JPH0560454B2 - - Google Patents

Info

Publication number
JPH0560454B2
JPH0560454B2 JP60277987A JP27798785A JPH0560454B2 JP H0560454 B2 JPH0560454 B2 JP H0560454B2 JP 60277987 A JP60277987 A JP 60277987A JP 27798785 A JP27798785 A JP 27798785A JP H0560454 B2 JPH0560454 B2 JP H0560454B2
Authority
JP
Japan
Prior art keywords
reaction
adduct
acrylic
acrylic acid
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60277987A
Other languages
Japanese (ja)
Other versions
JPS62138455A (en
Inventor
Yoshiro Nagatsu
Hiroshi Tamura
Seiji Ushida
Nobuto Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojin Co Ltd
Original Assignee
Kojin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojin Co Ltd filed Critical Kojin Co Ltd
Priority to JP60277987A priority Critical patent/JPS62138455A/en
Publication of JPS62138455A publication Critical patent/JPS62138455A/en
Publication of JPH0560454B2 publication Critical patent/JPH0560454B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はアクリル系モノマーの製造方法に関
し、更に詳しくは高品位のアクリル系モノマーを
高収率で得る方法に関する。 本発明によつて得られるアクリル系モノマーは
産業排水、生活排水の処理に用いるカチオン系高
分子凝集剤、中性抄紙の歩留向上剤、帯電防止
剤、染色改良剤、土壌改良剤、紙力増強剤などの
原料として用いられる。 (従来の技術) 本発明のアクリル系モノマーの製造方法に関
し、従来技術として例えば特開昭57−82350号記
載の方法がある。この方法はビシクロ〔2,2,
1〕ヘプテン−5−カルボン酸エステル−2をア
ルコール溶液として加えたアルカリ金属のアルコ
ラートの存在下でアンモニア又は一級アミン又は
二級アミンと反応せしめてアミド化するものであ
り、このアミド化物から系内のアルコラートを鉱
酸等で失活せしめた後、熱分解し精留を経てアク
リル系モノマーを得ることができる。 (発明が解決しようとする問題点) しかしながら、前記の方法において用いるビシ
クロ〔2,2,1〕ヘプテン−5−カルボン酸エ
ステル−2(以下単にエステルアダクトという。)
は吸湿性であり、水分を含んだものとアミン系化
合物とを反応させてビシクロ〔2,2,1〕ヘプ
テン−5−カルボン酸アミド−2を製造すると触
媒が加水分解して失活するから反応に用いる上記
エステル、アンモニア、アミン、溶媒等の原料は
使用前によく脱水し、且つ水分が侵入しないよう
に保たれることが望ましいと指摘している。 しかしながら、エステルアダクトは空気中の水
分を吸湿して容易に0.3%以上の水分となるため
指摘のようによく脱水した原料を用いても反応容
器に投入する際に吸収する程度の水分によつても
以下に述べるような欠点を有することがわかつ
た。 すなわち、 1 エステルアダクトは、アミン系化合物と反応
する際、系内に水分が存在するとその水分によ
つて容易に加水分解してビシクロ〔2,2,
1〕ヘプテン−5−カルボン酸(以下単にアク
リル酸アダクトという)を副生する。このアク
リル酸アダクトは次の熱分解工程によりアクリ
ル酸に変化するが、このアクリル酸はアニオン
性であり本発明の方法により製造されるアニオ
ン性のアクリル系モノマーの重合を阻害し、高
重合度のポリマーを得るために支障となる。し
かし、アクリル系モノマーとアクリル酸とは沸
点や揮発度などの物性値が近似しているため、
精留で分離するのがきわめて困難であり、実用
性のある品質水準のポリマーを得るにはモノマ
ー中のアクリル酸許容限度0.05%以下に抑える
必要があり、このためには精留を多数回反復す
る必要があり、多くの時間が必要であり、更に
反復に伴なつて重合物その他の発生によりロス
が生じ、収率が著しく低下するという欠点が生
じる。 2 又前記1に示したように水分を含有した状態
で反応が開始する場合、この反応に併用する触
媒が水と等モル量失活してしまうため、反応を
進めるためには含水量に相当する分だけ余分に
触媒を必要とするが、触媒量が多いと反応終了
後鉱酸で中和した際生成する塩が多くなり、こ
の塩が後の熱分解工程で支障を生ずる。即ち、
反応した液を熱分解の蒸発缶へ送る送液ポンプ
が詰りやすくなり、蒸発缶のよごれが多くなつ
て熱効率が悪くなり、更に熱量の過剰供給によ
り重合物が多く収率が低下するという欠点が生
じる。 3 又反応系に水分が多く存在すると、理由は明
らかではないが、反応系が石綿状の不均一系に
なり易く反応の進行を著しく妨げるという欠点
を有する。 以上のようにエステルアダクトが吸湿性である
ため、十分脱水したものを使用しても操作中に吸
湿してやはり水分の存在による欠点を防ぐことは
できない。 (問題点を解決するための手段) 本発明者らは前記の欠点を解消するため、鋭意
検討した結果、エステルアダクト、アミノ化合物
を反応前に加熱、減圧下に還流してエステルアダ
クトの水分を0.08重量%にした後アミノ化合物を
添加して反応させることによりアクリル酸アダク
トの含量が著しく少く、その結果不純物であるア
クリル酸が少く、かつ収率よくアクリル系モノマ
ーを得ることが出来ることを見い出し、本発明に
到達したものである。 すなわち、本発明は、 (イ) 一般式〔〕で表わされるエステルアダクト
と、一般式〔〕又は〔′〕で表わされるア
ミノ化合物とを反応せしめて、まず一般式
〔〕又は(′)で表わされるアクリル系アダ
クトを得、さらにこれを熱分解、精留を行つて
一般式〔〕又は〔′〕で表わされるアクリ
ル系モノマーを製造するに際し、反応容器内で
反応前にエステルアダクト〔〕及びアミノ化
合物〔〕又は〔′〕の水分率を0.08重量%
以下に脱水した後、触媒を添加し、更に還流し
ながら反応せしめることを特徴とする高品位、
且、高収率でアクリル系モノマーを製造する方
法である。 但し Xは−CH2−基又は酸素原子 Yは−OH又は−NH2基 Zは酸素原子又は−NH2−基 nは1〜4の自然数 R1,R2はC1〜C3のアルキル基又は水素原子 前記のエステルアダクト〔〕としては例えば
ビシクロ〔2,2,1〕ヘプテン−5−カルボン
酸メチル−2,7−エポキシビシクロ〔2,2,
1〕ヘプテン−5−カルボン酸メチル−2が挙げ
られるが、これらに限定されるものではない。 又、前記のアミノ化合物〔〕又は〔′〕と
しては例えばモノメチルアミン、ジメチルアミ
ン、ジメチルアミノメチルアミン、ジメチルアミ
ノエタノール、ジメチルアミノプロピルアミン、
ジエチルアミン、モノプロピルアミン、モノメチ
ルアミノブチルアミンなどが挙げられるがこれに
限定されるものではない。 本発明において用いられる反応容器としては精
留装置を備えた容器が用いられる。反応前、反応
容器内において、エステルアダクト〔〕は真空
度300〜10Torr、還流比5/1〜20/1の範囲と
なるよう適宜加熱することにより、水分が0.08重
量%以下になるまで精留脱水される。更にこの脱
水後所定量のアミノ化合物〔〕又は〔′〕を
添加した後前記と同様にして反応容器内の水分が
0.08%以下になるまで精留脱水を行なう。このと
きエステルアダクト〔〕とアミノ化合物〔〕
又は〔′〕とを同時に仕込み、精留脱水しても
よい。 これらの主原料を精留脱水した後、反応容器内
に水分が浸入しないように、反応触媒としてソヂ
ウムメチラート等のアルカリ金属アルコラートを
減圧吸引等の方法で添加し、反応を開始する。 反応触媒は通常無水アルコール溶液が用いら
れ、添加量はエステルアダクト〔〕に対して
0.5〜20モル%が好ましい。 反応は、エステルアダクト〔〕、アミノ化合
物〔〕又は〔′〕の種類により若干異なるが
10〜150℃の範囲で、10〜300Torr、還流比は反
応中に副生するアルコールを系外に抜くことが出
来るよう適宜調節する。反応によつて得られるア
クリル系アダクト〔〕又は〔′〕としてはビ
シクロ〔2,2,1〕ヘプテン−5−N,N−ジ
メチルカルボン酸アミド−2,7−エポキシビシ
クロ〔2,2,1〕ヘプテン−5−N,N−ジメ
チルカルボン酸アミド−2、ビシクロ〔2,2,
1〕ヘプテン−5−N−モノメチルカルボン酸ア
ミド−2、ビシクロ〔2,2,1〕ヘプテン−5
−N−(N′,N′−ジメチルアミノメチル)カルボ
ン酸アミド−2、ビシクロ〔2,2,1〕ヘプテ
ン−5−N,N−ジメチルアミノエチルカルボン
酸エステル−2、ビシクロ〔2,2,1〕ヘプテ
ン−5−N−(N′,N′−ジメチルアミノプロピ
ル)カルボン酸アミド−2、ビシクロ〔2,2,
1〕ヘプテン−5−N,N−ジエチルカルボン酸
アミド−2、ビシクロ〔2,2,1〕ヘプテン−
5−N−モノプロピルカルボン酸アミド−2、ビ
シクロ〔2,2,1〕ヘプテン−5−N−(N′−
モノメチルアミノブチル)カルボン酸アミド−2
などが得られる。反応後、アクリル系アダクト
〔〕又は〔′〕は反応後を直接蒸留することに
より精製して取り出すことが出来るが、望ましく
は残存・触媒を硫酸等の鉱酸か、酢酸等の有機酸
で中和するか、又はイオン交換樹脂で除いた後蒸
留等の精製取り出し操作を行なう方が良い。 得られたアクリル系アダクト〔〕又は〔′〕
は、200〜500℃程度の温度で熱分解を行ない、
〔〕又は〔′〕のアクリル系モノマーを得る。
熱交換の方法は特に限定されるものではないが、
例えばガラス、ステンレス、磁製のラツシヒリン
グ等を必要に応じて充填した加熱管に、加熱気化
させたアクリル系アダクト〔〕又は〔′〕の
蒸気をそのまま通す方法が挙げられる。次いで精
留工程において純粋なアクリル系モノマー〔〕
又は〔′〕を得る。得られたアクリル系モノマ
ーとしてはN,N−ジメチルアクリルアミド、N
−メチルアクリルアミド、N,N−ジメチルアミ
ノメチルアクリルアミド、N,N−ジメチルアミ
ノエチルアクリレート、N,N−ジメチルアミノ
プロピルアクリルアミド、N,N−ジエチルアク
リルアミド、N−プロピルアクリルアミド、N−
メチルアミノブチルアクリルアミドなどがある。 (作用及び効果) 本発明の方法によれば、反応前に反応容器内で
原料に含まれる水分を従来の方法では実現出来な
い0.08重量%以下に減少させることにより、中間
生成品であるアクリル系アダクトに含まれる不純
物アクリル酸アダクトの量を著しく少くできたた
め、これを熱分解して得られるアクリル系モノマ
ーに含まれるアクリル酸の含量も少なくなり精製
工程において産業用として希望されている純度水
準99.5%以上の品質も少い精留回数により達成が
可能であり、これにより収率の低下も少ない。 更に原料中の水分が少ないため、反応系に石綿
状物の発生が殆んどなく反応が円滑にすすみ、且
必要とする触媒の量が少なくなる為、反応後生ず
る塩類の生成が少ない為工程中の送液が円滑に行
なわれる。 (実施例) 以下に実施例を挙げて、本発明を更に具体的に
説明するが本発明はこれらの実施例によつて限定
されるものではない。 (実施例 1) 精留装置を備えた反応容器(5m3)にビシクロ
〔2,2,1〕ヘプテン−5−カルボン酸メチル
−2を1530.5Kg仕込み、釜温82〜95℃、真空度
113〜24Torr、還流比9/1の条件で脱水を
24Hr行い、その後にジメチルアミノプロピルア
ミン1120Kgを追加して同じ条件で脱水をさらに
15Hr行なつた。脱水後の反応系内の水分は0.02
%であつた。その後、触媒として28%濃度のソジ
ウムメチラートのメタノール溶液を35Kg(エステ
ルアダクトに対し1.8モル%)仕込み、反応を開
始した。反応は釜温75〜100℃、真空度200Torr、
還流比3/1で24Hr行なつた(反応率100%)。
反応後、70℃まで冷却した後、50%硫酸18.2Kg添
加して触媒を中和した。その後、釜温80〜100℃、
真空度200〜6Torr、還流比3/1〜9/1で残
ジメチルアミノプロピルアミンを留去、精製して
ビシクロ〔2,2,1〕ヘプテン−5−N−
(N′,N′−ジメチルアミノプロピル)カルボン酸
アミド−2を2210Kg(収率99%)得た。生成物中
のアクリル酸アダクトの含有率は0.1%であつた。 得られたビシクロ〔2,2,1〕ヘプテン−5
−N−(N′,N′−ジメチルアミノプロピル)カル
ボン酸アミド−2に重合禁止剤フエノチアジン
1000ppmを添加した溶液を26Kg/Hrの供給速度
で蒸発缶に供給し、真空度60Torrで230〜240℃
に加熱して蒸発気化せしめたアクリル系アダクト
を、ラツシヒリングを充填し370〜390℃に加熱し
た90容積の熱分解塔に通して熱分解を行なつ
た。その結果、粗なN,N−ジメチルアミノプロ
ピルアクリルアミドを1574Kg(純分95.7%、熱分
解効率97%)を得て、アクリル酸の含量は0.08%
であつた。 引き続き、得られた粗なN,N−ジメチルアミ
ノプロピルアクリルアミドに重合禁止剤フエノチ
アジン5000ppmを添加して500蒸発缶に仕込み、
ポールリングを充填した精留塔により5Torrの減
圧で精留を行いN,N−ジメチルアミノプロピル
アクリルアミドを1400Kg(純分99.7%、精留収率
89%)を得た。アクリル酸の含量は0.02%であつ
た。 (実施例 2) 精留装置を備えた反応容器(5m3)にビシクロ
〔2,2,1〕ヘプテン−5−カルボン酸メチル
−2を1850Kg、ジメチルアミノエタノール1410Kg
を仕込み釜温を85〜90℃、真空度200〜40Torr、
還流比9/1の条件で脱水を24Hr行なつた。脱
水後の反応系内の水分は0.02%であつた。その
後、触媒として28%濃度のソジウムメチラートの
メタノール溶液を34Kg(エステルアダクトに対し
1.4mol%)仕込み、反応を開始した。反応は釜
温60〜100℃、真空度200〜31Torr、還流比1/
1〜全還流で24Hr行なつた(反応率87.7%)。そ
の後、釜温112〜120℃、真空度20〜4Torr、還流
比1/1で残ジメチルアミノエタノール等の低沸
物を除去した後、釜温130℃、5Torrで単蒸留し
て粗ビシクロ〔2,2,1〕ヘプテン−5−N,
N−ジメチルアミノエチルカルボン酸エステル−
2を2547Kg(収率93%)得た。生成物中のアクリ
ル酸アダクトの含有率は0.05%であつた。 実施例1と同じ装置を用い、同じ方法で熱分解
を行なつた。供給量30Kg/Hr、蒸発缶温度125〜
130℃、真空度60Torr、熱分解塔温度300〜350℃
の条件で粗なN,N−ジメチルアミノエチルアク
リレートを1785Kg(純分93%、熱分解効率95%)
を得て、アクリル酸含量は0.04%であつた。 引き続き実施例1と同じ装置を用いて精留を行
いN,N−ジメチルアミノエチルアクリレートを
1600Kg(純分99.8%、精留収率90%)を得てアク
リル酸の含量は0.01%であつた。 (実施例 3) 精留装置を備えた反応容器(5m3)にビシクロ
〔2,2,1〕ヘプテン−5−カルボン酸メチル
−2を1486Kg仕込み釜温を85〜90℃、真空度200
〜40Torr、還流比9/1の条件で脱水を24Hr行
なつた。脱水後の反応系内の水分は0.02%であつ
た。その後、液化したジメチルアミン472Kgを仕
込み、次いで触媒として28%濃度のソジウムメチ
ラートのメタノール溶液を85Kg(エステルアダク
トに対し4.5mol%)仕込み、反応を開始した。
反応は釜温80〜100℃、真空度200Torr、還流比
1/3で24Hr行なつた(反応率95.0%)。その後
釜温80〜100℃、真空度200〜4Torr、還流比1/
1で低沸物を除去した後、釜温90〜120℃、真空
度3〜4Torrで単蒸留してビシクロ〔2,2,
1〕ヘプテン−5−N,N−ジメチルカルボン酸
アミド−2を920Kg(収率95%)得た。生成物中
のアクリル酸アダクトの含有率は0.04%であつ
た。 実施例1と同じ装置を用い、同じ方法で熱分解
を行なつた。供給量30Kg/Hr、蒸発缶温度80℃、
真空度60Torr、熱分解塔温度300〜360℃の条件
で粗なN,N−ジメチルアクリルアミドを590Kg
(純分84%、熱分解効率90%)を得てアクリル酸
含量は0.02%であつた。 引き続き実施例1と同じ装置を用いて精留を行
いN,N−ジメチルアクリルアミドを442Kg(純
分99.8%、精留収率75%)を得てアクリル酸の含
量は0.01%であつた。 (比較例 1) 実施例1と同じ装置、同じ仕込量で反応前の脱
水を行なわないでアクリル系アダクト化反応を行
なつた。その結果系内の水分が0.9%であつた。
触媒が失活して反応しないため触媒を追加して計
350Kg(エチルアダクトに対し18モル%、実施例
1に対して10倍)使用した。反応は系内が石綿状
の不均一溶液になり、メタノールの流出(反応の
進行)は遅かつた。収量は2100Kg(収率94%)で
生成物中のアクリル酸アダクトの含有率は1.3%
であつた。 この液を熱分解へ送液する際ストレーナーを通
過させるが、このとき大量の芒硝がストレーナー
につまり、通液がわるくなつたので、途中芒硝を
除去した後再び送液を行なつた。 引き続いて実施例1と同じ装置、同じ方法で熱
分解を行ない粗なN,N−ジメチルアミノプロピ
ルアクリルアミドを1500Kg(純分85%、熱分解効
率90%)を得てアクリル酸含量は1.0%であつた。 熱分解終了後蒸発缶には著量の芒硝が蓄積して
いた。 引き続いて実施例1と同じ装置、同じ方法で精
留を行い、N,N−ジメチルアミノプロピルアク
リルアミドを1320Kg(純分95.5%、精留収率88
%)を得てアクリル酸の含量は0.5%であつた。 以上のように精留収率を実施例1と同程度にす
ると純分が低く、アクリル酸含量が多いため、上
記で得られた精製物(純分95.5%、アクリル酸の
含量0.5%)を上記の精留条件で精製し、純分
99.3%、アクリル酸含量0.09%のN,N−ジメチ
ルアミノプロピルアクリルアミド780Kgを得た。
この得られた精製物を更に同様にして精製し、純
分99.5%、アクリル酸0.03%のN,N−ジメチル
アミノプロピルアクリルアミド620Kgを得た。こ
のものの品質は実施例1のものよりやや劣る程度
のものとなつたが以上の3回の精留による全精留
収率はわずか41%となり、実施例1の89%に比
べ、著しく実用性に欠けるものであつた。 (比較例 2) 反応前の系内水分を0.2%まで脱水して触媒量
70Kgとした以外は実施例1と全く同様に反応を行
なつたところ収率96%でアクリル系アダクトを得
て、アクリル酸アダクトの含量は0.5%であつた。 反応液には、比較例1の場合に比べ低度ではあ
つたが石綿状物が発生していた。 次いで熱分解工程への送液途中でストレーナー
詰りがあり、送液が円滑には進行しなかつた。 熱分解では純分89%、熱分解効率93%で1550Kg
得て、アクリル酸の含量は0.3%であつた。次の
精留ではN,N−ジメチルアミノプロピルアクリ
ルアミドを1395Kg(純分96.1%、精留収率90%)
を得てアクリル酸の含量は0.2%であつた。 (比較例 3) 実施例1において、ビシクロ〔2,2,1〕ヘ
プテン−5−カルボン酸メチル−2とジメチルア
ミノプロピルアミンを別々に0.08%まで脱水し、
別々にストアータンクに貯蔵し、その後仕込ん
だ。反応容器に仕込んだ後の水分は0.3%にも増
加していた。触媒量100Kgで反応を行ない収率95
%でアクリル酸アダクトを得て、アクリル酸アダ
クトの含量は0.9%であつた。 反応液には比較例の場合に比べ低度ではあつた
がかなりの石綿状物が発生し、液の均一性、攪拌
を妨げていた。 次いで熱分解工程への送液途中で、触媒を中和
して発生した芒硝によるストレーナー詰りがかな
りひどく、送液が困難であつた。 熱分解では純分87%、熱分解効率92%で1500Kg
得て、アクリル酸の含量は0.5%であつた。次の
精留ではN,N−ジメチルアミノプロピルアクリ
ルアミドを1335Kg(純分96.5%、精留収率89%)
を得てアクリル酸の含量は0.2%であつた。
(Industrial Application Field) The present invention relates to a method for producing an acrylic monomer, and more particularly to a method for obtaining a high-grade acrylic monomer in high yield. The acrylic monomer obtained by the present invention can be used as a cationic polymer flocculant used in the treatment of industrial wastewater and domestic wastewater, as a retention aid for neutral papermaking, as an antistatic agent, as a dye improver, as a soil improver, and as a paper strength agent. Used as a raw material for enhancers, etc. (Prior Art) Regarding the method for producing the acrylic monomer of the present invention, there is a method described in JP-A-57-82350, for example, as a prior art. This method uses bicyclo[2,2,
1] Heptene-5-carboxylic acid ester-2 is amidated by reacting with ammonia, a primary amine, or a secondary amine in the presence of an alkali metal alcoholate to which an alcoholic solution is added. After deactivating the alcoholate with a mineral acid or the like, an acrylic monomer can be obtained through thermal decomposition and rectification. (Problems to be Solved by the Invention) However, bicyclo[2,2,1]heptene-5-carboxylic acid ester-2 (hereinafter simply referred to as ester adduct) used in the above method.
is hygroscopic, and when bicyclo[2,2,1]heptene-5-carboxylic acid amide-2 is produced by reacting a water-containing substance with an amine compound, the catalyst is hydrolyzed and deactivated. It is pointed out that it is desirable that the raw materials used in the reaction, such as the esters, ammonia, amines, solvents, etc., be thoroughly dehydrated before use and kept so that moisture does not enter. However, the ester adduct absorbs moisture from the air and easily becomes more than 0.3% moisture, so even if well-dehydrated raw materials are used, the amount of moisture absorbed during charging into the reaction vessel may be insufficient. It was also found that the method also has the following drawbacks. That is, 1. When reacting with an amine compound, if moisture is present in the system, the ester adduct is easily hydrolyzed by the moisture to form bicyclo[2,2,
1] Heptene-5-carboxylic acid (hereinafter simply referred to as acrylic acid adduct) is produced as a by-product. This acrylic acid adduct is converted into acrylic acid in the next thermal decomposition step, but this acrylic acid is anionic and inhibits the polymerization of the anionic acrylic monomer produced by the method of the present invention, resulting in a high degree of polymerization. It becomes a hindrance to obtain the polymer. However, since acrylic monomers and acrylic acid have similar physical properties such as boiling point and volatility,
It is extremely difficult to separate by rectification, and in order to obtain a polymer of a practical quality level, it is necessary to suppress the permissible limit of acrylic acid in the monomer to 0.05% or less, which requires repeated rectification many times. Moreover, as the process is repeated, polymers and other substances are generated, resulting in loss, resulting in a significant decrease in yield. 2 In addition, as shown in 1 above, if the reaction starts in a state that contains water, the catalyst used in conjunction with this reaction will be deactivated in an amount equivalent to the water content, so in order to proceed with the reaction, a catalyst equivalent to the water content must be used. However, if the amount of catalyst is large, more salts will be produced when neutralized with mineral acid after the reaction, and these salts will cause problems in the subsequent thermal decomposition step. That is,
The liquid pump that sends the reacted liquid to the evaporator for thermal decomposition is likely to clog, the evaporator becomes more dirty and the thermal efficiency deteriorates, and the oversupply of heat causes a large amount of polymer to be produced, reducing the yield. arise. 3. Furthermore, if a large amount of water is present in the reaction system, the reaction system tends to become asbestos-like and heterogeneous, which significantly hinders the progress of the reaction, although the reason is not clear. As described above, since the ester adduct is hygroscopic, even if a sufficiently dehydrated product is used, it absorbs moisture during operation, and defects due to the presence of moisture cannot be prevented. (Means for Solving the Problems) In order to solve the above-mentioned drawbacks, the inventors of the present invention made extensive studies and found that the ester adduct and the amino compound were heated and refluxed under reduced pressure before the reaction to remove the water content of the ester adduct. It was discovered that by adding an amino compound and reacting after reducing the amount to 0.08% by weight, the content of acrylic acid adduct was significantly reduced, and as a result, the amount of acrylic acid as an impurity was reduced, and acrylic monomers could be obtained in good yield. , the present invention has been achieved. That is, the present invention provides (a) reacting an ester adduct represented by the general formula [] with an amino compound represented by the general formula [] or ['] to obtain the compound represented by the general formula [] or ('). When producing an acrylic monomer represented by the general formula [] or ['] by thermally decomposing and rectifying the acrylic adduct, the ester adduct [] and amino Moisture content of compound [] or [′] is 0.08% by weight
High quality, characterized by the following: After dehydration, a catalyst is added, and the reaction is further carried out under reflux.
Moreover, it is a method for producing acrylic monomers in high yield. However, X is -CH 2 - group or oxygen atom Y is -OH or -NH 2 group Z is oxygen atom or -NH 2 - group n is a natural number R 1 of 1 to 4, R 2 is C 1 to C 3 alkyl Group or hydrogen atom Examples of the above ester adduct [] include bicyclo[2,2,1]heptene-5-carboxylic acid methyl-2,7-epoxybicyclo[2,2,
1] Methyl-2 heptene-5-carboxylate, but is not limited thereto. In addition, examples of the above amino compound [] or ['] include monomethylamine, dimethylamine, dimethylaminomethylamine, dimethylaminoethanol, dimethylaminopropylamine,
Examples include, but are not limited to, diethylamine, monopropylamine, and monomethylaminobutylamine. As the reaction vessel used in the present invention, a vessel equipped with a rectification device is used. Before the reaction, the ester adduct [] is rectified in the reaction vessel by heating appropriately to a vacuum degree of 300 to 10 Torr and a reflux ratio of 5/1 to 20/1 until the water content is 0.08% by weight or less. Dehydrated. Furthermore, after this dehydration, a predetermined amount of the amino compound [] or ['] was added, and the moisture in the reaction vessel was removed in the same manner as above.
Perform rectification dehydration until it becomes 0.08% or less. At this time, the ester adduct [] and the amino compound []
Alternatively, ['] may be charged at the same time and dehydrated by rectification. After rectifying and dehydrating these main raw materials, an alkali metal alcoholate such as sodium methylate is added as a reaction catalyst by vacuum suction or the like to start the reaction so as to prevent moisture from entering the reaction vessel. The reaction catalyst is usually an anhydrous alcohol solution, and the amount added is based on the ester adduct.
0.5-20 mol% is preferred. The reaction differs slightly depending on the type of ester adduct [], amino compound [] or [′].
The temperature is 10 to 150°C, the temperature is 10 to 300 Torr, and the reflux ratio is appropriately adjusted so that the alcohol by-produced during the reaction can be removed from the system. The acrylic adduct [] or ['] obtained by the reaction is bicyclo[2,2,1]heptene-5-N,N-dimethylcarboxylic acid amide-2,7-epoxybicyclo[2,2,1] ]Heptene-5-N,N-dimethylcarboxylic acid amide-2, bicyclo[2,2,
1] Heptene-5-N-monomethylcarboxylic acid amide-2, bicyclo[2,2,1]heptene-5
-N-(N',N'-dimethylaminomethyl)carboxylic acid amide-2, bicyclo[2,2,1]heptene-5-N,N-dimethylaminoethylcarboxylic acid ester-2, bicyclo[2,2 , 1] heptene-5-N-(N',N'-dimethylaminopropyl)carboxylic acid amide-2, bicyclo[2,2,
1] Heptene-5-N,N-diethylcarboxylic acid amide-2, bicyclo[2,2,1]heptene-
5-N-monopropylcarboxylic acid amide-2, bicyclo[2,2,1]heptene-5-N-(N'-
Monomethylaminobutyl)carboxylic acid amide-2
etc. can be obtained. After the reaction, the acrylic adduct [] or [′] can be purified and extracted by direct distillation of the reaction product, but it is preferable to neutralize the remaining catalyst with a mineral acid such as sulfuric acid or an organic acid such as acetic acid. It is better to perform a purification extraction operation such as distillation after removal with an ion exchange resin. Obtained acrylic adduct [] or [′]
is thermally decomposed at a temperature of about 200 to 500℃,
Acrylic monomer [] or [′] is obtained.
The heat exchange method is not particularly limited, but
For example, there is a method in which the vapor of heated and vaporized acrylic adduct [] or ['] is directly passed through a heating tube filled with a Raschig ring made of glass, stainless steel, porcelain, etc. as necessary. Then, in a rectification process, pure acrylic monomer []
Or get [′]. The obtained acrylic monomers include N,N-dimethylacrylamide, N
-Methylacrylamide, N,N-dimethylaminomethylacrylamide, N,N-dimethylaminoethyl acrylate, N,N-dimethylaminopropylacrylamide, N,N-diethylacrylamide, N-propylacrylamide, N-
Examples include methylaminobutylacrylamide. (Operations and Effects) According to the method of the present invention, by reducing the water content of the raw materials in the reaction vessel before the reaction to 0.08% by weight or less, which cannot be achieved with conventional methods, the acrylic intermediate product Since we were able to significantly reduce the amount of impurity acrylic acid adduct contained in the adduct, the content of acrylic acid contained in the acrylic monomer obtained by thermally decomposing it was also reduced, achieving a purity level of 99.5, which is desired for industrial use in the purification process. % or higher quality can be achieved by reducing the number of rectifications, and this reduces the yield drop. Furthermore, since there is little moisture in the raw materials, there is almost no asbestos-like material in the reaction system, and the reaction proceeds smoothly.In addition, the amount of catalyst required is small, so the production of salts after the reaction is reduced, making the process easier. The liquid inside is transferred smoothly. (Examples) The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples. (Example 1) 1530.5 kg of methyl bicyclo[2,2,1]heptene-5-carboxylate-2 was charged into a reaction vessel (5 m 3 ) equipped with a rectification device, the pot temperature was 82 to 95°C, and the degree of vacuum was
Dehydrate under conditions of 113 to 24 Torr and reflux ratio of 9/1.
Dehydrated for 24 hours, then added 1120 kg of dimethylaminopropylamine and further dehydrated under the same conditions.
I did it for 15 hours. Water content in the reaction system after dehydration is 0.02
It was %. Thereafter, 35 kg of a 28% methanol solution of sodium methylate (1.8 mol % based on the ester adduct) was charged as a catalyst, and the reaction was started. The reaction was carried out at a pot temperature of 75 to 100℃ and a vacuum of 200Torr.
The reaction was carried out for 24 hours at a reflux ratio of 3/1 (reaction rate 100%).
After the reaction, the mixture was cooled to 70°C, and 18.2 kg of 50% sulfuric acid was added to neutralize the catalyst. After that, the pot temperature is 80-100℃,
The remaining dimethylaminopropylamine is distilled off and purified at a vacuum degree of 200 to 6 Torr and a reflux ratio of 3/1 to 9/1 to obtain bicyclo[2,2,1]heptene-5-N-
2210 kg (yield 99%) of (N', N'-dimethylaminopropyl)carboxylic acid amide-2 was obtained. The content of acrylic acid adduct in the product was 0.1%. The obtained bicyclo[2,2,1]heptene-5
-N-(N',N'-dimethylaminopropyl)carboxylic acid amide-2 and polymerization inhibitor phenothiazine
A solution containing 1000ppm was supplied to the evaporator at a supply rate of 26Kg/Hr, and heated to 230-240℃ at a vacuum level of 60Torr.
The acrylic adduct, which had been evaporated by heating to , was thermally decomposed by passing it through a 90-volume pyrolysis tower filled with a Raschig ring and heated to 370-390°C. As a result, 1574 kg of crude N,N-dimethylaminopropylacrylamide (purity 95.7%, thermal decomposition efficiency 97%) was obtained, with an acrylic acid content of 0.08%.
It was hot. Subsequently, 5000 ppm of the polymerization inhibitor phenothiazine was added to the obtained crude N,N-dimethylaminopropylacrylamide and charged into a 500 evaporator.
Rectification was carried out at a reduced pressure of 5 Torr using a rectification column packed with Pall rings to produce 1400 kg of N,N-dimethylaminopropylacrylamide (purity 99.7%, rectification yield
89%). The content of acrylic acid was 0.02%. (Example 2) 1850 kg of methyl bicyclo[2,2,1]heptene-5-carboxylate-2 and 1410 kg of dimethylaminoethanol were placed in a reaction vessel (5 m 3 ) equipped with a rectification device.
Prepare the pot temperature at 85-90℃, vacuum level at 200-40Torr,
Dehydration was carried out for 24 hours at a reflux ratio of 9/1. The water content in the reaction system after dehydration was 0.02%. Thereafter, 34 kg of a methanol solution of 28% sodium methylate (relative to the ester adduct) was added as a catalyst.
1.4 mol%) and started the reaction. The reaction was carried out at a pot temperature of 60 to 100°C, a vacuum of 200 to 31 Torr, and a reflux ratio of 1/
The reaction was carried out for 24 hours at 1 to total reflux (reaction rate 87.7%). Thereafter, low-boiling substances such as residual dimethylaminoethanol were removed at a pot temperature of 112 to 120°C, a degree of vacuum of 20 to 4 Torr, and a reflux ratio of 1/1, followed by simple distillation at a pot temperature of 130°C and 5 Torr to obtain crude bicyclo[2 ,2,1]heptene-5-N,
N-dimethylaminoethylcarboxylic acid ester-
2,547 kg (yield 93%) of 2 were obtained. The content of acrylic acid adduct in the product was 0.05%. Thermal decomposition was carried out using the same equipment and method as in Example 1. Supply amount 30Kg/Hr, evaporator temperature 125~
130℃, degree of vacuum 60Torr, thermal decomposition tower temperature 300-350℃
1785Kg of crude N,N-dimethylaminoethyl acrylate (purity 93%, thermal decomposition efficiency 95%) under the following conditions.
was obtained, and the acrylic acid content was 0.04%. Subsequently, rectification was performed using the same equipment as in Example 1 to obtain N,N-dimethylaminoethyl acrylate.
1600Kg (purity 99.8%, rectification yield 90%) was obtained, and the acrylic acid content was 0.01%. (Example 3) 1486 kg of methyl bicyclo[2,2,1]heptene-5-carboxylate-2 was charged into a reaction vessel (5 m 3 ) equipped with a rectification device, the pot temperature was 85 to 90°C, and the degree of vacuum was 200.
Dehydration was carried out for 24 hours at ~40 Torr and a reflux ratio of 9/1. The water content in the reaction system after dehydration was 0.02%. Thereafter, 472 kg of liquefied dimethylamine was charged, and then 85 kg of a 28% methanol solution of sodium methylate (4.5 mol % based on the ester adduct) was charged as a catalyst to start the reaction.
The reaction was carried out for 24 hours at a pot temperature of 80 to 100°C, a vacuum degree of 200 Torr, and a reflux ratio of 1/3 (reaction rate 95.0%). After that, the pot temperature is 80 to 100℃, the vacuum is 200 to 4 Torr, and the reflux ratio is 1/
After removing low-boiling substances in step 1, simple distillation is performed at a pot temperature of 90 to 120°C and a vacuum of 3 to 4 Torr to obtain bicyclo[2, 2,
1] 920 kg (yield 95%) of heptene-5-N,N-dimethylcarboxylic acid amide-2 was obtained. The content of acrylic acid adduct in the product was 0.04%. Thermal decomposition was carried out using the same equipment and method as in Example 1. Supply amount 30Kg/Hr, evaporator temperature 80℃,
590 kg of crude N,N-dimethylacrylamide was produced under the conditions of vacuum degree of 60 Torr and thermal decomposition tower temperature of 300 to 360°C.
(purity: 84%, thermal decomposition efficiency: 90%), and the acrylic acid content was 0.02%. Subsequently, rectification was carried out using the same equipment as in Example 1 to obtain 442 kg of N,N-dimethylacrylamide (purity 99.8%, rectification yield 75%), with an acrylic acid content of 0.01%. (Comparative Example 1) An acrylic adduct-forming reaction was carried out using the same equipment as in Example 1 and the same charging amount without performing dehydration before the reaction. As a result, the water content in the system was 0.9%.
Since the catalyst is deactivated and does not react, add a catalyst to measure the
350 kg (18 mol % based on ethyl adduct, 10 times that of Example 1) was used. The reaction resulted in an asbestos-like heterogeneous solution in the system, and the outflow of methanol (progress of the reaction) was slow. The yield is 2100Kg (94% yield) and the content of acrylic acid adduct in the product is 1.3%.
It was hot. When this liquid was sent to pyrolysis, it was passed through a strainer, but at this time, a large amount of mirabilite clogged the strainer, making it difficult to pass the liquid, so after removing the mirabilite during the process, the liquid was fed again. Subsequently, thermal decomposition was carried out using the same equipment and method as in Example 1 to obtain 1500 kg of crude N,N-dimethylaminopropylacrylamide (purity 85%, thermal decomposition efficiency 90%), with an acrylic acid content of 1.0%. It was hot. After the pyrolysis was completed, a significant amount of mirabilite had accumulated in the evaporator. Subsequently, rectification was carried out using the same equipment and method as in Example 1 to obtain 1320 kg of N,N-dimethylaminopropylacrylamide (purity 95.5%, rectification yield 88
%) and the content of acrylic acid was 0.5%. As mentioned above, if the rectification yield is the same as in Example 1, the purity will be low and the acrylic acid content will be high. Purified under the above rectification conditions and purified
780 kg of N,N-dimethylaminopropylacrylamide with an acrylic acid content of 99.3% and 0.09% was obtained.
The obtained purified product was further purified in the same manner to obtain 620 kg of N,N-dimethylaminopropylacrylamide with a purity of 99.5% and 0.03% of acrylic acid. Although the quality of this product was slightly inferior to that of Example 1, the total rectification yield after the above three rectifications was only 41%, which was significantly less practical than 89% in Example 1. It was something that was lacking. (Comparative Example 2) The amount of catalyst was reduced by dehydrating the moisture in the system to 0.2% before the reaction.
The reaction was carried out in exactly the same manner as in Example 1 except that the weight was 70 kg, and an acrylic adduct was obtained with a yield of 96%, and the content of acrylic acid adduct was 0.5%. Asbestos-like material was generated in the reaction solution, although the degree was lower than that in Comparative Example 1. Next, the strainer was clogged during the liquid transfer to the thermal decomposition process, and the liquid transfer did not proceed smoothly. Pyrolysis yields 1550Kg with 89% pure content and 93% pyrolysis efficiency.
The content of acrylic acid was 0.3%. In the next rectification, 1395Kg of N,N-dimethylaminopropylacrylamide (purity 96.1%, rectification yield 90%)
The content of acrylic acid was 0.2%. (Comparative Example 3) In Example 1, methyl-2 bicyclo[2,2,1]heptene-5-carboxylate and dimethylaminopropylamine were separately dehydrated to 0.08%,
They were stored separately in storage tanks and then charged. The moisture content after charging into the reaction vessel had increased to 0.3%. The reaction was carried out with a catalyst amount of 100 kg, yield 95
%, and the content of acrylic acid adduct was 0.9%. A considerable amount of asbestos-like material was generated in the reaction solution, although the degree was lower than that in the comparative example, which impeded uniformity and stirring of the solution. Then, while the liquid was being sent to the thermal decomposition step, the strainer was clogged considerably by mirabilite generated by neutralizing the catalyst, making it difficult to send the liquid. Pyrolysis yields 1500 kg with 87% pure content and 92% pyrolysis efficiency.
The content of acrylic acid was 0.5%. In the next rectification, 1335Kg of N,N-dimethylaminopropylacrylamide (purity 96.5%, rectification yield 89%)
The content of acrylic acid was 0.2%.

【表】 以上のように、比較例のように反応前の原料の
水分率が通常の取扱いでは自動的に吸湿してしま
す水準:0.08重量%以上であると、中間生成物に
は多量の副生物即ち、アクリル酸アダクトを副生
し、そのため熱分解後に著量のアクリル酸を含有
するため実施例と同程度の精製収率で精留した場
合には純分が低く、アクリル酸含有量が高いもの
となつた。これを実施例1と同程度の品質にする
ために精留を重ねると、収率が著しく低くなつて
しまうことが明らかである。
[Table] As shown above, as in the comparative example, if the moisture content of the raw material before reaction is 0.08% by weight or higher, the intermediate product will contain a large amount of moisture. By-products, ie, acrylic acid adducts, are produced as by-products and therefore contain a significant amount of acrylic acid after thermal decomposition. Therefore, when rectified with the same purification yield as in the example, the purity is low and the acrylic acid content is low. became high. It is clear that if rectification is repeated to obtain the same quality as Example 1, the yield will be significantly lower.

Claims (1)

【特許請求の範囲】 1 (イ) 一般式[1]で表わされるエステルアダ
クトと、一般式[11]又は[11′]で表わされ
るアミノ化合物とを反応せしめてまず一般式
[111]又は[111′]で表わされるアクリル系ア
ダクトを得、更に(ロ)これを熱分解、精留を行つ
て化合物[IV]又は[IV′]で表わされるアク
リル系モノマーを製造するに際し、反応容器内
で反応前にエステルアダクト[1]及びアミノ
化合物[11]又は[11′]の水分率を0.08重量
%以下に脱水した後、触媒を添加し、更に還流
しながら反応せしめることを特徴とする高品位
のアクリル系モノマーを高収率で製造する方
法。 (1) 但し Xは−CH2−基又は酸素原子 Yは−OH又は−NH2基 Zは酸素原子又は−NH−基 nは1〜4の自然数 R1,R2はC1〜C3のアルキル基又は水素原子
[Scope of Claims] 1 (a) First, an ester adduct represented by the general formula [1] and an amino compound represented by the general formula [11] or [11'] are reacted to form a compound of the general formula [111] or [ In order to obtain an acrylic adduct represented by [111'] and (b) thermally decompose and rectify it to produce an acrylic monomer represented by compound [IV] or [IV'], A high-quality product characterized by dehydrating the ester adduct [1] and the amino compound [11] or [11'] to a moisture content of 0.08% by weight or less before the reaction, adding a catalyst, and further reacting under reflux. A method for producing acrylic monomers in high yield. (1) However, X is -CH 2 - group or oxygen atom Y is -OH or -NH 2 group Z is oxygen atom or -NH- group n is a natural number R 1 of 1 to 4, R 2 is C 1 to C 3 alkyl group or hydrogen atom
JP60277987A 1985-12-12 1985-12-12 Production of acrylic monomer Granted JPS62138455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277987A JPS62138455A (en) 1985-12-12 1985-12-12 Production of acrylic monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277987A JPS62138455A (en) 1985-12-12 1985-12-12 Production of acrylic monomer

Publications (2)

Publication Number Publication Date
JPS62138455A JPS62138455A (en) 1987-06-22
JPH0560454B2 true JPH0560454B2 (en) 1993-09-02

Family

ID=17591046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277987A Granted JPS62138455A (en) 1985-12-12 1985-12-12 Production of acrylic monomer

Country Status (1)

Country Link
JP (1) JPS62138455A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0895287A3 (en) 1997-07-31 2006-04-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and lead frame for the same
JP2971449B2 (en) * 1997-07-31 1999-11-08 松下電子工業株式会社 Semiconductor device, manufacturing method thereof, and lead frame of semiconductor device
JP4618853B2 (en) * 2000-08-07 2011-01-26 株式会社興人 Method for preventing polymerization during vapor phase pyrolysis
JP4963054B2 (en) * 2006-09-28 2012-06-27 株式会社興人 Acrylic monomer
JP5626838B2 (en) * 2010-02-17 2014-11-19 Kjケミカルズ株式会社 Method for producing high-quality N (N, N) -mono (di) alkylacrylamide

Also Published As

Publication number Publication date
JPS62138455A (en) 1987-06-22

Similar Documents

Publication Publication Date Title
JP4376057B2 (en) Continuous production method of alkyl (meth) acrylate
US5294740A (en) Preparation of formic acid by thermal cleavage of quaternary ammonium formates
JP7206264B2 (en) Method for producing dimethylaminoalkyl (meth)acrylate
TWI362375B (en) Process for continuously preparing alkylaminoacryl-amides
TWI328571B (en) Process for continuously preparing alkylamino(meth)-acrylamides
TWI362377B (en) Acetic anhydride and acetate ester co-production
CA2222831A1 (en) Process for producing saturated aliphatic carboxylic acid amide
TWI519506B (en) Process for continuously preparing n-alkyl(meth)acrylamides
JPH0625196B2 (en) Method for producing epichlorohydrin
JPH0560454B2 (en)
JP6006801B2 (en) Method for producing hydroxyalkyl acrylate
JPH0768168B2 (en) Decomposition method of Michael adduct of acrylic acid ester
JP3608927B2 (en) Method for producing saturated aliphatic carboxylic acid amide
JP2003521478A (en) How to perform an equilibrium limited reaction
JPH03145481A (en) Production of epichlorohydrin
JPH08333310A (en) Production of monomethylaminoethanol
JPH05503948A (en) Azeotropically assisted transvinylation technology
JPH11246495A (en) Production of alkylamino (meth)acrylate
JPH09301921A (en) Production of (meth)acrylate ester and device therefor
JP3710514B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
JP3682805B2 (en) Method for producing saturated aliphatic carboxylic acid amide
JPS63190862A (en) Recovery of n-vinylformamide
JP3466904B2 (en) Method for producing alkylamino (meth) acrylate
KR100502600B1 (en) Process for preparing saturated aliphatic carboxylic acid amide
JP3454494B2 (en) Process for producing O-alkyl-N-cyanoimidate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term