を溶出させるのに適した樹脂
であるのに上記の結果であつた。
またこれと並行してエポキシ樹脂(油化シエル
エポキシ(株)製、エピコート828)を用いたゲルコ
ート品についても実験したが、結果は不飽和ポリ
エステル樹脂使用品よりも悪かつた。
なお、第2図中における「効果の顕著な水準」
とは、同じ防汚剤を用いた防汚塗料(大日本塗料
(株)製、MF−200)をFRP板に塗布(塗膜厚さ約
200μm)した試験片について同一条件で測定した
結果であり、これは海中浸漬試験の結果、顕著な
効果が得られたものの、2年程度で塗装が溶け去
つて下地が露出し、寿命が2年以下と短いのが難
点であつた。
本発明は、従来の技術の有するこのような問題
点に鑑みてなされたものであり、ゲルコート層中
に含有された銅又は銅系合金の水中に溶け出す銅
イオン濃度が上がり、さらに安定した状態で長期
間の銅イオン溶け出しが可能で実用化が計れる
FRP製品の海生物付着防止法を提供することを
目的とするものである。
(課題を解決するための手段)
本発明者らは上記の目的を達成するために種種
検討を重ねた結果、銅又は銅系合金を含有するゲ
ルコート層中に、ゲルコート化及びそれぞれの防
汚剤に適した特定の水溶性高分子材料を添加する
ことにより、ゲルコート層の海水溶解性が促進さ
れて、水中に溶け出す銅イオンの濃度が上がり、
さらに安定した状態で長期間の銅イオン溶け出し
が可能となることを見出し、本発明に到つた。
すなわち本発明の海生物付着防止法は、ゲルコ
ート層中に防汚剤として銅を含有するFRP製品
の場合は、上記ゲルコート層中にセルローズ、変
性でんぷん、ゼラチン、アラビアガム及びローカ
ストビーンガムからなる群から選ばれる一種以上
の水溶性高分子材料を添加し、また、ゲルコート
層中に防汚剤として銅系の合金を含有するFRP
製品の場合は、上記ゲルコート層中にセルロー
ズ、メトローズ、ゼラチン、アラビアガム及びロ
ーカストビーンガムからなる群から選ばれる一種
以上の水溶性高分子材料を添加するものである。
そして、上記ゲルコート層形成に用いるマトリ
ツクス樹脂としては、ゲルコート層の海水溶解性
を良くするために、不飽和ポリエステル樹脂の中
では比較的海水溶解性の良い軟質のオルソフタル
酸系不飽和ポリエステル樹脂が好ましい。
本発明中において、セルローズはセルローズの
誘導体でヒドロキシエチルセルローズ化して水溶
化したもの、変性でんぷんはコーンスターチを酸
化させた可溶性でんぷん、アラビアガムはマメ科
アカシア属の幹から分泌する樹液を精製したも
の、ローカストビーンガムは地中海沿岸地域に成
育するマメ科植物の豆の外皮を除去し粉砕精製し
たもの、メトローズはメチルセルローズの一種で
セルローズにメチルクロライドを反応させたもの
である。
(実施例)
以下、実施例によつて本発明の内容を説明す
る。
実施例1〜6、比較例1〜7
不飽和ポリエステル樹脂をマトリツクス樹脂と
し、防汚剤としての銅粉及び添加剤としての水溶
性高分子材を表−1に示すような割合に配合して
ゲルコート層(厚さ約800μm)を形成した実施例
1〜6と比較例1〜7のそれぞれのFRP品を作
成し、得られたFRP品について、ゲルコート性
(作業性、良好な平滑面が得られるか否か、剥離
が生じないか等)の評価と、付着防止効果(銅イ
オン濃度)について評価した。
評価結果は表−1に示す。
実施例7〜14、比較例8〜13
不飽和ポリエステル樹脂をマトリツクス樹脂と
し、防汚剤としての銅−ニツケル合金粉及び添加
剤としての水溶性高分子材を表−2に示すような
割合に配合してゲルコート層(厚さ約800μm)を
形成した実施例7〜14と比較例8〜13のそれぞれ
のFRP品を作成し、得られたFRP品について、
前記と同様にゲルコート性の評価と付着防止効果
について評価した。
評価結果は表−2に示す。
なお、上記表−1及び表−2中の実施例の各
FRP品の試験片について、銅イオン濃度を測定
したところ、第1図に示すように、特に、銅を防
汚剤とするものは水溶性高分子材としてセルロー
ズ誘導体(ヒドロキシエチルセルローズ化)を添
加したものが、また、銅−ニツケル合金を防汚剤
とするものは水溶性高分子材としてローカストビ
ーンガム、アラビアガムを添加したものが、目的
とする銅イオン濃濃度に近ずく結果を得た。ま
た、表−1及び表−2中の実施例によるゲルコー
ト処理を施したFRP板とFRP管をそれぞれ三重
県鳥羽と茨城県日立港の海中に浸漬して観察中で
あるが、浸漬後6ケ月経過時点では、実施例10及
び11については貝類の付着はなく、他の実施例に
ついては僅かな付着であつた。
なお、表−1及び表−2中の水溶性高分子にお
いて、アラビアガム末は詳細不明であるが、アラ
ビアガムを食品の乳化剤、増粘剤、安定剤用に加
工したもの(輸入品使用)、粉飴はコーンスター
チを原料としたでんぷん加工品(日本食品加工品
使用)、分岐デキストリンはでんぷんを粉体のま
ま加熱して得られるもので、別名焙焼でんぷんと
称するものである(参松工業品使用)。
(Field of Industrial Application) The present invention relates to a method for preventing marine organisms from adhering to FRP (fiber-reinforced plastic) products in the sea, which prevents shellfish, algae, etc. from adhering to FRP products. (Prior art) Conventionally, organic tin-based paints (tributyltin or triphenyltin-based paints) have been widely used as a method to prevent marine organisms from adhering to the water. Due to the strong pollution, in recent years it has been subject to regulations to prevent pollution and cannot be used continuously. Therefore, as an alternative non-polluting antifouling agent, we have developed an antifouling agent using copper-nickel alloy, taking advantage of the fact that it has been known empirically that marine organisms do not adhere to cupora nickel (copper-nickel alloy). By applying this as an antifouling layer using FRP (fiber reinforced plastic) gel coating method,
It is known to try to prevent marine organisms from adhering to marine structures (for example, Japanese Patent Publication No. 57-501382).
