JPH0560866B2 - - Google Patents

Info

Publication number
JPH0560866B2
JPH0560866B2 JP1819787A JP1819787A JPH0560866B2 JP H0560866 B2 JPH0560866 B2 JP H0560866B2 JP 1819787 A JP1819787 A JP 1819787A JP 1819787 A JP1819787 A JP 1819787A JP H0560866 B2 JPH0560866 B2 JP H0560866B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
parts
photoreceptor
binder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1819787A
Other languages
Japanese (ja)
Other versions
JPS63187248A (en
Inventor
Ichiro Yoshida
Shinichi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP1819787A priority Critical patent/JPS63187248A/en
Publication of JPS63187248A publication Critical patent/JPS63187248A/en
Publication of JPH0560866B2 publication Critical patent/JPH0560866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/056Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0575Other polycondensates comprising nitrogen atoms with or without oxygen atoms in the main chain

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子写真用感光体、特に複写機または
レーザープリンターに利用し得るフタロシアニン
誘導体を絶縁性高分子材料からなる結着材に分散
させてなる単層型感光体に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for dispersing a phthalocyanine derivative that can be used in an electrophotographic photoreceptor, particularly in a copier or a laser printer, into a binder made of an insulating polymer material. The present invention relates to a single-layer photoreceptor.

(従来技術) 電子写真法は、既に、カールソンが米国特許第
2297691号に明らかにしたように、この写真法は
光導電性と静電現象とを巧妙に組み合わせたもの
であり、光導電性感光体を暗所にて、コロナ放電
等により表面を一様に帯電させたのち、光導電性
を利用して光像を静電潜像に変え、これに着色し
た電荷粉体(トナー)を付着させて可視像に変え
る画像形成法の一種である。
(Prior art) Electrophotography has already been published by Carlson in the US Patent No.
As disclosed in No. 2297691, this photographic method is a clever combination of photoconductivity and electrostatic phenomena, in which the surface of a photoconductive photoreceptor is made uniform by corona discharge etc. in a dark place. It is a type of image forming method that uses photoconductivity to convert an optical image into an electrostatic latent image after being charged, and then converts it into a visible image by attaching colored charged powder (toner) to it.

電子写真法における感光体に要求される基本的
な電気的特性として、暗所に於て適当な電位に帯
電できること、更に、光照射により速やかに電荷
が逸散することが出来ることなどが上げられる。
このような電子写真感光体の光導電体素子とし
て、従来より、アモルフアスシリコン、アモルフ
アスセレン、硫化カドミウム、酸化亜鉛などの無
機材質が広く使用されてきた。これらの無機光導
電性物質は光導電特性は備えているものの、欠点
も同時にある。例えば硫化カドミウム、アモルフ
アスセレンは公害物質として人体に有害である。
またアモルフアスシリコンは製法が蒸着法によら
なくてはならず、製造コストが高価となる。近年
これらの無機系光導電性物質の欠点を排除するた
めに、有機系感光体の研究が進み、無公害性、可
性、製造の容易性、分光感度の多様性等の多く
の長所を生かして種々の有機系感光体が考案さ
れ、実用に供されている。
The basic electrical properties required of a photoreceptor in electrophotography include the ability to charge it to an appropriate potential in the dark, and the ability to quickly dissipate the charge when irradiated with light. .
Conventionally, inorganic materials such as amorphous silicon, amorphous selenium, cadmium sulfide, and zinc oxide have been widely used as photoconductor elements for such electrophotographic photoreceptors. Although these inorganic photoconductive materials have photoconductive properties, they also have drawbacks. For example, cadmium sulfide and amorphous selenium are harmful to the human body as pollutants.
Furthermore, amorphous silicon must be manufactured by vapor deposition, resulting in high manufacturing costs. In recent years, in order to eliminate the drawbacks of these inorganic photoconductive materials, research into organic photoreceptors has progressed, making use of their many advantages such as non-pollution, flexibility, ease of manufacture, and diversity in spectral sensitivity. Various organic photoreceptors have been devised and put into practical use.

有機系感光体の光導電性素子として種々のもの
が上げられているが、中でもフタロシアニンは長
波長光に感度を有するためにレーザープリンター
などの感光体に用いられるようになつてきた。し
かしこれらのフタロシアニン有機系感光体につい
ては実用的には電荷発生層と電荷輸送層とを分離
した積層型感光体として用いられている。これら
積層型感光体はコロナ放電器により負帯電にて用
いられているために、負のコロナ放電器により発
生するオゾン量は正のコロナ放電器に比べ約10倍
もの量に達する。この為、連続使用に際しては、
室内のオゾン濃度が高くなり、労働衛生法上支障
を来すことが知られている。さらに、感光体にお
いても発生するオゾンのため電解質が副次的に発
生し、表面汚染を起こし易く、感光体寿命が短く
なる欠点が指摘されている。
Various types of photoconductive elements have been proposed for organic photoreceptors, and among them, phthalocyanine has come to be used in photoreceptors such as laser printers because it is sensitive to long wavelength light. However, these phthalocyanine organic photoreceptors are practically used as laminated photoreceptors in which a charge generation layer and a charge transport layer are separated. Since these laminated photoreceptors are used while being negatively charged by a corona discharger, the amount of ozone generated by a negative corona discharger reaches about 10 times that of a positive corona discharger. For this reason, when using continuously,
It is known that the indoor ozone concentration increases, causing problems under the Industrial Health Act. Furthermore, it has been pointed out that electrolyte is generated as a secondary product due to ozone generated in the photoreceptor, which tends to cause surface contamination and shortens the life of the photoreceptor.

ところで、フタロシアニンはP型半導体である
ために、これを分散型感光体として用いれば、正
帯電での使用が可能である。そこで、フタロシア
ニンを分散型感光体として用いるための試みは従
来から多く検討されている。たとえば、特開昭59
−105550号公報では特定のフエノール樹脂を用い
てフタロシアニン系顔料を均一に分散させ、感度
を向上させる方法。特開昭57−185044号公報では
ポリ−N−ビニルカルバゾールおよび分子量5000
−400000のポリエステル樹脂の混合物からなる結
着材を用いて感度の向上をはかつている。特開昭
59−15250号及び特開昭59−219752号公報では分
子量2000−40000のアクリル樹脂とメラミン樹脂
等を混合して結着材に用い、繰り返し使用時の耐
刷性等を改善している。また特開昭60−207145号
公報では結着材としてポリエステル、ポリカーボ
ネート、及びアクリル樹脂の混合物を用いること
で耐湿性を向上させている。
By the way, since phthalocyanine is a P-type semiconductor, if it is used as a dispersion type photoreceptor, it can be used with positive charging. Therefore, many attempts have been made to use phthalocyanine as a dispersed photoreceptor. For example, JP-A-59
- Publication No. 105550 discloses a method for improving sensitivity by uniformly dispersing phthalocyanine pigments using a specific phenolic resin. In JP-A-57-185044, poly-N-vinylcarbazole and molecular weight 5000
-400,000 polyester resin mixture is used to improve sensitivity. Tokukai Akira
No. 59-15250 and Japanese Unexamined Patent Publication No. 59-219752 use a mixture of acrylic resin with a molecular weight of 2000-40000, melamine resin, etc. as a binder to improve printing durability during repeated use. Further, in JP-A-60-207145, moisture resistance is improved by using a mixture of polyester, polycarbonate, and acrylic resin as a binder.

