JPH0561076A - Waveguide type optical branching element - Google Patents

Waveguide type optical branching element

Info

Publication number
JPH0561076A
JPH0561076A JP21977091A JP21977091A JPH0561076A JP H0561076 A JPH0561076 A JP H0561076A JP 21977091 A JP21977091 A JP 21977091A JP 21977091 A JP21977091 A JP 21977091A JP H0561076 A JPH0561076 A JP H0561076A
Authority
JP
Japan
Prior art keywords
optical
waveguide
wavelength
directional couplers
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21977091A
Other languages
Japanese (ja)
Other versions
JP2625289B2 (en
Inventor
Norio Takato
範夫 高戸
Katsunari Okamoto
勝就 岡本
Tsutomu Kito
勤 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21977091A priority Critical patent/JP2625289B2/en
Publication of JPH0561076A publication Critical patent/JPH0561076A/en
Application granted granted Critical
Publication of JP2625289B2 publication Critical patent/JP2625289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type

Abstract

PURPOSE:To obtain a waveguide type optical branching element whose loss is small and having the small wavelength dependency of a coupling ratio in a wide wavelength area, and also whose polarization dependency is mitigated. CONSTITUTION:Two directional couplers 2a, 2b are installed on the way of two optical waveguides 1a 1b arranged on a substrate 1, and the length difference DELTAL of an optical path between the optical waveguides 1a, 1b in between the directional couplers 2a, 2b is arranged, and also, a tapered optical waveguide 1c is provided on some parts of one optical waveguide, then, the wavelength and the polarization dependency of the directional couplers 2a, 2b are counterbalanced with the wavelength and the polarization dependency of the tapered optical waveguide 1c, so that the optical branching element whose loss is small and having the small wavelength dependency in a desired wavelength area can be formed as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信分野等で用いて
好適な導波型光分岐素子に関するものであり、さらに詳
細には、パワー結合率の波長依存性および偏波依存性を
ともに緩和した導波型光分岐素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical branching device suitable for use in the field of optical communication, and more specifically, it shows both the wavelength dependence and the polarization dependence of the power coupling rate. The present invention relates to a relaxed waveguide type optical branching device.

【0002】[0002]

【従来の技術】光分岐素子は、光情報の分配,光ファイ
バ伝送路のモニタ・試験等に不可欠な光部品であり、目
的に応じて50%分岐,20%分岐,数%分岐等の分岐
比(結合率)をもつ分岐素子が必要とされる。さらに、
実際の光ファイバ通信に用いる上で都合がいいように、
波長および偏波状態が変わってもほとんど分岐比が変わ
らない光分岐素子が望まれている。
2. Description of the Related Art An optical branching element is an optical component that is indispensable for distributing optical information, monitoring and testing optical fiber transmission lines, and branches such as 50% branching, 20% branching, and several% branching depending on the purpose. A branching element with a ratio (coupling rate) is required. further,
As it is convenient to use for actual optical fiber communication,
There is a demand for an optical branching device whose branching ratio hardly changes even when the wavelength and polarization state change.

【0003】光分岐素子は、その形態により、1)バル
ク型,2)ファイバ型,3)導波型に大別することがで
きる。
Optical branching devices can be roughly classified into 1) bulk type, 2) fiber type, and 3) waveguide type, depending on their forms.

【0004】バルク型は、マイクロレンズやプリズム,
干渉膜フィルタ等を組み合せて構成するものであり、波
長および偏波依存性の少ない分岐素子を提供できるが、
組立調整に長時間を要し、長期信頼性や価格,サイズの
点で問題を残している。
The bulk type is a microlens or prism,
Although it is configured by combining an interference film filter and the like, it is possible to provide a branch element with little wavelength and polarization dependence.
It takes a long time to assemble and adjust, leaving problems in terms of long-term reliability, price, and size.

【0005】ファイバ型は、光ファイバ自身を構成材料
として研磨や融着・延伸工程を経て形成されるものであ
り、波長依存性が低減され、偏波依存性もほとんどない
タイプも実現可能であるが、その作製工程は制御性が悪
いため、再現性が乏しく量産に適しないという欠点があ
る。
The fiber type is formed by polishing, fusing, and stretching steps using the optical fiber itself as a constituent material, and it is possible to realize a type in which wavelength dependency is reduced and polarization dependency is hardly present. However, the manufacturing process thereof is poor in controllability, so that it has poor reproducibility and is not suitable for mass production.

【0006】これらに対して、導波型は、フォトリソグ
ラフィ工程により、平面基板上に一括大量生産できる利
点があり、再現性や小型集積可能性等の点で優れてい
る。また波長依存性の少ない導波型光分岐素子について
も、例えば、K.Jinguji et al.:“M
ach−Zhender interferomete
rtype optical waveguide c
ouplerwithwavelength−flat
tened coupling ratio”,Ele
ctron.Lett.,vol.26,pp.132
6−1327,1990に記載されている。
On the other hand, the waveguide type has an advantage that it can be mass-produced on a flat substrate in a batch by a photolithography process, and is excellent in reproducibility and small-sized integration possibility. Further, regarding a waveguide type optical branching element having a small wavelength dependence, for example, see K. Jinguji et al. : "M
ach-Zhender interferomete
rtype optical wave guide c
ouplerwithwavelength-flat
tened coupling ratio ", Ele
ctron. Lett. , Vol. 26, pp. 132
6-1327, 1990.

【0007】図11は、従来の広波長域動作導波型光分
岐素子の構成例を示す平面図である。同図において、シ
リコン基板1上に光導波路1a,1bが配置され、光導
波路1a,1bは2箇所で互いに近接して方向性結合器
2a,2bを構成する。光導波路1aの片端3aを入力
ポートとし、光導波路1a,1bの他端3b,4bを、
それぞれ、主出力ポート,副出力ポートとしている。2
個の方向性結合器2a,2b間の光導波路1a,1bの
光路長差が微小量ΔLに設定されている。このように設
定されたマッハ・ツェンダ光干渉計回路では、2個の方
向性結合器間に、光路長差ΔLによる位相差
FIG. 11 is a plan view showing an example of the configuration of a conventional wide-wavelength operation waveguide type optical branching device. In the figure, optical waveguides 1a and 1b are arranged on a silicon substrate 1, and the optical waveguides 1a and 1b are close to each other at two locations to form directional couplers 2a and 2b. One end 3a of the optical waveguide 1a is used as an input port, and the other ends 3b and 4b of the optical waveguides 1a and 1b are
These are the main output port and the sub output port, respectively. Two
The optical path length difference between the optical waveguides 1a and 1b between the directional couplers 2a and 2b is set to a minute amount ΔL. In the Mach-Zehnder interferometer circuit set in this way, the phase difference due to the optical path length difference ΔL is provided between the two directional couplers.