(see publication). (Problems to be Solved by the Invention) An antifouling gel coat layer was provided by the method described in Japanese Patent Application Publication No. 57-501382 mentioned in the prior art section.
When samples of FRP boards or FRP pipes were actually immersed in the sea in Naoshima, Kagawa Prefecture, and Makiminato, Okinawa Prefecture, and the state of adhesion of marine life was observed, it was found that during the initial period (3 to 4 months)
After this, it was no different from immersing solid FRP boards in the sea, and after 6 months of immersion, on Naoshima, barnacles, mussels, oysters, Many sea creatures such as brown beetles and yalpuras were attached to the vessels, and in Makiminato, barnacles were attached to the vessels, making them unsatisfactory in terms of practicality. The reason why sea creatures do not adhere to copper or copper-based alloys, except for the initial period, is that sea creatures do not like the copper ions that dissolve into the water, and the presence of copper ions is the reason why sea creatures do not adhere to copper or copper-based alloys. This is said to work as a repellent, but if copper or copper alloy powder is simply hardened with unsaturated polyester resin, vinyl ester resin, or epoxy resin using a gel coating method, it will not work because these resins have good seawater resistance. , although copper ions are eluted into the water only for the first period,
This is because the concentration is low, and since the antifouling agent is hardened with a resin that has good seawater resistance, continuous elution of ions does not occur. In order to examine this from a different angle, we immersed a test piece cut out from a gel-coated FRP board in a certain amount of purified water and measured the copper ions in the water using an atomic absorption spectrometer. As shown in the figure, and as can be inferred from this figure 2, simple gel-coat products containing copper-nickel antifouling agents have a low level of copper ion concentration dissolved in water, and a low concentration of copper ions. The peak occurs in 2 to 3 months, and the concentration tends to decrease thereafter. This is because the unsaturated polyester resin used has good seawater resistance, so the resin wraps around the copper-nickel antifouling agent, making it less effective. This is thought to be due to the fact that copper ions cannot be dissolved over a long period of time. The unsaturated polyester resin used in this experiment was a soft orthophthalic acid polyester resin (manufactured by Hitachi Chemical Co., Ltd., PS
-15), and this result was obtained even though this is a resin that is relatively suitable for eluting additives among unsaturated polyester resins. In parallel with this, we also experimented with a gel-coated product using an epoxy resin (Epicoat 828, manufactured by Yuka Ciel Epoxy Co., Ltd.), but the results were worse than products using unsaturated polyester resin. In addition, the “remarkable level of effect” in Figure 2
is an antifouling paint using the same antifouling agent (Dainippon Paint Co., Ltd.).