これらの技術では個々の目的とする効果は得ら
れるものの、総合的に電子写真特性の優れた分散
単層型感光体として実用的に供するには未だ十分
とは言えない。例えば、従来結着材成分として用
いられてきたアクリル樹脂は分子量が2000−
40000の例があるが、分子量2000の程度では液状
を呈し、また分子量20000以上では有機溶剤への
溶解が困難であるため結着材としては実用的に使
用可能な範囲は分子量10000−20000であるが、こ
の分子量範囲のものでもフタロシアニン粒子の被
覆状態が不完全であるために暗減衰率が大きく実
用的には支障を来す。さらに問題なのは帯電能が
低いために繰り返し使用時に帯電電位が低下して
しまうことである。電子写真感光体として帯電で
きない状態は致命的な欠点といわなければならな
い。
Although each of these techniques can achieve desired effects, it is still not sufficient to provide a dispersed single-layer photoreceptor with overall excellent electrophotographic properties. For example, acrylic resin, which has traditionally been used as a binder component, has a molecular weight of 2000-
40,000, but a molecular weight of about 2,000 is liquid, and a molecular weight of 20,000 or more is difficult to dissolve in organic solvents, so the range that can be practically used as a binder is a molecular weight of 10,000-20,000. However, even if the molecular weight is within this range, the dark decay rate is large and poses a practical problem because the phthalocyanine particles are incompletely coated. A further problem is that due to the low charging ability, the charging potential decreases during repeated use. The inability to charge an electrophotographic photoreceptor is a fatal drawback.

フタロシアニンを実用感度を持たせた上で分散
型感光体として実用化するための問題点として
は、(1)帯電、露光の繰り返しによつて帯電電位が
低下すること。(2)光照射直後の表面電位の減衰に
遅れを生じる、いわゆるインダクシヨンと称する
誘導期間を有するため、あたかも度が低下したか
のような現象を有する。(3)感光体を製造する塗工
工程においてフタロシアニンの分散が困難である
ため分散塗液を製造することが難しいこと。(4)湿
度や酸性雰意気ガス下に於て感度や帯電性の劣化
が起こることなどが上げられる。(1)、(2)、(4)に関
しては光導電体として用いる場合の基本的な問題
であるが、この原因としては、フタロシアニンよ
り発生したキヤリアーがフタロシアニンと結着材
との界面や結着材中にトラツプされること、ある
いは、帯電、露光による繰り返し時において、コ
ロナ放電によつて発生するオゾンやNOXによる
感光体表面の劣化等が主な原因として考えられて
いる。ところで、分散型感光体では電荷保持を行
う層は感光体表面の極薄い部分にあり、そこにお
けるフタロシアニンの状態が帯電性や感度に大き
く影響する。ところでフタロシアニンは、NOX
の吸着センサーとして用いられることが知られて
いるように、NOX等のアクセプター物質を吸着
する。この様な性質のため、フタロシアニンの含
有量を多くすると電子写真プロセスの中で発生す
るオゾン、NOXの吸着により耐久性が著しく下
がる。しかし実際の感光体を使用する環境下にお
いては更に種々の有害物質が存在し、これらを吸
着することにより、複合的な汚染効果も起こし耐
久性が下がる。これらの吸着を防ぐには感光体の
表面に保護層を設けるとか、酸化防止材などの添
加剤を添加させ防止するなどの方法もあるが機械
的耐久性や静電特性が損なわれることより本質的
なものではない。本質的には結着材中のフタロシ
アニンを十分にバリアー性をもたすように被覆す
るか、使用するフタロシアニンの結着材中の量を
低くしなければならない。しかし、今まで知られ
ている結着材組成物に於てフタロシアニンを被覆
したり、フタロシアニンの量を減らした場合、キ
ヤリアーの減少やキヤリアートラツプの点から感
度の低下や静電特性の変化などの副作用が起こ
る。また(2)に関してはフタロシアニンと結着材を
混合させる際に電子吸引物質、例えばジクロルベ
ンゾキノン等を添加する方法が知られているが暗
減衰が増加する等の欠陥が現われる。また(3)にお
ける製造上の問題点としては感光層表面における
平滑性の不足、あるいは感光層内部でのフタロシ
アニンの凝集物にもとずく画質上のノイズや、画
像品質の安定性にもかかわる問題である。
The problems with practical use of phthalocyanine as a dispersion type photoreceptor with practical sensitivity are (1) the charging potential decreases due to repeated charging and exposure; (2) There is a so-called induction period in which there is a delay in the attenuation of the surface potential immediately after light irradiation, so the phenomenon appears as if the power has decreased. (3) It is difficult to produce a dispersed coating liquid because it is difficult to disperse phthalocyanine in the coating process for producing photoreceptors. (4) Sensitivity and chargeability may deteriorate under humidity or acidic gas atmospheres. Regarding (1), (2), and (4), these are fundamental problems when used as a photoconductor, and the reason for this is that the carrier generated from the phthalocyanine is stuck at the interface between the phthalocyanine and the binder. The main causes are thought to be deterioration of the surface of the photoreceptor due to ozone and NOx generated by corona discharge during repeated charging and exposure. Incidentally, in a dispersion type photoreceptor, the layer for charge retention is located in an extremely thin portion of the surface of the photoreceptor, and the state of phthalocyanine there greatly affects charging properties and sensitivity. By the way, phthalocyanine is NOX
It is known that it is used as an adsorption sensor for adsorbing acceptor substances such as NOX. Due to these properties, if the phthalocyanine content is increased, the durability will be significantly reduced due to the adsorption of ozone and NOX generated during the electrophotographic process. However, in the actual environment in which the photoreceptor is used, there are various other harmful substances, and adsorption of these substances causes a complex contamination effect and reduces durability. There are methods to prevent these adsorptions, such as providing a protective layer on the surface of the photoreceptor or adding additives such as antioxidants, but this is essential as it impairs mechanical durability and electrostatic properties. It's not a typical thing. Essentially, the phthalocyanine in the binder must be coated to provide sufficient barrier properties, or the amount of phthalocyanine used in the binder must be reduced. However, if the binder compositions known up to now are coated with phthalocyanine or the amount of phthalocyanine is reduced, the sensitivity will decrease due to the reduction of carriers and carrier traps, and the electrostatic properties will change. Side effects such as Regarding (2), a method is known in which an electron-withdrawing substance such as dichlorobenzoquinone is added when phthalocyanine and a binder are mixed, but this method suffers from defects such as increased dark decay. In addition, manufacturing problems related to (3) include insufficient smoothness on the surface of the photosensitive layer, noise in image quality due to aggregates of phthalocyanine inside the photosensitive layer, and problems related to stability of image quality. It is.

フタロシアニンは顔料として、インク、ペイン
トにも多く用いられているが、これらの用途では
界面活性剤を用いて分散を補助することが行なわ
れている。しかし、電子写真感光体では電気抵抗
の関係から、これら低抵抗物質である界面活性剤
の使用は帯電性の低下をもたらすために使用する
ことが出来ない。
Phthalocyanine is often used as a pigment in inks and paints, and in these applications, surfactants are used to assist in dispersion. However, in electrophotographic photoreceptors, due to electrical resistance, the use of surfactants, which are low-resistance substances, cannot be used because they result in a decrease in charging performance.