【0008】[0008]

【数1】 θ=2π・n・ΔL/λ (1) (ここで、n=光導波路の屈折率、λ=波長) が存在し、図11のマッハ・ツェンダ光干渉計型光分岐
素子全体としてのパワー結合率ηは、次式で与えられ
る。
[Equation 1] θ = 2π · n · ΔL / λ (1) (where, n = refractive index of optical waveguide, λ = wavelength) exists, and the entire Mach-Zehnder optical interferometer type optical branching device of FIG. 11 is present. The power coupling rate η is given by the following equation.

【0009】[0009]

【数2】 η=sin2φ1 cos2φ2 +cos2φ1 sin2φ2 +2cosθsin φ1 sin φ2 cos φ1 cos φ2 (2) ここで、φ1 ,φ2 は2個の方向性結合器2a,2bの
結合率η1 ,η2 とη1 =sin2φ1 ,η2 =sin2φ2
る関係をもつ変数であり、方向性結合器の結合部の光導
波路間隔や結合部長さ,波長,偏波等に依存する。
[Equation 2] η = sin 2 φ 1 cos 2 φ 2 + cos 2 φ 1 sin 2 φ 2 + 2cos θ sin φ 1 sin φ 2 cos φ 1 cos φ 2 (2) where φ 1 and φ 2 are two directions This is a variable having a relationship of η 1 = η 2 and η 1 = sin 2 φ 1 and η 2 = sin 2 φ 2 with the coupling ratios η 1 and η 2 of the directional couplers 2a and 2b. It depends on the coupling length, wavelength, polarization, etc.

【0010】微小光路長差ΔLおよび2つの方向性結合
器2a,2bの光導波路間隔や結合部長さ等の構造パラ
メータを適切に設定することによって、2つの方向性結
合器2a,2bの波長依存性と位相差θの波長依存性が
所望波長域で都合よく打ち消しあい、波長依存性の小さ
い所望の結合率をもった導波型光分岐素子を実現でき
る。
The wavelength dependence of the two directional couplers 2a, 2b is set by appropriately setting the structural parameters such as the minute optical path length difference ΔL and the optical waveguide spacing of the two directional couplers 2a, 2b and the length of the coupling portion. And the wavelength dependence of the phase difference θ are canceled out in a desired wavelength range, and a waveguide type optical branching device having a desired coupling rate with small wavelength dependence can be realized.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、この分
岐素子においては、方向性結合器の結合率自体が依存性
をもつため、わずかではあるがパワー結合率に偏波依存
性があった。
However, in this branch element, since the coupling rate of the directional coupler itself has a dependency, the power coupling rate has a slight polarization dependency.

【0012】図12は、図11に示した広波長域動作導
波型光分岐素子の結合率の波長および偏波依存性の一例
を示すが、この例では、波長1.25〜1.65μmの
範囲で波長依存性は極めて小さいが、特に短波長側でT
M,TE2モードによる結合率の差が2.5%程度あ
る。図13は、さらにこの素子の波長1.31μmにお
ける主出力ポート,副出力ポートの損失の偏光角度依存
性を示したものであるが、副出力ポートの偏波状態によ
る損失変動が大きい。このような欠点は光ファイバ通信
に使用する上で大きな問題であった。
FIG. 12 shows an example of the wavelength and polarization dependence of the coupling rate of the wide-wavelength operation waveguide type optical branching device shown in FIG. 11. In this example, the wavelength is 1.25 to 1.65 μm. , The wavelength dependence is extremely small, but especially on the short wavelength side, T
The difference in coupling rate between M and TE2 modes is about 2.5%. FIG. 13 further shows the polarization angle dependence of the loss of the main output port and the sub output port at the wavelength of 1.31 μm of this element, but the loss variation due to the polarization state of the sub output port is large. Such a drawback has been a serious problem when used for optical fiber communication.

【0013】そこで、本発明の目的は、上記の欠点を解
決し、広い波長域において、結合率の波長依存性が非常
に少なく、かつその偏波依存性も、たとえば20%±
0.5%と緩和された低損失な導波型光分岐素子を提供
することにある。
Therefore, the object of the present invention is to solve the above-mentioned drawbacks, and the wavelength dependence of the coupling rate is very small in a wide wavelength range, and the polarization dependence thereof is, for example, 20% ±.
An object is to provide a waveguide-type optical branching element with a low loss that is reduced to 0.5%.

【0014】[0014]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、基板と、前記基板上に配置された
第1および第2の光導波路と、前記第1および第2の光
導波路を2箇所で互いに近接させて構成した第1および
第2の方向性結合器とを具え、前記第1の光導波路の一
方の端部を入力ポートとし、前記第1および第2の光導
波路の各他方の端部を、それぞれ、主出力とする導波型
光分岐素子において、前記第1および第2の光導波路の
うち前記第1および第2の方向性結合器の間を連結する
部分に光路長差を設けるとともに、当該部分の少なくと
もいずれか一方の一部分にテーパ状光導波路を設けて、
前記第1および第2の方向性結合器の波長および偏波依
存性を当該テーパ状光導波路の波長および偏波依存性で
緩和するように構成したことを特徴とする。
In order to achieve such an object, the present invention provides a substrate, first and second optical waveguides arranged on the substrate, and first and second optical waveguides. A first directional coupler and a second directional coupler in which the optical waveguides are arranged close to each other at two locations, and one end of the first optical waveguide is used as an input port, and the first and second optical waveguides are provided. In the waveguide type optical branching device having the other end of each of the waveguides as the main output, the first and second directional couplers of the first and second optical waveguides are connected to each other. While providing the optical path length difference in the portion, the tapered optical waveguide is provided in at least one of the portions,
The wavelength and polarization dependences of the first and second directional couplers are alleviated by the wavelength and polarization dependence of the tapered optical waveguide.

【0015】ここで、前記光導波路は、単一モード光フ
ァイバのコア径にほぼ等しいコア部寸法を有する石英系
光導波路とすることができる。
Here, the optical waveguide may be a silica-based optical waveguide having a core portion size substantially equal to the core diameter of the single mode optical fiber.

【0016】[0016]

【作用】本発明では、制御された微小量ΔLだけの長さ
の差が与えられた2本の光導波路により方向性結合器2
個を連結して基板上に構成されたマッハ・ツェンダ光干
渉計回路形の光分岐素子において、2本の光導波路のう
ち2個の方向性結合器の間における部分の少なくとも一
方をテーパ状光導波路とすることにより、これら2個の
方向性結合器を連結する部分に偏波により異なる位相差
を与えて、方向性結合器の波長依存性だけでなく偏波依
存性も緩和し、以て、従来のマッハ・ツェンダ光干渉計
回路形の光分岐素子と大きく異なり、方向性結合器自体
の結合率の波長依存性のみならず偏波依存性をも緩和し
て、素子全体として所望波長域で、波長依存性の少な
い、低損失な光分岐素子を提供することができる。
In the present invention, the directional coupler 2 is composed of two optical waveguides provided with a controlled difference in length by a minute amount ΔL.
In a Mach-Zehnder optical interferometer circuit-type optical branching device formed by connecting a plurality of optical waveguides, at least one of two optical waveguides between two directional couplers has a tapered optical waveguide. By using a waveguide, a different phase difference is given to the part connecting these two directional couplers depending on the polarization, and not only the wavelength dependence of the directional coupler but also the polarization dependence is relaxed. , Is very different from the conventional Mach-Zehnder interferometer circuit type optical branching element, and relaxes not only the wavelength dependence of the coupling ratio of the directional coupler itself but also the polarization dependence, and the entire wavelength range of the element as desired. Thus, it is possible to provide an optical branching element with low wavelength dependence and low loss.

【0017】[0017]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0018】図1は、本発明の導波型光分岐素子の基本
的な構成例を示す平面図であり、平面基板1の上に光導
波路1a,1bが配置され、光導波路1a,1bは2箇
所で互いに近接して方向性結合器2a,2bを構成す
る。光導波路1aの片端3aを入力ポートとし、光導波
路1a,1bの他端3b,4bを、それぞれ、主出力ポ
ート,副出力ポートとしている。光導波路1aのうち、
方向性結合器2a,2bとの間の一部はテーパ状の幅広
の光導波路1cとなっている。2個の方向性結合器2
a,2b間の光導波路1a,1bの光路長差が微小量Δ
Lに設定されている。このように設定されたマッハ・ツ
ェンダ光干渉計回路では、2個の方向性結合器2a,2
b間に
FIG. 1 is a plan view showing a basic configuration example of a waveguide type optical branching device of the present invention, in which optical waveguides 1a and 1b are arranged on a flat substrate 1 and optical waveguides 1a and 1b are The directional couplers 2a and 2b are formed close to each other at two locations. One end 3a of the optical waveguide 1a serves as an input port, and the other ends 3b and 4b of the optical waveguides 1a and 1b serve as a main output port and a sub output port, respectively. Of the optical waveguide 1a,
A part between the directional couplers 2a and 2b is a tapered wide optical waveguide 1c. Two directional couplers 2
The optical path length difference between the optical waveguides 1a and 1b between a and 2b is a small amount Δ.
It is set to L. In the Mach-Zehnder optical interferometer circuit set in this way, two directional couplers 2a, 2
between b

【0019】[0019]

【数3】 Θ=θ+θ′ (3) の位相差が存在する。式(3)における第1項θは光路
差ΔLにより生ずる位相差で式(2)で与えられ、第2
項θ′は2個の方向性結合器を連結する導波路の一部が
テーパ状となっているために生じる位相差である。θは
波長依存性はあるが偏波にはほとんど依存しないのに対
し、θ′は波長依存性および偏波依存性の双方共に有す
る。
## EQU3 ## There is a phase difference of Θ = θ + θ '(3). The first term θ in the equation (3) is a phase difference generated by the optical path difference ΔL and is given by the equation (2),
The term θ ′ is a phase difference caused by a part of the waveguide connecting the two directional couplers being tapered. Although θ has wavelength dependence but hardly depends on polarization, θ ′ has both wavelength dependence and polarization dependence.

【0020】図1のマッハ・ツェンダ光干渉計型光分岐
素子全体としてのパワー結合率ηは、従来例の図11の
マッハ・ツェンダ光干渉計型光分岐素子の場合と同様
に、次式で与えられる。
The power coupling ratio η of the Mach-Zehnder interferometer type optical branching element shown in FIG. 1 is calculated by the following equation, as in the case of the conventional Mach-Zehnder interferometer type optical branching element shown in FIG. Given.

【0021】[0021]

【数4】 η=sin2φ1 cos2φ2 +cos2φ1 sin2φ2 +2cosΘsin φ1 sin φ2 cos φ1 cos φ2 (4) ここで、φ1 ,φ2 は2個の方向性結合器の結合率η
1 ,η2 とη1 =sin2φ1 ,η2 =sin2φ2 なる関係を
もつ変数であり、方向性結合器2a,2bの結合部の光
導波路間隔や結合部長さ,波長,偏波等に依存する。本
発明の作用を理解しやすいように、2個の方向性結合器
が同じ場合(φ1 =φ2 =φ)について説明する。この
場合、(4)式は次のように書き換えられる。
[Equation 4] η = sin 2 φ 1 cos 2 φ 2 + cos 2 φ 1 sin 2 φ 2 + 2cos θ sin φ 1 sin φ 2 cos φ 1 cos φ 2 (4) where φ 1 and φ 2 are two directions Coupling ratio η of the sex coupler
1 and η 2 and η 1 = sin 2 φ 1 and η 2 = sin 2 φ 2 are variables that have a relationship such as the optical waveguide spacing, the coupling length, the wavelength, and the polarization of the coupling portions of the directional couplers 2a and 2b. It depends on the waves. In order to facilitate understanding of the operation of the present invention, the case where two directional couplers are the same (φ 1 = φ 2 = φ) will be described. In this case, the equation (4) can be rewritten as follows.

【0022】[0022]

【数5】 η=sin (2φ)・(1+cos Θ)/2 (5) 本発明は、(5)式におけるsin (2φ)項すなわち方
向性結合器の波長依存性と偏波依存性を、(1+cos
Θ)/2項の波長依存性および偏波依存性、すなわち、
(3)式の位相差θの波長依存性および位相差θ′の波
長依存性および偏波依存性を利用して、同時に打ち消す
ことに原理を置いている。もちろん、sin(2φ)項の
波長依存性と偏波依存性を、(1+cosΘ)/2項の波
長依存性および偏波依存性が、所望波長域で都合よく打
ち消しあい、波長依存性および偏波依存性の小さい所望
の結合率を実現するには、(4)あるいは(5)式を吟
味して、方向性結合器2a,2bの結合率の波長依存
性、ΔL値およびテーパ導波路形状を適切に設定するこ
とが必要である。
Η = sin (2φ) · (1 + cos Θ) / 2 (5) In the present invention, the sin (2φ) term in the equation (5), that is, the wavelength dependence and polarization dependence of the directional coupler, (1 + cos
Θ) / 2 wavelength dependence and polarization dependence, ie,
The principle is that the wavelength dependence of the phase difference θ and the wavelength dependence and the polarization dependence of the phase difference θ ′ in the equation (3) are used to cancel at the same time. Of course, the wavelength dependence and the polarization dependence of the sin (2φ) term, the wavelength dependence and the polarization dependence of the (1 + cosΘ) / 2 term cancel each other out in a desired wavelength range, and the wavelength dependence and the polarization dependence In order to realize a desired coupling rate with a small dependency, the formula (4) or (5) is examined to determine the wavelength dependency of the coupling rate of the directional couplers 2a and 2b, the ΔL value, and the tapered waveguide shape. It is necessary to set it appropriately.

【0023】以下に、偏波依存性を緩和するための設計
指針を説明する。シリコン基板上に形成した石英系ガラ
ス光導波路による方向性結合器においては、その結合率
(sin2φ)は、単調増加するような波長域においては、
TMモードに対しての方がTEモードに対しての方より
も大きい。図1の構成において、ある波長域で波長依存
性が小さい分岐素子を得るためには、その波長域で結合
率が単調増加するような方向性結合器で構成し、かつ
(5)式の(1+cos Θ)/2項が単調減少する必要が
あり、従って、この位相差による項をTEモードにおい
てよりTMモードでの方が小さくなるように設定すれ
ば、すなわちテーパ状導波路による位相差θ′がTMモ
ードでの方が大きくなるようにすれば、光分岐素子全体
として波長依存性も少なく、かつ偏波依存性が緩和され
ることになる。
The design guideline for alleviating the polarization dependence will be described below. In a directional coupler using a silica glass optical waveguide formed on a silicon substrate, the coupling ratio (sin 2 φ) is
The TM mode is larger than the TE mode. In the configuration of FIG. 1, in order to obtain a branching element having a small wavelength dependence in a certain wavelength range, the branching element is constituted by a directional coupler whose coupling rate increases monotonically in the wavelength range, and (5) The 1 + cos Θ) / 2 term needs to decrease monotonically. Therefore, if the phase difference term is set to be smaller in the TE mode than in the TM mode, that is, the phase difference θ ′ due to the tapered waveguide. However, if it is set to be larger in the TM mode, the wavelength dependence of the entire optical branching element is less and the polarization dependence is alleviated.

【0024】以下、実施例によって本発明を詳細に説明
する。以下の実施例では、光導波路としてシリコン基板
上に形成した石英系単一モード導波路を使用している
が、これは、石英系単一モード光導波路が単一モード光
ファイバとの接続性に優れ、実用的な導波型光分岐素子
を提供できるからであって、本発明は、石英系光導波路
に限定されるものではない。
The present invention will be described in detail below with reference to examples. In the following examples, a silica-based single-mode optical waveguide formed on a silicon substrate is used as an optical waveguide. This is because the silica-based single-mode optical waveguide has good connectivity with a single-mode optical fiber. This is because it is possible to provide an excellent and practical waveguide-type optical branching element, and the present invention is not limited to a silica-based optical waveguide.

【0025】実施例1 図2,図3,図4および図5は、本発明の導波型光分岐
素子の第1実施例として、波長域1.25μm〜1.7
μmで、20%±2%の結合率を有するよう設計した分
岐素子の構成を示す、それぞれ、平面図、図2における
線分AA′,BB′およびCC′に沿った断面を示す拡
大断面図である。
Example 1 FIG. 2, FIG. 3, FIG. 4 and FIG. 5 are wavelength ranges of 1.25 .mu.m to 1.7 as a first example of the waveguide type optical branching device of the present invention.
2 is a plan view and an enlarged cross-sectional view showing a cross-section taken along line segments AA ′, BB ′ and CC ′ in FIG. 2, respectively, showing the configuration of a branch element designed to have a coupling rate of 20% ± 2% in μm Is.

【0026】ここで、1はシリコン基板、1a,1bは
シリコン基板1上に石英系ガラス材料により形成された
石英系光導波路である。光導波路1a,1bは、2箇所
で互いに近接して方向性結合器2a,2bを構成してい
る。光導波路1aは方向性結合器2a,2bの間で幅広
のテーパ状光導波路1cを形成している。光導波路1
a,1bは、膜厚50μm程度のSiO2 系ガラスクラ
ッド層5に埋設された断面寸法8μm×8μm程度のS
iO2 −GeO2 系ガラスコア部からなり、直線パター
ンと曲率半径50mmの円弧パターンとの組合せにより
マッハ・ツェンダ光干渉計回路が構成されている。
Here, 1 is a silicon substrate, and 1a and 1b are silica-based optical waveguides formed on the silicon substrate 1 with a silica-based glass material. The optical waveguides 1a and 1b are close to each other at two locations to form directional couplers 2a and 2b. The optical waveguide 1a forms a wide tapered optical waveguide 1c between the directional couplers 2a and 2b. Optical waveguide 1
a and 1b are S having a cross-sectional dimension of about 8 μm × 8 μm embedded in the SiO 2 -based glass clad layer 5 having a thickness of about 50 μm.
consists iO 2 -GeO 2 based glass core unit, the Mach-Zehnder optical interferometer circuit is constituted by the combination of the arc pattern of the linear pattern and the curvature radius of 50 mm.

【0027】このような石英系光導波路は四塩化シリコ
ンや四塩化チタンの火炎加水分解反応を利用したガラス
膜堆積技術と反応性イオンエッチングによる微細加工技
術との公知の組合せで形成できる。
Such a quartz optical waveguide can be formed by a known combination of a glass film deposition technique utilizing a flame hydrolysis reaction of silicon tetrachloride or titanium tetrachloride and a fine processing technique by reactive ion etching.

【0028】方向性結合器2a,2bの結合部は、2本
の光導波路1a,1bを間隔5μmに保ち、その一方
は、0.13mm、もう一方は0.52mmの距離にわ
たって平行に配置することにより構成した。テーパ状光
導波路1cは、全長が4mmであり、両端に長さ0.7
5mmで、幅が8μmから9.5μmに直線状に変化す
るテーパ部を設け、かつこれら両端のテーパ部の間の中
央部を幅9.5μm、長さ2.5mmの長方形の形状と
した。また、入力ポート3a,4aの間隔、出力ポート
3b,4bの間隔は、いずれも0.250mmに設計し
た。2個の方向性結合器2a,2bを連結する部分の導
波路長は、LおよびL+ΔLであり、(n・ΔL)値
は、1.595μmに設定した。石英系光導波路の屈折
率nは約1.45であるから、ΔLは1.1μmに設定
されていることになる。ΔLは、図2における2個の方
向性結合器2a,2b間の曲線導波路と直線導波路との
長さのわずかな差を利用してフォトマスクパターン段階
で正確に設定した。
The coupling portion of the directional couplers 2a and 2b keeps the two optical waveguides 1a and 1b at a distance of 5 μm, and one of them is arranged in parallel over a distance of 0.13 mm and the other of 0.52 mm. Configured by The tapered optical waveguide 1c has a total length of 4 mm and a length of 0.7 at both ends.
A tapered portion having a width of 5 mm and linearly changing from 8 μm to 9.5 μm was provided, and a central portion between the tapered portions at both ends had a rectangular shape with a width of 9.5 μm and a length of 2.5 mm. The distance between the input ports 3a and 4a and the distance between the output ports 3b and 4b were both designed to be 0.250 mm. The waveguide lengths of the portions connecting the two directional couplers 2a and 2b are L and L + ΔL, and the (n · ΔL) value is set to 1.595 μm. Since the refractive index n of the quartz optical waveguide is about 1.45, ΔL is set to 1.1 μm. ΔL was accurately set at the photomask pattern stage by using the slight difference in length between the curved waveguide and the straight waveguide between the two directional couplers 2a and 2b in FIG.

【0029】図6は、本実施例の光分岐素子の結合率の
波長および偏波依存性を示す図である。波長1.25〜
1.65μmの範囲で波長依存性は極めて小さく、かつ
TMおよびTEモードによる結合率の差は上記の波長範
囲で1%以下である。
FIG. 6 is a diagram showing the wavelength and polarization dependence of the coupling rate of the optical branching element of this embodiment. Wavelength 1.25
The wavelength dependence is extremely small in the range of 1.65 μm, and the difference in coupling rate between the TM and TE modes is 1% or less in the above wavelength range.

【0030】図7は、さらにこの素子の波長1.31μ
mにおける主出力ポート,副出力ポートの損失の偏波依
存性を示したものであるが、副出力ポートの偏波状態に
よる損失変動も±0.08dBと小さくなっていること
がわかる。
FIG. 7 further shows that the wavelength of this device is 1.31 μm.
The polarization dependence of the loss of the main output port and the sub output port at m is shown, and it can be seen that the loss variation due to the polarization state of the sub output port is as small as ± 0.08 dB.

【0031】図8は本実施例の光分岐素子の結合率の偏
波特性を説明する図である。曲線(a),(a′),
(b),(b′)は、構成要素である方向性結合器2
a,2b自身のTM,TEモードに対する結合率特性を
示す。曲線(c),(c′)は、各々TM,TEモード
に対する2つの方向性結合器2a,2bを連結する2本
の光導波路1a,1b間のテーパ状光導波路1cに生じ
る位相差の波長依存性を示し、曲線(d)には、参考と
してのテーパ状光導波路のない従来例の場合の位相差の
波長依存性を示した。方向性結合器2a,2bの結合率
はいずれもTMモードに対しての方が大きく、従来例の
ように曲線(d)に示す偏波依存性のない位相差を与え
た場合には、必然的に光分岐素子全体として結合率の偏
波依存性が生じてしまう。本実施例の場合には、曲線
(c),(c′)に示すように、テーパ状導波路1cの
部分において位相差の偏波依存性が生じるので、それに
より方向性結合器2a,2bでの偏波依存性を相殺する
ことができ、その結果として方向性結合器2a,2bの
偏波依存性を緩和することができる。
FIG. 8 is a diagram for explaining the polarization characteristics of the coupling rate of the optical branching device of this embodiment. Curves (a), (a '),
(B) and (b ') are component directional couplers 2.
The coupling rate characteristic with respect to TM and TE modes of a and 2b itself is shown. Curves (c) and (c ') are wavelengths of the phase difference generated in the tapered optical waveguide 1c between the two optical waveguides 1a and 1b connecting the two directional couplers 2a and 2b for the TM and TE modes, respectively. The dependence is shown, and the curve (d) shows the wavelength dependence of the phase difference in the case of the conventional example without the tapered optical waveguide as a reference. The coupling ratios of the directional couplers 2a and 2b are both larger for the TM mode, and inevitably when the phase difference having no polarization dependence shown in the curve (d) is given as in the conventional example. As a whole, the polarization dependency of the coupling rate occurs in the entire optical branching element. In the case of the present embodiment, as shown by the curves (c) and (c '), the polarization dependence of the phase difference is generated in the tapered waveguide 1c, which causes the directional couplers 2a and 2b. It is possible to cancel the polarization dependence of the above, and as a result, it is possible to reduce the polarization dependence of the directional couplers 2a and 2b.

【0032】ここで、本実施例の光分岐素子の寸法につ
いて述べておくと、長さ20mm、幅2.5mmであ
り、従来の光分岐素子と同程度の大きさであった。これ
は、従来の光分岐素子の中の2つの方向性結合器を直線
で連結する方の導波路の一部をテーパ状に置き換えただ
けだからである。また、本実施例の光分岐素子の損失値
も0.2dB程度と従来の光分岐素子と同程度である
が、これはテーパ状導波路部のテーパ角度を小さく設計
してあるので、過剰な放射損失が生じないためである。
The dimensions of the optical branching element of this embodiment will be described below. The length was 20 mm and the width was 2.5 mm, which was about the same as the conventional optical branching element. This is because only a part of the waveguide connecting the two directional couplers in the conventional optical branching element with a straight line is replaced with a tapered shape. The loss value of the optical branching element of this embodiment is about 0.2 dB, which is about the same as that of the conventional optical branching element, but this is excessive because the taper angle of the tapered waveguide portion is designed to be small. This is because no radiation loss occurs.

【0033】実施例2 図9は本発明の第2実施例として構成した、波長域1.
25μm〜1.6μmにおいて50%±5%の結合率を
有する光分岐素子の平面図である。大略は、実施例1と
同様であるが、この実施例では、テーパ状光導波路1c
を2つの方向性結合器を遠回りして連結する光導波路1
bの途中に設けた点が異なる。もちろん、この場合にも
第1実施例と同様に配置することもできる。
Embodiment 2 FIG. 9 shows a wavelength range of 1.
It is a top view of the optical branching element which has a coupling rate of 50% +/- 5% in 25 micrometers-1.6 micrometers. The outline is similar to that of the first embodiment, but in this embodiment, the tapered optical waveguide 1c is used.
Optical waveguide 1 for connecting two directional couplers by detouring
The difference is that it is provided in the middle of b. Of course, also in this case, the same arrangement as in the first embodiment can be adopted.

【0034】方向性結合器2a,2bの結合部の導波路
間隔は5μm、結合部長さは、実施例1に比べて強結合
よりに、各々0.72mm,1.28mmに設定した。
テーパ状光導波路1cの構造も実施例1とは異なり、全
長が4mmであり、両端に長さ0.75mmで8μmか
ら7.5μmに幅が直線状に減少するテーパ部を設け、
かつこれら両端のテーパ部の間の中央部を幅7.5μ
m、長さ2.5mmの細長い直方形の形状とした。ま
た、ΔLは1.225μmに設定した。本実施例の素子
長は、25mmであった。本実施例では、直線状のテー
パ導波路により構成したが、実効的に生じる位相差が同
じであれば、テーパ部を曲り部に設けても差し支えな
い。
The waveguide spacing of the coupling portions of the directional couplers 2a and 2b was set to 5 μm, and the coupling portion lengths were set to 0.72 mm and 1.28 mm, respectively, as compared with the strong coupling of the first embodiment.
The structure of the tapered optical waveguide 1c is also different from that of the first embodiment and has a total length of 4 mm, and both ends are provided with tapered portions whose width decreases linearly from 8 μm to 7.5 μm at a length of 0.75 mm,
And the width between the taper parts at both ends is 7.5μ.
The shape was an elongated rectangular shape having a length of m and a length of 2.5 mm. Further, ΔL was set to 1.225 μm. The element length of this example was 25 mm. In the present embodiment, the linear tapered waveguide is used, but the tapered portion may be provided in the curved portion as long as the phase difference effectively generated is the same.

【0035】図10は本実施例の光分岐素子の結合率の
波長および偏波依存性を示す図である。波長1.25〜
1.60μmの範囲で50±5%とほぼ一定の結合率を
有し、かつTM,TEモードによる結合率の差は上記の
波長範囲で1.5%以下であり、従来の広波長域動作導
波型光分岐素子の偏波依存性が最大±3.5%あったの
に比較し、大幅に緩和されている。
FIG. 10 is a diagram showing the wavelength and polarization dependence of the coupling rate of the optical branching element of this embodiment. Wavelength 1.25
It has a nearly constant coupling rate of 50 ± 5% in the range of 1.60 μm, and the difference in the coupling rate between the TM and TE modes is 1.5% or less in the above wavelength range, and the conventional wide wavelength range operation. The polarization dependence of the waveguide-type optical branching element was ± 3.5% at maximum, which is significantly reduced compared to the maximum.

【0036】以上の実施例において、方向性結合器の結
合部の構造パラメータについて記述したが、方向性結合
器は極めて構造敏感な光回路素子であるので、製造者は
それぞれの製造工程の癖等を考慮して、パラメータを変
更することができる。要は、例えば実施例1において、
マッハ・ツェンダ光干渉計回路の構成要素である方向性
結合器を、それぞれ図8の曲線(a),(a′),
(b),(b′)に近い波長および偏波特性を示すよう
に設計・製作すればよいのである。
In the above embodiments, the structural parameters of the coupling portion of the directional coupler have been described. However, since the directional coupler is an optical circuit element having extremely sensitive structure, the manufacturer has a habit of each manufacturing process. The parameters can be changed in consideration of the above. In short, for example, in Example 1,
The directional couplers, which are the constituent elements of the Mach-Zehnder optical interferometer circuit, are respectively represented by curves (a), (a '), and
It may be designed and manufactured so as to exhibit wavelength and polarization characteristics close to those of (b) and (b ').

【0037】さらに、上記の実施例では、テーパ状導波
路1cを、2個の方向性結合器を連結する2本の光導波
路の一方に設けたが、両方にテーパ部を形成しても構わ
ない。要は、2本の導波路間に生じる位相差の偏波依存
性が方向性結合器の偏波依存性を緩和するようにテーパ
状光導波路を配設すればよいのである。
Furthermore, in the above embodiment, the tapered waveguide 1c is provided on one of the two optical waveguides connecting the two directional couplers, but a tapered portion may be formed on both of them. Absent. The point is that the tapered optical waveguide may be arranged so that the polarization dependence of the phase difference between the two waveguides relaxes the polarization dependence of the directional coupler.

【0038】上記実施例では、いずれも光ファイバ通信
応用分野において、最重要な領域である1.3μm〜
1.55μmを含む波長域において平坦な結合率および
波長特性を示す例を示したが、本発明は必ずしもこのよ
うな広波長域動作型光分岐素子に限られるものではな
く、波長依存性は従来の方向性結合器と同様にあるもの
の、偏波依存性がほとんどない光分岐素子を設計・製作
することができることを指摘しておく。
In each of the above-mentioned embodiments, the most important region of 1.3 μm in the optical fiber communication application field.
Although an example showing a flat coupling rate and a wavelength characteristic in the wavelength range including 1.55 μm has been shown, the present invention is not necessarily limited to such a wide wavelength range operation type optical branching element, and the wavelength dependence is conventionally. It should be pointed out that it is possible to design and manufacture an optical branching device that has almost the same polarization dependence as that of the directional coupler.

【0039】また、以上の実施例においては、シリコン
基板上の石英系光導波路により、光分岐素子を構成した
が、本発明において、基板は、シリコンに限定されず、
石英ガラス基板に変更することも可能である。あるいは
また、前述したように、本発明はこれらの石英系光導波
路に限定されるものではなく、他の導波路材料系、例え
ば、多成分ガラス導波路系やニオブ酸リチウム導波路系
に適用できることを付記する。
Further, in the above embodiments, the optical branching element was constituted by the silica-based optical waveguide on the silicon substrate, but in the present invention, the substrate is not limited to silicon.
It is also possible to change to a quartz glass substrate. Alternatively, as described above, the present invention is not limited to these silica-based optical waveguides, and can be applied to other waveguide material systems such as multi-component glass waveguide systems and lithium niobate waveguide systems. Is added.

【0040】[0040]

【発明の効果】以上説明したように、本発明では、2個
の方向性結合器を連結してマッハ・ツェンダ光干渉計回
路を構成し、それら2個の方向性結合器を連結する光導
波路の長さの差に制御された僅かな差ΔLを与えるとと
もに、その光導波路の途中にテーパ導波路を設けて、マ
ッハ・ツェンダ光干渉計回路全体を光分岐素子として動
作させることにより、方向性結合器自体の結合率の波長
依存性のみならず偏波依存性をも緩和して、素子全体と
して所望波長域で、波長依存性の少ない、低損失な光分
岐素子を提供することができる。
As described above, according to the present invention, two directional couplers are connected to form a Mach-Zehnder optical interferometer circuit, and an optical waveguide for connecting these two directional couplers. By providing a controlled slight difference ΔL to the difference in length, and providing a taper waveguide in the middle of the optical waveguide to operate the entire Mach-Zehnder optical interferometer circuit as an optical branching element, By reducing not only the wavelength dependence of the coupling rate of the coupler itself but also the polarization dependence, it is possible to provide an optical branching element with a small wavelength dependence and a low loss in a desired wavelength region as a whole element.

【0041】このような導波型光分岐素子は、広い波長
域に広がる光信号の分配用やモニタ用,タップ用として
の幅広い用途が期待される。また逆に、2つの信号光を
合流させる光合流素子としての用途も期待される。
Such a waveguide type optical branching device is expected to have a wide range of uses for distribution, monitoring, and tapping of optical signals spread over a wide wavelength range. On the contrary, it is expected to be used as an optical merging element for merging two signal lights.

【0042】さらにまた、平面基板上に本発明による分
岐素子を多段に連結して配置することにより、4分岐素
子や8分岐素子へ拡張することも容易である。あるいは
また、同一基板上に光分岐素子をアレイ状に形成し、例
えば250μmピッチの光ファイバアレイと接続して使
用することも可能である。
Furthermore, by arranging the branching elements according to the present invention in multiple stages on a flat substrate, it is easy to expand to 4-branch elements or 8-branch elements. Alternatively, it is also possible to form the optical branching elements in an array on the same substrate and connect the optical branching element to an optical fiber array having a pitch of 250 μm for use.

【0043】本発明素子は平面基板上に大量一括製作で
きることから、低価格化も期待でき、本発明の光分岐素
子およびその応用素子は、光通信システムの普及に大き
く貢献すると期待される。
Since the device of the present invention can be mass-produced on a flat substrate in a large amount, cost reduction can be expected, and the optical branching device and its applied device of the present invention are expected to greatly contribute to the spread of optical communication systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明導波型光分岐素子の一実施例の構成を示
す平面図である。
FIG. 1 is a plan view showing a configuration of an embodiment of a waveguide type optical branching device of the present invention.

【図2】本発明導波型光分岐素子の第1実施例の構成を
示す平面図である。
FIG. 2 is a plan view showing the configuration of the first embodiment of the waveguide type optical branching device of the present invention.

【図3】図2のAA′線断面図である。3 is a cross-sectional view taken along the line AA ′ of FIG.

【図4】図2のBB′線断面図である。FIG. 4 is a sectional view taken along line BB ′ of FIG.

【図5】図2のCC′線断面図である。5 is a sectional view taken along the line CC ′ of FIG.

【図6】第1実施例の光分岐素子の結合率の波長および
偏波依存性の特性図である。
FIG. 6 is a characteristic diagram of wavelength and polarization dependence of the coupling rate of the optical branching device of the first embodiment.

【図7】第1実施例の光分岐素子のポート損失の偏光角
度依存性の特性図である。
FIG. 7 is a characteristic diagram of polarization angle dependence of port loss of the optical branching element of the first example.

【図8】第1実施例の光分岐素子の結合率の波長および
偏波依存性の特性図である。
FIG. 8 is a characteristic diagram of wavelength and polarization dependence of the coupling rate of the optical branching device of the first example.

【図9】本発明導波型光分岐素子の第2実施例の構成を
示す平面図である。
FIG. 9 is a plan view showing the configuration of a second embodiment of the waveguide type optical branching device of the present invention.

【図10】第2実施例の光分岐素子の結合率の波長およ
び偏波依存性の特性図である。
FIG. 10 is a characteristic diagram of wavelength and polarization dependence of the coupling rate of the optical branching device of the second embodiment.

【図11】従来の導波型光分岐素子の構成例を示す平面
図である。
FIG. 11 is a plan view showing a configuration example of a conventional waveguide type optical branching element.

【図12】従来の導波型光分岐素子の結合率の波長およ
び偏波依存性の特性図である。
FIG. 12 is a characteristic diagram of wavelength and polarization dependence of the coupling rate of a conventional waveguide type optical branching element.

【図13】従来の導波型光分岐素子のポート損失の偏光
角度依存性の特性図である。
FIG. 13 is a characteristic diagram of polarization angle dependence of port loss of a conventional waveguide type optical branching element.

【符号の説明】[Explanation of symbols]

1 基板 1a,1b 光導波路 1c テーパ光導波路 2a,2b 方向性結合器 3a,4a 入力ポート 3b,4b 出力ポート 5 クラッド層 1 substrate 1a, 1b optical waveguide 1c tapered optical waveguide 2a, 2b directional coupler 3a, 4a input port 3b, 4b output port 5 clad layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板と、前記基板上に配置された第1お
よび第2の光導波路と、 前記第1および第2の光導波路を2箇所で互いに近接さ
せて構成した第1および第2の方向性結合器とを具え、 前記第1の光導波路の一方の端部を入力ポートとし、前
記第1および第2の光導波路の各他方の端部を、それぞ
れ、主出力とする導波型光分岐素子において、 前記第1および第2の光導波路のうち前記第1および第
2の方向性結合器の間を連結する部分に光路長差を設け
るとともに、当該部分の少なくともいずれか一方の一部
分にテーパ状光導波路を設けて、前記第1および第2の
方向性結合器の波長および偏波依存性を当該テーパ状光
導波路の波長および偏波依存性で緩和するように構成し
たことを特徴とする導波型光分岐素子。
1. A substrate, first and second optical waveguides arranged on the substrate, and first and second optical waveguides formed by bringing the first and second optical waveguides close to each other at two locations. A directional coupler, wherein one end of the first optical waveguide serves as an input port, and the other end of each of the first and second optical waveguides serves as a main output. In the optical branching element, an optical path length difference is provided in a portion connecting the first and second directional couplers of the first and second optical waveguides, and a part of at least one of the portions. A tapered optical waveguide is provided in the optical waveguide, and the wavelength and polarization dependences of the first and second directional couplers are relaxed by the wavelength and polarization dependence of the tapered optical waveguide. Guided-type optical branching device.
【請求項2】 前記光導波路は、単一モード光ファイバ
のコア径にほぼ等しいコア部寸法を有する石英系光導波
路であることを特徴とする請求項1記載の導波型光分岐
素子。
2. The waveguide type optical branching device according to claim 1, wherein the optical waveguide is a silica-based optical waveguide having a core portion size substantially equal to a core diameter of a single mode optical fiber.
JP21977091A 1991-08-30 1991-08-30 Waveguide type optical branching device Expired - Lifetime JP2625289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21977091A JP2625289B2 (en) 1991-08-30 1991-08-30 Waveguide type optical branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21977091A JP2625289B2 (en) 1991-08-30 1991-08-30 Waveguide type optical branching device

Publications (2)

Publication Number Publication Date
JPH0561076A true JPH0561076A (en) 1993-03-12
JP2625289B2 JP2625289B2 (en) 1997-07-02

Family

ID=16740737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21977091A Expired - Lifetime JP2625289B2 (en) 1991-08-30 1991-08-30 Waveguide type optical branching device

Country Status (1)

Country Link
JP (1) JP2625289B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757454B2 (en) * 2000-02-10 2004-06-29 Nippon Telegraph And Telephone Corporation Polarization desensitized optical waveguide interferometer
JP2007163825A (en) * 2005-12-14 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Waveguide type thermo-optical circuit
JP2007256510A (en) * 2006-03-22 2007-10-04 Furukawa Electric Co Ltd:The Waveguide type polarization separator/multiplexer
JP2009204753A (en) * 2008-02-26 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2023053461A1 (en) * 2021-10-01 2023-04-06 日本電信電話株式会社 Optical multiplexing circuit and rgb coupler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757454B2 (en) * 2000-02-10 2004-06-29 Nippon Telegraph And Telephone Corporation Polarization desensitized optical waveguide interferometer
JP2007163825A (en) * 2005-12-14 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Waveguide type thermo-optical circuit
JP2007256510A (en) * 2006-03-22 2007-10-04 Furukawa Electric Co Ltd:The Waveguide type polarization separator/multiplexer
JP2009204753A (en) * 2008-02-26 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
WO2023053461A1 (en) * 2021-10-01 2023-04-06 日本電信電話株式会社 Optical multiplexing circuit and rgb coupler

Also Published As

Publication number Publication date
JP2625289B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
KR930005900B1 (en) Guided-wave optical branching components
US4904037A (en) Waveguide type optical device with thermal compensation layers
US7343070B2 (en) Optical splitter with tapered multimode interference waveguide
US6731828B2 (en) Waveguide-type optical signal processing circuit
JPH04241304A (en) Polarization independent waveguide type optical device
JPH0672964B2 (en) Waveguide optical interferometer
JP3112193B2 (en) Optical ring resonator
JP3023878B2 (en) Waveguide type optical branching device
US20030169964A1 (en) Power splitter/combiner with parameter tolerance and design process therefor
US5625726A (en) Optical waveguide substrate, an article comprising the same and a substrate coupled thereto for holding optical fibers
JP2625289B2 (en) Waveguide type optical branching device
JP2653883B2 (en) Wide wavelength operating waveguide type optical branching device
JP2961057B2 (en) Optical branching device
TW200405048A (en) Polarization-insensitive planar lightwave circuits and method for fabricating the same
JP2659293B2 (en) Waveguide type optical switch
JP3142081B2 (en) Waveguide type optical branching device
JP3664933B2 (en) Optical waveguide type optical switch
JPH05224044A (en) Waveguide type optical device with monitor
US7555180B2 (en) Optical branching component with low polarisation sensitivity and increased process tolerance
JP2005010333A (en) Waveguide type optical signal processor
JP2788977B2 (en) Waveguide type optical branching device
JPH06308338A (en) Waveguide type optical parts
JPH0743484B2 (en) Waveguide optical switch
JPS6316204A (en) Mach-zehnder optical interferometer
JPH03172804A (en) Photoreceiving branching device non-dependant on polarization and is nonsensitive to wavelength

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 15