Co., Ltd., MF-200) is applied to the FRP board (film thickness approx.
200μm) under the same conditions, and although a remarkable effect was obtained as a result of the underwater immersion test, the paint melted away in about 2 years, exposing the base, and the lifespan was shortened to 2 years. The problem was that it was short, as shown below. The present invention has been made in view of the above-mentioned problems of the conventional technology, and it increases the concentration of copper ions dissolved in water of copper or copper-based alloy contained in the gel coat layer, and further stabilizes the concentration of copper ions dissolved in water. It is possible to dissolve copper ions over a long period of time, making it possible to put it into practical use.
The purpose is to provide a method for preventing marine organisms from adhering to FRP products. (Means for Solving the Problems) In order to achieve the above object, the present inventors have repeatedly investigated various types of products, and have found that gel coating and antifouling agents are added to the gel coat layer containing copper or a copper-based alloy. By adding a specific water-soluble polymer material suitable for the gel coat layer, the seawater solubility of the gel coat layer is promoted, and the concentration of copper ions dissolved in water is increased.
Furthermore, it was discovered that copper ions can be leached out for a long period of time in a stable state, leading to the present invention. In other words, in the case of an FRP product containing copper as an antifouling agent in the gel coat layer, the method for preventing the adhesion of marine organisms of the present invention applies to a group consisting of cellulose, modified starch, gelatin, gum arabic, and locust bean gum in the gel coat layer. FRP containing one or more water-soluble polymer materials selected from the following, and a copper-based alloy as an antifouling agent in the gel coat layer.
In the case of a product, one or more water-soluble polymeric materials selected from the group consisting of cellulose, metrose, gelatin, gum arabic, and locust bean gum are added to the gel coat layer. As the matrix resin used for forming the gel coat layer, in order to improve the seawater solubility of the gel coat layer, a soft orthophthalic acid-based unsaturated polyester resin, which has relatively good seawater solubility among unsaturated polyester resins, is preferable. . In the present invention, cellulose is a derivative of cellulose that has been converted to hydroxyethyl cellulose and made water-soluble, modified starch is soluble starch obtained by oxidizing corn starch, and gum arabic is purified sap secreted from the trunk of the genus Acacia in the Fabaceae family. Locust bean gum is made by removing the outer skin of beans from the legume family that grows in the Mediterranean region and pulverizing them. Metrose is a type of methylcellulose, which is made by reacting cellulose with methyl chloride. (Example) Hereinafter, the content of the present invention will be explained with reference to Examples. Examples 1 to 6, Comparative Examples 1 to 7 Unsaturated polyester resin was used as a matrix resin, and copper powder as an antifouling agent and a water-soluble polymer material as an additive were mixed in the proportions shown in Table 1. FRP products of Examples 1 to 6 and Comparative Examples 1 to 7 each having a gel coat layer (approximately 800 μm thick) were prepared, and the resulting FRP products had gel coat properties (workability, good smooth surface). The adhesion prevention effect (copper ion concentration) was evaluated. The evaluation results are shown in Table-1. Examples 7 to 14, Comparative Examples 8 to 13 Unsaturated polyester resin was used as a matrix resin, and copper-nickel alloy powder as an antifouling agent and water-soluble polymer material as an additive were added in the proportions shown in Table 2. FRP products of Examples 7 to 14 and Comparative Examples 8 to 13 were created by blending to form a gel coat layer (approximately 800 μm thick), and the resulting FRP products were as follows:
The gel coat properties and adhesion prevention effect were evaluated in the same manner as above. The evaluation results are shown in Table-2. In addition, each of the examples in Table-1 and Table-2 above
When we measured the copper ion concentration on test pieces of FRP products, we found that, as shown in Figure 1, in particular, those that use copper as an antifouling agent contain cellulose derivatives (hydroxyethyl cellulose) as a water-soluble polymer material. In addition, those using copper-nickel alloy as an antifouling agent and those with locust bean gum and gum arabic added as water-soluble polymer materials obtained results close to the desired copper ion concentration. . In addition, FRP boards and FRP pipes treated with gel coat according to the examples in Tables 1 and 2 are being immersed in the sea at Toba, Mie Prefecture, and Hitachi Port, Ibaraki Prefecture, respectively, and are being observed, but after 6 months of immersion, At the time point, there was no adhesion of shellfish in Examples 10 and 11, and only slight adhesion in the other Examples. In addition, in the water-soluble polymers in Tables 1 and 2, the details of gum arabic powder are unknown, but gum arabic is processed to be used as an emulsifier, thickener, or stabilizer for foods (imported products used). Powdered candy is a starch processed product made from corn starch (using processed Japanese food products), and branched dextrin is obtained by heating starch in powder form, also known as roasted starch (Sanmatsu Kogyo Co., Ltd.) product used).
【表】【table】
【表】【table】
【表】
(発明の効果)
本発明は、第1図からも明らかなように、銅又
は銅合金の防汚剤を単純にゲルコート層に含有さ
せた従来品よりも、水中に溶け出す銅イオン濃度
が上がつて付着防止効果が向上し、また、防汚効
果の寿命については現時点では明確でないもの
の、ゲルコート層自体の厚みは少なくとも従来の
塗装品よりも厚く(2mm程度位)することも可能
であるので、大幅な寿命の向上が期待できる。
そして、ゲルコート層形成のマトリツクス樹脂
として軟質のオルソフタル酸系不飽和ポリエステ
ル樹脂を使用することにより、ゲルコート層の海
水溶解性が良くなり、水中に溶け出す銅イオン濃
度が上がつて海生物付着防止の効果がさらに向上
する。[Table] (Effects of the Invention) As is clear from Fig. 1, the present invention allows copper ions to dissolve into water more easily than the conventional product in which a copper or copper alloy antifouling agent is simply contained in the gel coat layer. As the concentration increases, the anti-fouling effect improves, and although the longevity of the antifouling effect is currently unclear, it is possible to make the gel coat layer itself at least thicker (about 2 mm) than conventional coated products. Therefore, a significant improvement in life can be expected. By using a soft orthophthalic acid-based unsaturated polyester resin as the matrix resin for forming the gel coat layer, the solubility of the gel coat layer in seawater is improved, and the concentration of copper ions dissolved in water is increased, which helps prevent marine life from adhering to the gel coat layer. The effect is further improved.
第1図は本発明における実施例と、防汚剤を含
有させたゲルコート層とした従来品及び塗装品と
の銅イオン濃度の経時傾向を示す図である。第2
図は不飽和ポリエステル樹脂をマトリツクス樹脂
とし、銅−ニツケル合金を防汚剤としたゲルコー
ト層の従来例の溶解銅イオンのレベルと経時変化
を示す図である。
FIG. 1 is a diagram showing the trends in copper ion concentration over time in Examples of the present invention, conventional products with gel coat layers containing an antifouling agent, and coated products. Second
The figure shows the level of dissolved copper ions and changes over time in a conventional gel coat layer using an unsaturated polyester resin as a matrix resin and a copper-nickel alloy as an antifouling agent.