(発明の目的) 本発明者らはフタロシアニンを用いた分散単層
型感光体において、電子写真特性に有害な添加剤
などを使用することなく、感光体塗液製造時での
分散安定性を向上させ、更に電子写真特性におけ
る上述の欠点を改良、向上させることにある。
(Purpose of the Invention) The present inventors have improved the dispersion stability during the production of a photoreceptor coating liquid in a dispersed single-layer photoreceptor using phthalocyanine without using additives harmful to electrophotographic properties. The object of the present invention is to further improve and improve the above-mentioned defects in electrophotographic properties.

(発明の構成) 本発明者らは上述の目的を達成することを試
み、莫大な種類の結着材の組成物とフタロシアニ
ンとの組合せにより鋭意研究を行つた結果、ニト
ロ基等の電子吸引基を含有する金属フタロシアニ
ンを感光成分とする電子写真感光体において、結
着材として特定の低分子ポリエステル樹脂および
低分子メラミン樹脂を併用して用いることによ
り、分散性を向上させ、更に、感光体の感度の保
障、繰り返し帯電特性の安定性を向上させ、耐久
性の優れた長寿命感光体を得ることを発見し、本
発明に至つた。
(Structure of the Invention) The present inventors attempted to achieve the above-mentioned object, and as a result of intensive research using a vast variety of binder compositions in combination with phthalocyanine, the present inventors found that electron-withdrawing groups such as nitro groups In electrophotographic photoreceptors whose photosensitive component is metal phthalocyanine containing The inventors have discovered that it is possible to obtain a photoreceptor with excellent durability and long life by ensuring sensitivity and improving the stability of repeated charging characteristics, leading to the present invention.

本発明に係わる感光体の構成は、フタロシアニ
ン系導電性粉体をポリエステル樹脂およびメラミ
ン樹脂の混合物からなることを結着材に分散させ
て作られた単層型感光体から成るものである。
The structure of the photoreceptor according to the present invention is a single-layer photoreceptor made by dispersing phthalocyanine-based conductive powder in a binder made of a mixture of polyester resin and melamine resin.

本発明に係わるフタロシアニンとしては無金属
フタロシアニンおよび、金属フタロシアニン、あ
るいはこれらの混合物である。金属フタロシアニ
ンの金属としては銅、銀、ベリリウム、マグネシ
ウム、カルシウム、亜鉛、カドミウム、ベリリウ
ム、マグネシウム、水銀、ガリウム、インジウ
ム、ランタン、ネオジウム、チタン、錫、鉛、バ
ナジウム、アンチモン、クロム、モリブデン、ウ
ラン、マンガン、鉄、コバルト、パラジウム、ア
ルミニウム、銀および白金などである。また、フ
タロシアニンの中心核として金属原子ではなく、
3価以上の原子価を有するハロゲン化金属であつ
てもよい。更に、低ハロゲン化フタロシアニンで
あつてもよい。なお、フタロシアニンはどのよう
な製法によつて得られたフタロシアニンであつて
もよく、クルードと称されているフタロシアニン
は勿論、顔料化されたフタロシアニンを用いても
よい。また、フタロシアニンは合成法、精製法、
顔料化の条件によつて種々の結晶型が得られるこ
とが知られている。例えば、銅フタロシアニンに
おいては、α型、β型、γ型、δ型、ε型、x
型、また、無金属フタロシアニンにおいてもα
型、β型、γ型、δ型、ε型、x型、τ型等が知
られているが本発明はこれ等の結晶型に限定され
るものではない。しかし、好ましくは光導電性に
すぐれたフタロシアニンを用いることが望まし
く、これらとしては特公昭45−8102号、特公昭45
−11021号、特公昭46−42511号、特公昭48−163
号、特公昭49−17535号、特公昭50−5059号、特
公昭50−38543号公報等に記載されている光導電
性フタロシアニン系化合物である。
The phthalocyanine according to the present invention is a metal-free phthalocyanine, a metal phthalocyanine, or a mixture thereof. Metal phthalocyanine metals include copper, silver, beryllium, magnesium, calcium, zinc, cadmium, beryllium, magnesium, mercury, gallium, indium, lanthanum, neodymium, titanium, tin, lead, vanadium, antimony, chromium, molybdenum, uranium, These include manganese, iron, cobalt, palladium, aluminum, silver and platinum. In addition, the central core of phthalocyanine is not a metal atom, but
It may be a metal halide having a valence of 3 or more. Furthermore, it may be a low halogenated phthalocyanine. The phthalocyanine may be obtained by any manufacturing method, and not only phthalocyanine called crude but also pigmented phthalocyanine may be used. In addition, phthalocyanine is synthesized by synthesis method, purification method,
It is known that various crystal forms can be obtained depending on the pigmentation conditions. For example, in copper phthalocyanine, α type, β type, γ type, δ type, ε type,
type, and also in metal-free phthalocyanine.
type, β type, γ type, δ type, ε type, x type, τ type, etc., but the present invention is not limited to these crystal types. However, it is preferable to use phthalocyanine which has excellent photoconductivity.
−11021, Special Publication No. 46-42511, Special Publication No. 1977-163
It is a photoconductive phthalocyanine compound described in Japanese Patent Publication No. 49-17535, Japanese Patent Publication No. 50-5059, Japanese Patent Publication No. 38543-1983, etc.

即ち、フタロシアニン光導電材料としてはフタ
ロシアニン分子中のベンゼン核の水素原子がニト
ロ基、シアノ基、ハロゲン基、スルホン基、及び
カルボキシル基からなる群から選ばれた少なくと
も1種の電子吸引性基で置換されたフタロシアニ
ン誘導体と、金属フタであることにより、フタロ
シアニンとの親和性を持つためには酸性物質であ
ることが好ましい。しかし、余り強く吸着するよ
うな酸性物質は通常電気抵抗は低い。あるいは、
そうでなくても、この様な物質でフタロシアニン
を被覆した場合、帯電時の電界によつても電荷を
保持するための電気的に良好な界面が形成され難
いため、感光体として用いる場合、電荷の保持が
成されない。また、感光塗液の製造に関しても長
期の分散安定性が良くない。従つて、適当な酸性
度を有してなくてはならない。酸性度としては、
カルボキシル基程度の酸性度が好ましく、また、
酸価が2−30の間の低分子ポリエステル樹脂が優
れていることが分かつた。しかし、低分子ポリエ
ステル樹脂はその分子の形状から考えて、フタロ
シアニン粒子表面への吸着能に優れており、フタ
ロシアニン粒子の被覆性が優れている特徴がある
反面、もろい固形物であるので単独で結着材とし
て用いた場合には機械的に非常に弱い感光層しか
得られず、このままでは使用できない。また、長
期にわたる分散安定性ロシアニン及び無金属フタ
ロシアニンの少なくとも1種とを、それらと塩を
形成しうる無機酸例えば濃硫酸と混合し、水また
は塩基性物質によつて析出させることによつて得
られるフタロシアニン光導電性組成物を使用する
ことが好ましい。
That is, in the phthalocyanine photoconductive material, the hydrogen atom of the benzene nucleus in the phthalocyanine molecule is substituted with at least one electron-withdrawing group selected from the group consisting of a nitro group, a cyano group, a halogen group, a sulfone group, and a carboxyl group. An acidic substance is preferable in order to have an affinity with the phthalocyanine derivative and the metal lid. However, acidic substances that are too strongly adsorbed usually have low electrical resistance. or,
Even if this is not the case, when phthalocyanine is coated with such a substance, it is difficult to form an electrically good interface for retaining the charge even in the electric field during charging, so when used as a photoreceptor, the charge is not maintained. In addition, long-term dispersion stability is also poor in the production of photosensitive coating liquids. Therefore, it must have appropriate acidity. As for acidity,
The acidity is preferably about the same as a carboxyl group, and
It has been found that low molecular weight polyester resins having an acid value between 2 and 30 are excellent. However, considering the shape of its molecules, low-molecular polyester resins have excellent adsorption ability to the surface of phthalocyanine particles and are characterized by excellent coverage of phthalocyanine particles. When used as a bonding material, only a mechanically very weak photosensitive layer is obtained, and it cannot be used as is. Alternatively, it can be obtained by mixing at least one of a long-term dispersion-stable cyanine and a metal-free phthalocyanine with an inorganic acid capable of forming a salt with them, such as concentrated sulfuric acid, and precipitating the mixture with water or a basic substance. Preferably, a phthalocyanine photoconductive composition is used.

感光体に用いられる結着材は高抵抗でありか
つ、キヤリアーが結着材中ににトラツプされずに
速やかに移動すること、また、フタロシアニンよ
り発生されるキヤリアーが速やかに結着材中に注
入されなければならない。このためには、フタロ
シアニンと結着材との接触が十分かつ密でなくて
はならない。即ち、用いられる結着材とフタロシ
アニンとの親和性が大であり、かつ十分にフタロ
シアニン粒子を被覆していなくてはならない。そ
のためにはフタロシアニン粒子表面に配向し易
く、吸着し易い結着材分子の形状として、直鎖に
近い形を有し、分子量の小さなものが適している
ことを知つた。更に、フタロシアニン粒子表面に
配向しやすくまた吸着し易くなるための要素とし
て、フタロシアニンが塩基性物質を保持すること
を更に考慮すれば、塩基性を有する化合物の併用
が分散安定性を向上させることに大きな効果があ
ることを見いだした。これらの塩基性化合物はフ
タロシアニン粒子表面に配向したポリエステル樹
脂分子の吸着関係を乱すものであつてはならな
い。更に、ポリエステル樹脂分子の多くの官能基
はフタロシアニン粒子表面への吸着能に優れてい
る為に、粒子の被覆性、分散性、静電特性に寄与
しているのであり、これらの吸着平衡が損なわれ
てはならない。これらの条件を満たす化合物とし
てメラミン化合物が適していることを見いだし
た。
The binder used for the photoreceptor has high resistance, and the carrier must move quickly without being trapped in the binder, and the carrier generated from phthalocyanine must be quickly injected into the binder. It must be. For this purpose, the contact between the phthalocyanine and the binder must be sufficient and intimate. That is, the binder used must have a high affinity with the phthalocyanine, and must sufficiently cover the phthalocyanine particles. For this purpose, it has been found that the shape of the binder molecules that is close to a linear chain and has a small molecular weight is suitable because it is easy to align and adsorb onto the surface of the phthalocyanine particles. Furthermore, if we take into account that phthalocyanine retains a basic substance as a factor that makes it easier to align and adsorb onto the surface of phthalocyanine particles, the combination of a compound with basicity can improve dispersion stability. I found that it had a big effect. These basic compounds must not disturb the adsorption relationship of polyester resin molecules oriented on the surface of the phthalocyanine particles. Furthermore, many functional groups in polyester resin molecules have excellent adsorption ability on the surface of phthalocyanine particles, contributing to the coverage, dispersibility, and electrostatic properties of the particles, and these adsorption equilibriums may be impaired. must not be We have found that melamine compounds are suitable as compounds that meet these conditions.

本発明では、低分子メラミン樹脂を併用するこ
とによつて、ポリエステル樹脂分子の多くの官能
基はフタロシアニン粒子に吸着しており、フタロ
シアニンの被覆に関与しているが、ポリエステル
樹脂分子末端の一部のカルボキシル基または水酸
基はメラミン樹脂のブチル化メチロール基との間
で加熱することにより縮合反応を起こし、架橋さ
せて強固な感光層を得ることができる。また、こ
の結着材樹脂組成物を用いた場合、フタロシアニ
ンの分散性の向上のみならず、使用するフタロシ
アニンの量を今まで知られている結着材樹脂に比
べて使用するフタロシアニンの量を40%程削減で
きることが分かつた。感光体表面の硬度は鉛筆硬
度で2Hであつた。これは現在実用化されている
積層型有機感光体の表面硬度が鉛筆硬度でBから
HB程度であるのに比べ、はるかに硬いことが認
められる。これによつて感光体が現像時、クリー
ニング時、転写時に受ける機械的な摩擦力に対す
る抵抗力は増大する。さらに、良分散状態の効果
として感光体の表面平滑性が向上し、画質の向
上、種々の環境下においてもフタロシアニン粒子
が樹脂に十分に被覆されていることに耐環境性に
関して、より著しい向上が認められた。
In the present invention, by using a low-molecular-weight melamine resin in combination, many functional groups of the polyester resin molecules are adsorbed to the phthalocyanine particles and are involved in coating the phthalocyanine particles, but some of the terminals of the polyester resin molecules By heating the carboxyl group or hydroxyl group with the butylated methylol group of the melamine resin, a condensation reaction is caused, and crosslinking is effected to obtain a strong photosensitive layer. In addition, when this binder resin composition is used, it not only improves the dispersibility of phthalocyanine, but also reduces the amount of phthalocyanine used by 40% compared to conventional binder resins. It was found that it was possible to reduce the amount by about %. The hardness of the photoreceptor surface was 2H on a pencil scale. This means that the surface hardness of the multilayer organic photoreceptors currently in practical use is from B on the pencil hardness scale.
It is recognized that it is much harder than HB. This increases the resistance to mechanical frictional forces that the photoreceptor receives during development, cleaning, and transfer. Furthermore, as a result of the well-dispersed state, the surface smoothness of the photoreceptor improves, resulting in improved image quality.The fact that the phthalocyanine particles are sufficiently coated with the resin even under various environments results in a more significant improvement in environmental resistance. Admitted.

本発明に係わる結着材樹脂として使用されるポ
リエステル樹脂の原料としては無水フタル酸、テ
レフタル酸等の芳香族飽和酸、ヘキサドロ無水フ
タル酸、コハク酸、アゼライン酸等の脂肪族飽和
酸、無水マレイン酸等の不飽和酸を多塩基酸成分
として、少なくとも1種また、多価アルコール成
分としては、エチレングリコール、プロピレング
リコール、ジエチレングリコール、ジプロピレン
グリコール等のジオール類のうち少なくとも1種
を縮合反応させ分子量が500−5000、酸価が2−
30が適正である。
Raw materials for the polyester resin used as the binder resin in the present invention include aromatic saturated acids such as phthalic anhydride and terephthalic acid, aliphatic saturated acids such as hexadrophthalic anhydride, succinic acid, and azelaic acid, and maleic anhydride. At least one type of unsaturated acid such as an acid is used as a polybasic acid component, and at least one type of diols such as ethylene glycol, propylene glycol, diethylene glycol, and dipropylene glycol are used as a polyhydric alcohol component to undergo a condensation reaction, and the molecular weight is 500−5000, acid value is 2−
30 is appropriate.

低分子メラミン樹脂としてはメラミンとホルマ
リンとの縮合物も用いられるが、ポリエステル樹
脂との相溶性の点からブチルアルコールによるエ
ーテル化合物が好ましい。ポリエステル樹脂の分
子量が適正な範囲を越えて大きくなるとメラミン
樹脂との相溶性を損なうので好ましくない。
Although a condensate of melamine and formalin can be used as the low-molecular melamine resin, an ether compound made of butyl alcohol is preferred from the viewpoint of compatibility with the polyester resin. It is not preferable that the molecular weight of the polyester resin exceeds an appropriate range because it impairs its compatibility with the melamine resin.

ポリエステル樹脂とメラミン樹脂の配合比につ
いては固形分比でポリエステル樹脂100重量部に
対してメラミン樹脂10−50重量部である。メラミ
ン樹脂が多くなるに従つて塗膜硬度が上昇するが
硬化速度が遅くなる。フタロシアニン光導電性粉
末と結着材との配合比はフタロシアニンの量が増
加するに従い感度は向上するが暗減衰が増大して
電荷の保持が難しくなり、実用性が乏しくなるの
で結着材固形分100重量部に対してフタロシアニ
ンの量は12−50重量部の範囲が選ばれるが、環境
性や分散性、機械的強度の点から12−30重量%が
好ましい。
Regarding the blending ratio of polyester resin and melamine resin, the solid content ratio is 10-50 parts by weight of melamine resin per 100 parts by weight of polyester resin. As the amount of melamine resin increases, the hardness of the coating increases, but the curing speed decreases. As the amount of phthalocyanine increases, the sensitivity improves, but the dark decay increases, making it difficult to retain charge and impractical, so the solid content of the binder increases. The amount of phthalocyanine relative to 100 parts by weight is selected in the range of 12 to 50 parts by weight, but from the viewpoint of environmental friendliness, dispersibility, and mechanical strength, 12 to 30 parts by weight is preferable.

本発明は上述したフタロシアニン光導電性粉末
とポリエステル樹脂、メラミン樹脂を所定の比率
でシクロヘキサノン、酢酸エチル、セロソルブ等
の溶剤に溶解した溶液中に均一に分散させ、得ら
れた塗液を導電性基体上に塗布乾燥させることに
より完成される。感光層の厚みは5−30ミクロン
とすることが好ましい。乾燥条件としては100℃
−180℃の加熱下で10分−30分であることが好ま
しい。乾燥が不十分の場合では暗抵抗が低下して
帯電性を損ない、過剰に高温下で乾燥した場合は
度低下をきたす。
The present invention involves uniformly dispersing the above-mentioned phthalocyanine photoconductive powder, polyester resin, and melamine resin in a solution in a solvent such as cyclohexanone, ethyl acetate, or cellosolve at a predetermined ratio, and applying the resulting coating liquid to a conductive substrate. It is completed by applying it on top and letting it dry. The thickness of the photosensitive layer is preferably 5-30 microns. Drying conditions are 100℃
Preferably, the heating time is 10 minutes to 30 minutes under heating at -180°C. If the drying is insufficient, the dark resistance decreases and the chargeability is impaired, and if the drying is performed at excessively high temperatures, the chargeability decreases.

本発明に係わる組成物を電子写真感光体として
使用するには該組成物を結着材樹脂、溶剤等と共
に、ボールミル、アトライター等の混練分散機で
均一に分散させ、導電支持体上に塗布して、感光
層を形成する。塗布方法としては、必要ならば光
導電性組成物に溶剤を加えて粘度を調整し、エア
ードクターコター、ブレードコーター、ロツドコ
ーター、リバースロールコーター、スプレーコー
ター、ホツトコーター、スクイーズコーター、デ
イプコーター等の塗布方法で皮膜形成を行う。塗
布後、光導電性層として十分な帯電電荷を受容す
るようになるまで適当な乾乾燥装置を用いて乾燥
を行う。
In order to use the composition according to the present invention as an electrophotographic photoreceptor, the composition is uniformly dispersed together with a binder resin, a solvent, etc. using a kneading/dispersing machine such as a ball mill or attritor, and then coated on a conductive support. to form a photosensitive layer. As for the coating method, if necessary, add a solvent to the photoconductive composition to adjust the viscosity, and use an air doctor coater, blade coater, rod coater, reverse roll coater, spray coater, hot coater, squeeze coater, dip coater, etc. Forms a film. After coating, the photoconductive layer is dried using a suitable drying device until it accepts a sufficient electrical charge.

本発明の電子写真感光体に用いる支持体として
は、導電性が付与されていればいずれのものでも
良く、従来用いられているいずれのタイプの導電
層であつてもさしつかえない。具体的には、アル
ミニウム、銅、ステンレス、真ちゆう等の金属、
アルマイト、酸化インジウムや酸化錫などを蒸着
またはラミネートしたプラスチツクあるいは導電
性粒子、例えばカーボンブラツク、錫粒子、アル
ミニウム粒子を分散したプラスチツクなどを挙げ
ることが出来る。また、その形状については、シ
ート上、その他のものであつても差し支えない。
なお、本発明による電子写真感光体を使用する際
に、光源は通常のハロゲンランプ等の他、感度が
750nm以上にもあるために、ガリウム−アルミニ
ウム−ヒ素半導体レーザー(発振波長780nm)の
様なレーザー光を用いることも出来る。
The support used in the electrophotographic photoreceptor of the present invention may be any support as long as it is endowed with conductivity, and any type of conductive layer conventionally used may be used. Specifically, metals such as aluminum, copper, stainless steel, and brass;
Examples include plastics on which alumite, indium oxide, tin oxide, etc. are vapor-deposited or laminated, and conductive particles such as carbon black, tin particles, and aluminum particles dispersed therein. Moreover, the shape may be on a sheet or other shapes.
In addition, when using the electrophotographic photoreceptor according to the present invention, the light source may be a normal halogen lamp, etc., or a light source with low sensitivity.
Since the wavelength is 750 nm or more, laser light such as a gallium-aluminum-arsenic semiconductor laser (oscillation wavelength 780 nm) can also be used.

以下に実施例を持つて具体的に説明する。 A detailed explanation will be given below using examples.

実施例 1 無水フタル酸222部(重量部を示す。以下省
略)、無水マレイン酸49部、ジエチレングリコー
ル233部を窒素ガス雰囲気中で加熱反応させ、酸
価が15になるまで反応を続けた。得られたポリエ
ステル樹脂は淡黄色のもろい固形樹脂で分子量は
約3000であつた。
Example 1 222 parts of phthalic anhydride (parts by weight are omitted below), 49 parts of maleic anhydride, and 233 parts of diethylene glycol were heated and reacted in a nitrogen gas atmosphere, and the reaction was continued until the acid value reached 15. The obtained polyester resin was a pale yellow brittle solid resin with a molecular weight of about 3,000.

別に銅フタロシアニン40部、テトラニトロ銅フ
タロシアニン0.5部を98%濃硫酸500部に十分撹
しながら溶解する。溶解した液を水5000部にあ
け、銅フタロシアニン、テトラニトロ銅フタロシ
アニンの組成物を析出させた後、ロ過、水洗し、
減圧下120℃で乾燥して光導電性粉体を得た。
Separately, thoroughly stir 40 parts of copper phthalocyanine and 0.5 part of tetranitrocopper phthalocyanine in 500 parts of 98% concentrated sulfuric acid.
Dissolve while stirring. Pour the dissolved solution into 5000 parts of water to precipitate a composition of copper phthalocyanine and tetranitrocopper phthalocyanine, and then filter and wash with water.
A photoconductive powder was obtained by drying at 120°C under reduced pressure.

ポリエステル樹脂12.6部、メラミン樹脂(スパ
ーベツカミン−109−65大日本インキ化学(株)製)
5.0部、先に作られた銅フタロシアニン4部、シ
クロヘキサノン75部からなる組成物を磁性ボール
ミルにて24時間混練して光導電性塗液を得た。次
に厚さ80ミクロンのアルミニウム箔上に乾燥膜厚
が15ミクロンになるようにコートし、130℃で30
分間加熱乾燥させ、電子写真感光体とした。
12.6 parts of polyester resin, melamine resin (Supervecamine-109-65 manufactured by Dainippon Ink Chemical Co., Ltd.)
A composition consisting of 5.0 parts of copper phthalocyanine, 4 parts of copper phthalocyanine prepared above, and 75 parts of cyclohexanone was kneaded in a magnetic ball mill for 24 hours to obtain a photoconductive coating liquid. Next, it was coated on an 80-micron thick aluminum foil to a dry film thickness of 15 microns, and heated at 130°C for 30 minutes.
It was dried by heating for a minute to obtain an electrophotographic photoreceptor.

この感光体の最大表面電位は+1200ボルトであ
り実用的には+600ボルト程度で使用するため帯
電能は十分な余裕を有する。暗減衰率は5秒後で
7%、半減値感度は3ルツクス.秒、残留電位は
20ボルトであつた。帯電、露光の繰り返し、
10000回後の帯電電位はほとんど変化しなかつた。
また感度変化もほとんど認められなかつた。
The maximum surface potential of this photoreceptor is +1200 volts, and since it is practically used at about +600 volts, the charging capacity has sufficient margin. The dark decay rate is 7% after 5 seconds, and the half-value sensitivity is 3 lux. seconds, the residual potential is
It was 20 volts. repeated charging and exposure,
There was almost no change in the charging potential after 10,000 cycles.
In addition, almost no change in sensitivity was observed.

実施例 2 無水フタル酸222部(重量部を示す。以下省
略)、無水マレイン酸49部、ジエチレングリコー
ル269.5部を窒素ガス雰囲気中で加熱反応させ、
酸価が7になるまで反応を続けた。得られたポリ
エステル樹脂は淡黄色のもろい固形樹脂で分子量
は約3200であつた。
Example 2 222 parts of phthalic anhydride (parts by weight are omitted below), 49 parts of maleic anhydride, and 269.5 parts of diethylene glycol were heated and reacted in a nitrogen gas atmosphere,
The reaction was continued until the acid value reached 7. The obtained polyester resin was a pale yellow brittle solid resin with a molecular weight of about 3,200.

次に、実施例1で得られた銅フタロシアニン4
部、ポリエステル樹脂12.6部、メラミン樹脂(ス
パーベツカミン−109−65大日本インキ化学(株)製)
5.0部、先に作られた銅フタロシアニン4部、シ
クロヘキサノン75部からなる組成物を磁性ボール
ミルにて24時間混練して光導電性塗液を得た。次
に厚さ80ミクロンのアルミニウム箔上に乾燥膜厚
が15ミクロンになるようにコートし、130℃で30
分間加熱乾燥させ、電子写真感光体とした。
Next, copper phthalocyanine 4 obtained in Example 1
12.6 parts of polyester resin, melamine resin (Supervecamine-109-65 manufactured by Dainippon Ink Chemical Co., Ltd.)
A composition consisting of 5.0 parts of copper phthalocyanine, 4 parts of copper phthalocyanine prepared above, and 75 parts of cyclohexanone was kneaded in a magnetic ball mill for 24 hours to obtain a photoconductive coating liquid. Next, it was coated on an 80-micron thick aluminum foil to a dry film thickness of 15 microns, and heated at 130°C for 30 minutes.
It was dried by heating for a minute to obtain an electrophotographic photoreceptor.

この感光体の最大表面電位は+1150ボルトであ
り実用的には+600ボルト程度で使用するため帯
電能は十分な余裕を有する。暗減衰率は5秒後で
6.5%、半減値感度は3.1ルツクス.秒、残留電位
は22ボルトであつた。帯電、露光の繰り返し、
10000回後の帯電電位はほとんど変化しなかつた。
また感度変化もほとんど認められなかつた。
The maximum surface potential of this photoreceptor is +1150 volts, and it is practically used at about +600 volts, so the charging capacity has sufficient margin. Dark decay rate after 5 seconds
6.5%, half-value sensitivity is 3.1 lux. seconds, the residual potential was 22 volts. repeated charging and exposure,
There was almost no change in the charging potential after 10,000 cycles.
In addition, almost no change in sensitivity was observed.

実施例 3 無水フタル酸222部(重量部を示す。以下省
略)、無水マレイン酸98部、ジエチレングリコー
ル233部を窒素ガス雰囲気中で加熱反応させ、酸
価が25になるまで反応を続けた。得られたポリエ
ステル樹脂は淡黄色のもろい固形樹脂で分子量は
約2500であつた。
Example 3 222 parts of phthalic anhydride (parts by weight are omitted below), 98 parts of maleic anhydride, and 233 parts of diethylene glycol were heated and reacted in a nitrogen gas atmosphere, and the reaction was continued until the acid value reached 25. The obtained polyester resin was a pale yellow brittle solid resin with a molecular weight of about 2,500.

次に、実施例1で得られた銅フタロシアニン4
部、ポリエステル樹脂12.6部、メラミン樹脂(ス
パーベツカミン−109−65大日本インキ化学(株)製)
5.0部、先に作られた銅フタロシアニン4部、シ
クロヘキサノン75部からなる組成物を磁性ボール
ミルにて24時間混練して光導電性塗液を得た。次
に厚さ80ミクロンのアルミニウム箔上に乾燥膜厚
が15ミクロンになるようにコートし、130℃で30
分間加熱乾燥させ、電子写真感光体とした。
Next, copper phthalocyanine 4 obtained in Example 1
12.6 parts of polyester resin, melamine resin (Supervecamine-109-65 manufactured by Dainippon Ink Chemical Co., Ltd.)
A composition consisting of 5.0 parts of copper phthalocyanine, 4 parts of copper phthalocyanine prepared above, and 75 parts of cyclohexanone was kneaded in a magnetic ball mill for 24 hours to obtain a photoconductive coating liquid. Next, it was coated on an 80-micron thick aluminum foil to a dry film thickness of 15 microns, and heated at 130°C for 30 minutes.
It was dried by heating for a minute to obtain an electrophotographic photoreceptor.

この感光体の最大表面電位は+1100ボルトであ
り実用的には+600ボルト程度で使用するため帯
電能は十分な余裕を有する。暗減衰率は5秒後で
8%、半減値感度は2.9ルツクス.秒、残留電位
は18ボルトであつた。帯電、露光の繰り返し、
10000回後の帯電電位はほとんど変化しなかつた。
また感度変化もほとんど認められなかつた。
The maximum surface potential of this photoreceptor is +1100 volts, and since it is practically used at about +600 volts, the charging capacity has sufficient margin. The dark decay rate is 8% after 5 seconds, and the half-value sensitivity is 2.9 Lux. seconds, the residual potential was 18 volts. repeated charging and exposure,
There was almost no change in the charging potential after 10,000 cycles.
Moreover, almost no change in sensitivity was observed.

実施例 4 実施例1で得られた銅フタロシアニン4部、酸
価が3−7、分子量が約4000の市販ポリエステル
樹脂(アルマテツクス645三井東圧(株)製)21部、
メラミン樹脂(ユーバン20HS三井東圧(株)製)4.6
部、シクロヘキサノン65部からなる組成物を磁性
ボールミルにて24時間混練して光導電性塗液を得
た。次に厚さ80ミクロンのアルミニウム箔上に乾
燥膜厚15ミクロンになるようにコートし、150℃
で20分間加熱乾燥させ電子写真感光体とした。感
光体の表面硬度は鉛筆硬度で2Hであつた。また
耐摩耗性が優れていた。この感光体の最大表面電
位は+K100ボルトで実用的には+600ボルト程度
で使用するため帯電能は十分な余裕を有する。暗
減衰率は5秒後で9%、半減値感度は3.5ルツク
ス.秒、残留電位は20ボルトであつた。帯電、露
光の繰り返し10000回後の帯電電位はほとんど変
化しなかつた。また、感度変化もほとんど認めら
れなかつた。
Example 4 4 parts of the copper phthalocyanine obtained in Example 1, 21 parts of a commercially available polyester resin (Almatex 645 manufactured by Mitsui Toatsu Co., Ltd.) having an acid value of 3-7 and a molecular weight of about 4000,
Melamine resin (Yuban 20HS manufactured by Mitsui Toatsu Co., Ltd.) 4.6
A photoconductive coating liquid was obtained by kneading a composition consisting of 1.5 parts and 65 parts of cyclohexanone in a magnetic ball mill for 24 hours. Next, it was coated onto an 80-micron thick aluminum foil to a dry film thickness of 15 microns, and heated to 150°C.
The electrophotographic photoreceptor was dried by heating for 20 minutes. The surface hardness of the photoreceptor was 2H on a pencil hardness scale. It also had excellent wear resistance. The maximum surface potential of this photoreceptor is +K100 volts, and since it is practically used at about +600 volts, the charging capacity has sufficient margin. The dark decay rate is 9% after 5 seconds, and the half-value sensitivity is 3.5 Lux. seconds, the residual potential was 20 volts. After 10,000 repetitions of charging and exposure, the charging potential hardly changed. Moreover, almost no change in sensitivity was observed.

比較例 1 実施例1で得られたフタロシアニン4部、アク
リル樹脂(アルマテツクス762LV55A三井東圧(株)
製)20.6部、メラミン樹脂(ユーバン20HS三井
東圧(株)製)5.8部、シクロヘキサノン60部からな
る組成物を磁性ボールミルにて24時間混練りして
光導電性塗液を得た。次に80ミクロンのアルミニ
ウム箔上に乾燥膜厚15ミクロンになるようにコー
トし、150℃で30分間加熱乾燥させ電子写真感光
体とした。この感光体の最大帯電電位は+800ボ
ルトであり暗減衰率は5秒後で20%、半減値感度
は4ルツクス.秒であつた。帯電露光の繰り返し
に500回後には帯電電位は初期の50%に低下した。
Comparative Example 1 4 parts of phthalocyanine obtained in Example 1, acrylic resin (Alumatex 762LV55A Mitsui Toatsu Co., Ltd.)
A photoconductive coating liquid was obtained by kneading a composition consisting of 20.6 parts of melamine resin (Yuban 20HS manufactured by Mitsui Toatsu Co., Ltd.), 5.8 parts of melamine resin (manufactured by Mitsui Toatsu Co., Ltd.), and 60 parts of cyclohexanone for 24 hours in a magnetic ball mill. Next, it was coated onto an 80 micron aluminum foil to a dry film thickness of 15 microns, and dried by heating at 150° C. for 30 minutes to obtain an electrophotographic photoreceptor. The maximum charging potential of this photoreceptor is +800 volts, the dark decay rate is 20% after 5 seconds, and the half-value sensitivity is 4 lux. It was hot in seconds. After 500 repetitions of charging exposure, the charging potential decreased to 50% of the initial value.

比較例 2 無水フタル酸222部(重量部を示す。以下省
略)、無水マレイン酸49部、ジエチレングリコー
ル462部を窒素ガス雰囲気中で加熱反応させ、酸
価が1.5になるまで反応を続けた。得られたポリ
エステル樹脂は淡黄色のもろい固形樹脂で分子量
は約1800であつた。
Comparative Example 2 222 parts of phthalic anhydride (parts by weight are shown, omitted below), 49 parts of maleic anhydride, and 462 parts of diethylene glycol were heated and reacted in a nitrogen gas atmosphere, and the reaction was continued until the acid value reached 1.5. The obtained polyester resin was a pale yellow brittle solid resin with a molecular weight of about 1800.

次に、実施例1で得られた銅フタロシアニン4
部、ポリエステル樹脂12.6部、メラミン樹脂(ス
パーベツカミン−109−65大日本インキ化学(株)製)
5.0部、先に作られた銅フタロシアニン4部、シ
クロヘキサノン75部からなる組成物を磁性ボール
ミルにて24時間混練して光導電性塗液を得た。次
に厚さ80ミクロンのアルミニウム箔上に乾燥膜厚
が15ミクロンになるようにコートし、130℃で30
分間加熱乾燥させ、電子写真感光体とした。
Next, copper phthalocyanine 4 obtained in Example 1
12.6 parts of polyester resin, melamine resin (Supervecamine-109-65 manufactured by Dainippon Ink Chemical Co., Ltd.)
A composition consisting of 5.0 parts of copper phthalocyanine, 4 parts of copper phthalocyanine prepared above, and 75 parts of cyclohexanone was kneaded in a magnetic ball mill for 24 hours to obtain a photoconductive coating liquid. Next, it was coated on an 80-micron thick aluminum foil to a dry film thickness of 15 microns, and heated at 130°C for 30 minutes.
It was dried by heating for a minute to obtain an electrophotographic photoreceptor.

この感光体の最大表面電位は+1000ボルトであ
り実用的には+600ボルト程度で使用するため帯
電能は十分な余裕を有する。暗減衰率は5秒後で
9%、半減値感度は2.8ルツクス.秒、残留電位
は18ボルトであつた。しかし、帯電、露光の繰り
返しでは、2000回位で初期の帯電電位の半分位と
なり実用的に使用するには不十分のものであつ
た。
The maximum surface potential of this photoreceptor is +1000 volts, and it is practically used at about +600 volts, so the charging ability has sufficient margin. The dark decay rate is 9% after 5 seconds, and the half-value sensitivity is 2.8 Lux. seconds, the residual potential was 18 volts. However, after repeated charging and exposure, the initial charging potential was about half that after about 2000 times, which was insufficient for practical use.

比較例 3 無水フタル酸222部(重量部を示す。以下省
略)、無水マレイン酸196部、ジエチレングリコー
ル233部を窒素ガス雰囲気中で加熱反応させ、酸
価が35になるまで反応を続けた。得られたポリエ
ステル樹脂は淡黄色のもろい固形樹脂で分子量は
約4000であつた。
Comparative Example 3 222 parts of phthalic anhydride (parts by weight are omitted below), 196 parts of maleic anhydride, and 233 parts of diethylene glycol were heated and reacted in a nitrogen gas atmosphere, and the reaction was continued until the acid value reached 35. The obtained polyester resin was a pale yellow brittle solid resin with a molecular weight of about 4,000.

次に、実施例1で得られた銅フタロシアニン4
部、ポリエステル樹脂12.6部、メラミン樹脂(ス
パーベツカミン−109−65大日本インキ化学(株)製)
5.0部、先に作られた銅フタロシアニン4部、シ
クロヘキサノン75部からなる組成物を磁性ボール
ミルにて24時間混練して光導電性塗液を得た。次
に厚さ80クロンのアルミニウム箔上に乾燥膜厚が
15ミクロンになるようにコートし、130℃で30分
間加熱乾燥させ、電子写真感光体とした。
Next, copper phthalocyanine 4 obtained in Example 1
12.6 parts of polyester resin, melamine resin (Supervecamine-109-65 manufactured by Dainippon Ink Chemical Co., Ltd.)
A composition consisting of 5.0 parts of copper phthalocyanine, 4 parts of copper phthalocyanine prepared above, and 75 parts of cyclohexanone was kneaded in a magnetic ball mill for 24 hours to obtain a photoconductive coating liquid. The dry film thickness was then deposited on an 80 chrome aluminum foil.
It was coated to a thickness of 15 microns and dried by heating at 130°C for 30 minutes to obtain an electrophotographic photoreceptor.

この感光体の最大表面電位は+490ボルトであ
り実用的使用するには不十分の感光体しか得られ
なかつた。
The maximum surface potential of this photoreceptor was +490 volts, which was insufficient for practical use.

(発明の効果) 本発明ではフタロシアニン光導電性粉体は分子
内に電子吸引性基を有する為先に述べた光減衰の
遅れによる、いわゆるインダクシヨン現象が生じ
難く、結着材に用いられるポリエステル樹脂とメ
ラミン樹脂の分散効果と補いあつて感度が保障さ
れるので、前途したフタロシアニンと結着材を用
いて製造された感光体は優れた感度を有し、帯
電、露光に際して繰り返し動作を多数回行なつた
後も帯電電位の変動がほとんどなく、かつ表面硬
度が高いために機械強度が大きく、耐摩耗性が優
れ、また、フタロシアニン粒子が十分に結着材に
被覆されているために、耐環境性、表面が平滑性
に優れた特性を有し従来の単層型感光体の欠点を
大幅に改良された電子写真感光体が得られた。
(Effects of the Invention) In the present invention, since the phthalocyanine photoconductive powder has an electron-withdrawing group in the molecule, the so-called induction phenomenon due to the delay in light attenuation described above does not easily occur, and the polyester used as the binder Sensitivity is guaranteed through the mutually complementary dispersion effects of the resin and melamine resin, so photoreceptors manufactured using the previously developed phthalocyanine and binder have excellent sensitivity and require repeated operations many times during charging and exposure. There is almost no change in the charging potential even after use, and the high surface hardness provides high mechanical strength and excellent wear resistance.Also, since the phthalocyanine particles are sufficiently coated with the binder, it has excellent resistance to wear. An electrophotographic photoreceptor was obtained which has excellent environmental properties and surface smoothness, and which has greatly improved the drawbacks of conventional single-layer photoreceptors.

Claims (1)

【特許請求の範囲】 1 分散型感光層を設けた電子写真感光体におい
て、フタロシアニン系光電導性粉体を分散させる
結着材において分子量が500〜5000、かつ酸価が
2−30であるポリエステル樹脂およびメラミン樹
脂の混合物を加熱架橋して用いることを特徴とす
るフタロシアニン電子写真感光体。 2 フタロシアニン系光導電性粉体がフタロシア
ニンおよびフタロシアニン分子のベンゼン核がニ
トロ基、シアノ基、ハロゲン基、スルホン基およ
びカルボキシル基から選ばれる少なくとも1種の
電子吸引性基によつて置換されたフタロシアニン
誘導体から選ばれる特許請求範囲第1項記載の電
子写真感光体。
[Claims] 1. In an electrophotographic photoreceptor provided with a dispersed photosensitive layer, a polyester having a molecular weight of 500 to 5000 and an acid value of 2 to 30 as a binder for dispersing phthalocyanine-based photoconductive powder. A phthalocyanine electrophotographic photoreceptor characterized in that it uses a mixture of a resin and a melamine resin that is heat-crosslinked. 2. A phthalocyanine derivative in which the phthalocyanine-based photoconductive powder has a phthalocyanine and a benzene nucleus of the phthalocyanine molecule substituted with at least one electron-withdrawing group selected from a nitro group, a cyano group, a halogen group, a sulfone group, and a carboxyl group. The electrophotographic photoreceptor according to claim 1, which is selected from the following.
JP1819787A 1987-01-30 1987-01-30 Electrophotographic sensitive body Granted JPS63187248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1819787A JPS63187248A (en) 1987-01-30 1987-01-30 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1819787A JPS63187248A (en) 1987-01-30 1987-01-30 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS63187248A JPS63187248A (en) 1988-08-02
JPH0560866B2 true JPH0560866B2 (en) 1993-09-03

Family

ID=11964905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1819787A Granted JPS63187248A (en) 1987-01-30 1987-01-30 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63187248A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169454A (en) * 1987-12-25 1989-07-04 Koichi Kinoshita Photosensitive body for digital light input
US5258252A (en) * 1989-09-01 1993-11-02 Canon Kabushiki Kaisha Image-bearing member having a surface layer of a high-melting point polyester resin and cured resin
JP3897292B2 (en) * 2002-06-27 2007-03-22 株式会社リコー Image forming apparatus
JP4568615B2 (en) * 2005-02-09 2010-10-27 株式会社リコー Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus and process cartridge

Also Published As

Publication number Publication date
JPS63187248A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
EP0458651A2 (en) Photosensitive materials comprising organic photoconductive substances in a binder polymer having aromatic rings, OH groups and bromine joined at the aromatic ring or rings
JPH0560866B2 (en)
JP2000330307A (en) Electrophotographic photoreceptor and containing liquid for electric charge generating layer
JP2001305763A (en) Electrophotographic photoreceptor
JPH0651549A (en) Electrophotographic sensitive body using oxytitanium phthalocyanine
JP2910615B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JPS6095441A (en) Photosemiconductor material
JP3144881B2 (en) Method for producing phthalocyanine-based composition
JP2002023393A (en) Electrophotographic photoreceptor
JP2000239545A (en) Pigment particle and its production and electrophotographic photoreceptor using the same and electrophotographic image forming method
JPS60256147A (en) Electrophotographic sensitive body
JPH06214414A (en) Electrophotographic sensitive body
JPH05289378A (en) Electrophotographic sensitive body
JPS59191061A (en) Photoconductive material
JPS6019150A (en) Electrophotographic sensitive body
JP2002003741A (en) Perylene hybrid pigment and electrophotographic photoreceptor, image-forming device and process cartridge using the same perylene hybrid pigment
JP2002038047A (en) Hybrid pigment, method for producing hybrid pigment and electrophotographic photoreceptor using the hybrid pigment, image-forming equipment, and process cartridge
JPH0356634B2 (en)
JPH0943878A (en) Electrophotographic photoreceptor
JPS6019144A (en) Composite type electrophotographic sensitive body
JPS63168656A (en) Photosensitive body
JPH0477307B2 (en)
JPS63210943A (en) Photosensitive body
JPS62103653A (en) Electrophotographic sensitive body
JPS63188152A (en) Photosensitive body