Claims (1)
FRP製品の海生物付着防止法において、上記ゲ
ルコート層中にセルローズ、変性でんぷん、ゼラ
チン、アラビアガム及びローカストビーンガムか
らなる群から選ばれる一種以上の水溶性高分子材
料を添加することを特徴とするFRP製品の海生
物付着防止法。 2 銅系の合金を含有するゲルコート層を形成し
てなるFRP製品の海生物付着防止法において、
上記ゲルコート層中にセルローズ、メトローズ、
ゼラチン、アラビアガム及びローカストビーンガ
ムからなる群から選ばれる一種以上の水溶性高分
子材料を添加することを特徴とするFRP製品の
海生物付着防止法。 3 ゲルコート層形成のマトリツクス樹脂が軟質
のオルソフタル酸系不飽和ポリエステル樹脂であ
る請求項1又は2記載のFRP製品の海生物付着
防止法。[Claims] 1. Formed with a gel coat layer containing copper
The method for preventing marine organisms from adhering to FRP products is characterized in that one or more water-soluble polymeric materials selected from the group consisting of cellulose, modified starch, gelatin, gum arabic, and locust bean gum are added to the gel coat layer. Law to prevent marine organisms from adhering to FRP products. 2. In the method for preventing marine organisms from adhering to FRP products formed with a gel coat layer containing a copper-based alloy,
Cellulose, Metrose,
A method for preventing marine organisms from adhering to FRP products, which is characterized by adding one or more water-soluble polymeric materials selected from the group consisting of gelatin, gum arabic, and locust bean gum. 3. The method for preventing marine organisms from adhering to FRP products according to claim 1 or 2, wherein the matrix resin for forming the gel coat layer is a soft orthophthalic acid-based unsaturated polyester resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2151673A JPH0444833A (en) | 1990-06-12 | 1990-06-12 | Prevention of marine organism adhesion to frp product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2151673A JPH0444833A (en) | 1990-06-12 | 1990-06-12 | Prevention of marine organism adhesion to frp product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0444833A JPH0444833A (en) | 1992-02-14 |
JPH0561092B2 true JPH0561092B2 (en) | 1993-09-03 |
Family
ID=15523744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2151673A Granted JPH0444833A (en) | 1990-06-12 | 1990-06-12 | Prevention of marine organism adhesion to frp product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0444833A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105209562A (en) * | 2013-03-13 | 2015-12-30 | 株式会社埃斯腾化学研究所 | Antifouling coating film with low frictional resistance with water or seawater |
-
1990
- 1990-06-12 JP JP2151673A patent/JPH0444833A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0444833A (en) | 1992-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5049382A (en) | Coating and composition containing lipid microstructure toxin dispensers | |
US5629045A (en) | Biodegradable nosiogenic agents for control of non-vertebrate pests | |
JPH02151672A (en) | Antifouling coating material | |
EP0196376A1 (en) | Article coated with an antifouling composition for use in seawater | |
JPH0561092B2 (en) | ||
US4678512A (en) | Marine coating compositions and method | |
JP3906934B2 (en) | Underwater antifouling agent composition, and hull, fishing net and underwater structure antifouling treatment method using the same | |
US5252630A (en) | Antifouling coating and method for using same | |
JP4601739B2 (en) | Antifouling agent composition, antifouling paint containing the same, antifouling coating film, antifouling treatment using them, and antifouling method | |
JPH11500457A (en) | Use of organoboron compounds as antifouling agents | |
JPH04178309A (en) | Aquatic antifouling agent composition | |
JPH0713209B2 (en) | Fishing net antifouling composition | |
JPH01148372A (en) | Process for forming stainproof coating film | |
JPS63301273A (en) | Antifouling treatment | |
JPH07187934A (en) | Repellent for underwater adhesive organism and antifouling coating containing the same | |
JPS63280779A (en) | Water-based underwater antifouling agent | |
JPH02308869A (en) | Coating for mother pearl oyster | |
JP3341127B2 (en) | Formulation of an aquatic organism adhesion inhibitor or adhesion promoter | |
JPH0812906A (en) | Coating composition | |
JPH04262724A (en) | Method for coating culture fishing net | |
JPH0689321B2 (en) | Antifouling composition | |
JPH08151305A (en) | Aquatic antifoulant | |
JPS6153206A (en) | Antifouling agent | |
JPS6223023B2 (en) | ||
JPH0725715A (en) | Underwater antifouling composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |