JPH0560076B2 - - Google Patents

Info

Publication number
JPH0560076B2
JPH0560076B2 JP58138851A JP13885183A JPH0560076B2 JP H0560076 B2 JPH0560076 B2 JP H0560076B2 JP 58138851 A JP58138851 A JP 58138851A JP 13885183 A JP13885183 A JP 13885183A JP H0560076 B2 JPH0560076 B2 JP H0560076B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
tube
liner layer
zirconium
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58138851A
Other languages
Japanese (ja)
Other versions
JPS6031088A (en
Inventor
Emiko Higashinakagaha
Junko Kawashima
Kanemitsu Sato
Yoshinori Kuwae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58138851A priority Critical patent/JPS6031088A/en
Publication of JPS6031088A publication Critical patent/JPS6031088A/en
Publication of JPH0560076B2 publication Critical patent/JPH0560076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、核燃料ペレツトを装填する被覆管構
造に係り、特に内面に純ジルコニウムのライナー
層を設けた核燃料複合被覆管の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cladding structure for loading nuclear fuel pellets, and more particularly to an improvement of a nuclear fuel composite cladding tube provided with a liner layer of pure zirconium on the inner surface.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、酸化ウランあるいは酸化プルトニウムを
含有した核燃料ペレツトを、ジルコニウム合金で
被覆した核燃料要素において、被覆管の破損事故
は主に水素が原因であると考えられていた。この
水素は核燃料ペレツトを製造する際に除去されず
に潜在していた水分が分解して生成されるものと
考えられ、従来は水蒸気ゲツターを被覆管内に装
填することにより水素の発生を軽減させる方策が
採られていた。しかし核燃料開発の研究が進むに
つれて水素脆化による破損の他に、燃料の核分裂
生成物である沃素ガスあるいはセシウムガスによ
る被覆管の応力腐蝕割れも、被覆管破損の大きな
原因であることが分つてきた。
Conventionally, in nuclear fuel elements in which nuclear fuel pellets containing uranium oxide or plutonium oxide are coated with zirconium alloy, cladding failure accidents were thought to be mainly caused by hydrogen. This hydrogen is thought to be generated by the decomposition of latent moisture that was not removed during the production of nuclear fuel pellets, and the conventional method was to reduce hydrogen generation by loading a steam getter into the cladding tube. was taken. However, as research into nuclear fuel development progresses, it has become clear that in addition to damage caused by hydrogen embrittlement, stress corrosion cracking of the cladding due to iodine gas or cesium gas, which are fission products of the fuel, is also a major cause of cladding failure. came.

このような応力腐蝕割れの防止策として、従来
は原子炉運転初期に出力上昇速度を落して運転
し、被覆管に急激な応力が加わらない様に運転し
ている。しかしながら近年、原子力発電の比重が
高まるにつれて、原子炉の経済的高率運転が切望
され、急速立上り、負荷変動の追従など過酷な運
転条件下でも、核燃料ペレツトと被覆管との機械
的な相互作用を低減させ、核分裂生成物による被
覆管の応力腐蝕割れを低減させる構造が研究され
ている。
As a measure to prevent such stress corrosion cracking, conventionally, nuclear reactors have been operated at a reduced rate of power increase in the early stages of operation to prevent sudden stress from being applied to the cladding tubes. However, in recent years, as the proportion of nuclear power generation has increased, economical high-rate operation of nuclear reactors has been desired, and even under severe operating conditions such as rapid start-up and following load fluctuations, the mechanical interaction between nuclear fuel pellets and cladding Research is being conducted on structures that reduce stress corrosion cracking of the cladding caused by fission products.

例えばベルギー特許第835481号明細書中には、
外管の内側に、クツシヨン作用をなす純ジルコニ
ウムを設けて、核燃料ペレツトとの機械的な相互
作用を低減させる構造が示されている。
For example, in Belgian Patent No. 835481,
A structure is shown in which pure zirconium is provided inside the outer tube to act as a cushion to reduce mechanical interaction with nuclear fuel pellets.

この複合被覆管1の構造は第1図および第2図
に示すように、ジルコニウム合金で形成された外
管2の内側に純ジルコニウムで形成されたライナ
ー層3が一体に接合されている。この複合被覆管
1の内部には、ペレツト状に形成された、例えば
酸化ウランあるいは酸化プルトニウムなどの核燃
料ペレツト4が複数個積層充填され、更にこの核
燃料ペレツト4は前記複合被覆管1の上部端栓5
に一端が当接したスプリング6により固定されて
いる。
As shown in FIGS. 1 and 2, this composite cladding tube 1 has a structure in which a liner layer 3 made of pure zirconium is integrally bonded to the inside of an outer tube 2 made of a zirconium alloy. Inside the composite cladding tube 1, a plurality of nuclear fuel pellets 4, such as uranium oxide or plutonium oxide, formed into a pellet shape are stacked and filled, and the nuclear fuel pellets 4 are further packed into the upper end plug of the composite cladding tube 1. 5
It is fixed by a spring 6 whose one end is in contact with.

またベルギー特許第870342号明細書中には、ラ
イナー層を、スポンジジルコニウムの如き酸素濃
度の高い金属ジルコニウム層で形成することが記
載されている。
Further, Belgian Patent No. 870342 describes that the liner layer is formed of a metal zirconium layer with a high oxygen concentration, such as sponge zirconium.

このようなライナー層を設けた核燃料複合被覆
管の製造方法としては、例えばジルコニウム合金
製の中空ビレツトに、ライナー層用の純ジルコニ
ウム製スリーブを挿着した後、この複合スリーブ
を熱間押出し等により同時に押出し成型して複合
管を製造する。
A method for manufacturing a nuclear fuel composite cladding tube provided with such a liner layer is, for example, by inserting a pure zirconium sleeve for the liner layer into a hollow billet made of zirconium alloy, and then hot extruding the composite sleeve. A composite tube is manufactured by extrusion molding at the same time.

次にこの複合管をピルガー管絞り機などの装置
により複数回のパスを施す冷間加工により、所定
の内径および肉厚まで縮小して複合被覆管を製造
する。この冷間加工の各パスの合間において通常
はジルコニウム合金をほぼ完全に再結晶させるの
に十分な温度と時間により熱処理して複合管の焼
なましが行われる。
Next, this composite tube is reduced to a predetermined inner diameter and wall thickness by cold working through multiple passes using a device such as a Pilger tube squeezer to produce a composite cladding tube. Between each pass of cold working, the composite tube is typically annealed by heat treatment at a temperature and time sufficient to substantially completely recrystallize the zirconium alloy.

最終の管絞り工程の後に行われる熱処理は複合
被覆管の機械的特性を決定する重要な役割を果
し、特開昭55−164396号公報においては「ライナ
ー層となる純ジルコニウム層は実質的に完全な再
結晶をもたらして、軟質なクツシヨン効果を果す
と同時に、外管となるジルコニウム合金は完全な
再結晶をもたらさないで、単に冷間加工により生
じた応力を除去するだけの熱処理を行う必要があ
る」とし、その熱処理温度を440〜510℃の低い温
度で熱処理することにより、達成されるとしてい
る。
The heat treatment performed after the final tube drawing process plays an important role in determining the mechanical properties of the composite cladding tube, and in Japanese Patent Application Laid-open No. 164396/1983, it is stated that ``The pure zirconium layer that becomes the liner layer is substantially At the same time, the zirconium alloy that forms the outer tube needs to be heat-treated to simply remove the stress caused by cold working without causing complete recrystallization. It is said that this can be achieved by heat treatment at a low temperature of 440 to 510 degrees Celsius.

しかしながら、発明者は複合被覆管について微
視的な研究を進めているうち、ジルコニウム合金
より純ジルコニウムの方が再結晶温度が高いこと
を発見し、上記公報に記載された温度ではライナ
ー層となる純ジルコニウムの再結晶化がなされ
ず、逆に外管のジルコニウム合金の方が再結晶化
され、実際には上記公報の記載とは反対の現象が
見い出された。
However, while conducting microscopic research on composite cladding, the inventor discovered that pure zirconium has a higher recrystallization temperature than zirconium alloy, and at the temperature described in the above publication, it forms a liner layer. In fact, it was discovered that pure zirconium was not recrystallized, but the zirconium alloy of the outer tube was recrystallized, which was actually the opposite of what was described in the above publication.

〔発明の目的〕[Purpose of the invention]

本発明は、上記知見に基いてなされたもので、
ライナー層となる純ジルコニウムをほぼ完全に再
結晶化して、クツシヨン効果を持たせると共に、
外管となるジルコニウム合金の強度を同時に維持
させた核燃料被覆管を提供するものである。
The present invention was made based on the above findings, and
The pure zirconium that forms the liner layer is almost completely recrystallized to provide a cushioning effect.
The present invention provides a nuclear fuel cladding tube that maintains the strength of the zirconium alloy that forms the outer tube.

〔発明の概要〕[Summary of the invention]

本発明は外管となるジルコニウム合金と、この
内側に冶金的に接合したライナー層となる純ジル
コニウムとも、実質的に完全な再結晶状態となつ
ている核燃料複合被覆管を要旨とするものであ
る。
The gist of the present invention is a nuclear fuel composite cladding tube in which both the zirconium alloy that serves as the outer tube and the pure zirconium that serves as the liner layer that is metallurgically bonded to the inside of the zirconium alloy are in a substantially completely recrystallized state. .

本発明において外管として用いるジルコニウム
合金としては、例えばジルカロイ−2、ジルカロ
イ−4などが挙げられる。
Examples of the zirconium alloy used for the outer tube in the present invention include Zircaloy-2 and Zircaloy-4.

本発明に係わる核燃料複合被覆管は、例えば次
のような方法により製造される。まず、外管とな
るジルコニウム合金の中空ビレツト内にライナー
層となる純ジルコニウムスリーブを挿着して複合
した後、この複合管を熱間押出しして一体に接合
する。
The nuclear fuel composite cladding tube according to the present invention is manufactured, for example, by the following method. First, a pure zirconium sleeve, which will become a liner layer, is inserted into a hollow billet of zirconium alloy, which will become an outer tube, and then the composite tube will be hot extruded and joined together.

次にこの複合管を複数回のパスを経て冷間加工
により管絞りを行い所定の内径および肉厚に成型
する。この冷間加工の各パスの合間に熱処理を行
ない、外管となるジルコニウム合金を実質的に完
全な再結晶状態とすると共に、外管とライナー層
とを冶金的に一体に接合する。この場合の熱処理
条件としては、例えば538〜704℃で1〜15時間の
加熱を行う。
Next, this composite tube is subjected to a plurality of passes and then drawn by cold working to form it into a predetermined inner diameter and wall thickness. A heat treatment is performed between each pass of this cold working to bring the zirconium alloy that forms the outer tube into a substantially complete recrystallized state, and to metallurgically join the outer tube and the liner layer together. In this case, heat treatment conditions include heating at 538 to 704°C for 1 to 15 hours, for example.

このようにして最終の管絞り工程を行い、仕上
り寸法となつた複合管に最終の熱処理を行つてジ
ルコニウム合金からなる外管と、純ジルコニウム
からなるライナー層の両者に、実質的に完全な再
結晶をもたらし、核燃料複合被覆管を製造する。
In this way, the final tube drawing step is carried out, and the composite tube, which has reached the finished dimensions, is subjected to a final heat treatment, resulting in virtually complete re-treatment of both the outer tube made of zirconium alloy and the liner layer made of pure zirconium. yield crystals and produce nuclear fuel composite cladding.

この場合、最終の熱処理によつて、ライナー層
を再結晶化させるが、この熱処理条件としては
586〜720℃、好ましくは590〜620℃で1〜15時間
の加熱を行う。最終の熱処理条件は、純ジルコニ
ウムが実質的に完全に再結晶化する範囲で定めら
れる。再結晶の完了点を決めるには、種々の方法
があるが、例えば結晶粒径、転位密度、ヴイツカ
ース硬さを測定し、これらが低く飽和した状態か
ら判定する。
In this case, the final heat treatment recrystallizes the liner layer, but the heat treatment conditions are
Heating is carried out at 586-720°C, preferably 590-620°C for 1-15 hours. The final heat treatment conditions are determined within a range in which pure zirconium is substantially completely recrystallized. There are various methods for determining the completion point of recrystallization, but for example, the crystal grain size, dislocation density, and Witzker's hardness are measured, and the determination is made from a state where these are low and saturated.

第3図は酸素濃度が50〜100ppmの純ジルコニウ
ムAと、酸素濃度が約500ppmの純ジルコニウムB
について、焼なまし温度による転位密度、ヴイツ
カース硬さ、および粒径の変化状態を示すグラフ
である。このグラフから明らかなように、転位密
度が急激に低くなると共に、ヴイツカース硬さが
低く飽和して、再結晶化が完了するのは586℃以
上である。これ以上の高い温度で熱処理すると粒
径が次第に大きく成長していく。また熱処理温度
の上限を720℃としたのは、これを越える温度に
なると、外管を構成するジルコニウム合金の粒径
が規定の80μmを越えて強度が低下する虞れがあ
るからである。
Figure 3 shows pure zirconium A with an oxygen concentration of 50 to 100 ppm and pure zirconium B with an oxygen concentration of about 500 ppm.
2 is a graph showing changes in dislocation density, Witzker's hardness, and grain size depending on annealing temperature. As is clear from this graph, it is at 586° C. or higher that the dislocation density rapidly decreases, the Witzkers hardness becomes low and saturated, and recrystallization is completed. When heat treated at a higher temperature than this, the grain size gradually grows larger. The upper limit of the heat treatment temperature was set at 720°C because if the temperature exceeds this temperature, the grain size of the zirconium alloy constituting the outer tube may exceed the specified 80 μm and the strength may decrease.

このようにして得られた本発明の複合被覆管は
ライナー層が実質的に完全に再結晶化し、微細な
等軸結晶組織を有しているので、核燃料ペレツト
との機械的相互作用を緩和するクツシヨンとして
の役割を果たし、応力腐蝕割れに対する抵抗が増
大する。
In the thus obtained composite cladding of the present invention, the liner layer is substantially completely recrystallized and has a fine equiaxed crystal structure, which alleviates mechanical interaction with nuclear fuel pellets. Acts as a cushion and increases resistance to stress corrosion cracking.

また外管となるジルコニウム合金も、同様に再
結晶化して、粒径の成長を抑えて微細化している
ので応力腐蝕割れに対する抵抗も大きく、強度的
にも優れ核燃料の被覆管として優れた特性を有す
るものである。
In addition, the zirconium alloy that makes up the outer tube is similarly recrystallized to suppress the growth of grain size and make it finer, so it has greater resistance to stress corrosion cracking and is also strong and has excellent properties as a nuclear fuel cladding tube. It is something that you have.

〔発明の実施例〕[Embodiments of the invention]

外管となるジルコニウム合金中空ビレツトと、
ライナー層となる純ジルコニウムスリーブの表面
を清浄化した後、これを挿着して組合せる。次に
組合せ後の複合管の境界線をエレクトロビーム溶
接により真空中で溶接する。
A zirconium alloy hollow billet that becomes the outer tube,
After cleaning the surface of the pure zirconium sleeve that will become the liner layer, it is inserted and assembled. Next, the boundaries of the combined composite tubes are welded in vacuum by electro beam welding.

次にこの複合管を熱間押出し加工した後、ピル
ガー管絞り機で冷間加工を繰り返し、複数回のパ
スを経て仕上り形状とした。この冷間加工の合間
には580℃で2時間の熱処理を行つて焼なましを
行つた。
Next, this composite tube was hot extruded and then cold worked repeatedly using a Pilger tube drawing machine to give it a finished shape through multiple passes. In between cold workings, heat treatment was performed at 580°C for 2 hours for annealing.

このようにして最終の冷間加工を終えた複合管
を600℃で2時間、真空熱処理を行つて核燃料複
合被覆管を製造した。
The composite tube that had undergone the final cold working was then subjected to vacuum heat treatment at 600°C for 2 hours to produce a nuclear fuel composite cladding tube.

このようにして得られた複合被覆管のライナー
層の厚さは約70±20μmであり、またこのライナ
ー層を形成する純ジルコニウムと外管となるジル
コニウム合金の転位密度は共に2×109cm-2であ
り、実質的に両者とも再結晶は完了していた。更
にライナー層の粒径は約10μmであり、また外管
の粒径は約3μmで、微細であり強度的にも優れた
ものであつた。
The thickness of the liner layer of the composite cladding tube thus obtained is approximately 70±20 μm, and the dislocation density of both the pure zirconium forming the liner layer and the zirconium alloy forming the outer tube is 2×10 9 cm. -2 , and recrystallization was essentially completed in both cases. Furthermore, the particle size of the liner layer was about 10 μm, and the particle size of the outer tube was about 3 μm, which was fine and had excellent strength.

また本発明と比較するために、従来、特開昭55
−164396号公報で示されている方法により、最終
の熱処理を500℃で2時間加熱したところ、ライ
ナー層の転位密度は7×1015cm-2で、再結晶化し
ていないことが確認された。
In addition, for comparison with the present invention, the conventional
When the final heat treatment was performed at 500℃ for 2 hours using the method described in Publication No. 164396, the dislocation density of the liner layer was 7×10 15 cm -2 , and it was confirmed that there was no recrystallization. .

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る核燃料複合被
覆管によれば、ライナー層となる純ジルコニウム
を実質的に完全に再結晶化して、クツシヨン効果
を持たせると共に、外管となるジルコニウム合金
の強度を同時に維持させ、被覆管の応力腐蝕割れ
を低減させることができるものである。
As explained above, according to the nuclear fuel composite cladding tube according to the present invention, the pure zirconium forming the liner layer is substantially completely recrystallized to provide a cushioning effect, and the strength of the zirconium alloy forming the outer tube is increased. At the same time, the stress corrosion cracking of the cladding tube can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は核燃料複合被覆管内に核燃料ペレツト
を装着した核燃料要素を示す縦断面図、第2図は
第1図の拡大横断面図、第3図は最終熱処理温度
に対する純ジルコニウムの転位密度、ヴイツカー
ス硬さ、および粒径の変化を示すグラフである。 1……複合被覆管、2……外管、3……ライナ
ー層、4……核燃料ペレツト、5……上部端栓、
6……スプリング。
Figure 1 is a vertical cross-sectional view showing a nuclear fuel element with nuclear fuel pellets installed in the nuclear fuel composite cladding tube, Figure 2 is an enlarged cross-sectional view of Figure 1, and Figure 3 is the dislocation density of pure zirconium and Witzkarts with respect to the final heat treatment temperature. It is a graph showing changes in hardness and particle size. DESCRIPTION OF SYMBOLS 1... Composite cladding tube, 2... Outer tube, 3... Liner layer, 4... Nuclear fuel pellet, 5... Upper end plug,
6...Spring.

Claims (1)

【特許請求の範囲】 1 ジルコニウム合金からなる外管の内側に純ジ
ルコニウムをライナー層として設け、両者が冶金
的に接合された核燃料複合被覆管において、前記
外管となるジルコニウム合金と、ライナー層とな
る純ジルコニウムとも実質的に完全な再結晶状態
となつていることを特徴とする核燃料複合被覆
管。 2 ライナー層となる純ジルコニウムの結晶粒の
大きさが80μm以下であることを特徴とする特許
請求の範囲第1項記載の核燃料複合被覆管。
[Scope of Claims] 1. In a nuclear fuel composite cladding tube in which pure zirconium is provided as a liner layer inside an outer tube made of a zirconium alloy, and the two are metallurgically joined, the zirconium alloy serving as the outer tube and the liner layer are A nuclear fuel composite cladding tube characterized in that it is made of pure zirconium and is in a substantially completely recrystallized state. 2. The nuclear fuel composite cladding tube according to claim 1, wherein the crystal grain size of the pure zirconium forming the liner layer is 80 μm or less.
JP58138851A 1983-07-29 1983-07-29 Nuclear fuel composite coated pipe and manufacture thereof Granted JPS6031088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138851A JPS6031088A (en) 1983-07-29 1983-07-29 Nuclear fuel composite coated pipe and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138851A JPS6031088A (en) 1983-07-29 1983-07-29 Nuclear fuel composite coated pipe and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6031088A JPS6031088A (en) 1985-02-16
JPH0560076B2 true JPH0560076B2 (en) 1993-09-01

Family

ID=15231646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138851A Granted JPS6031088A (en) 1983-07-29 1983-07-29 Nuclear fuel composite coated pipe and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6031088A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166184A (en) * 1984-09-10 1986-04-04 日本核燃料開発株式会社 Nuclear fuel coated tube
JPS6361989A (en) * 1986-09-03 1988-03-18 日立核燃料開発株式会社 Manufacture of composite coated tube for nuclear fuel

Also Published As

Publication number Publication date
JPS6031088A (en) 1985-02-16

Similar Documents

Publication Publication Date Title
JP3844256B2 (en) Manufacturing method of Zircaloy tube with excellent resistance to crack growth
US4675153A (en) Zirconium alloy fuel cladding resistant to PCI crack propagation
US4664881A (en) Zirconium base fuel cladding resistant to PCI crack propagation
US4390497A (en) Thermal-mechanical treatment of composite nuclear fuel element cladding
JP3094778B2 (en) Fuel assembly for light water reactor, parts and alloys used therefor, and manufacturing method
US5434897A (en) Hydride damage resistant fuel elements
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JPH07159566A (en) Manufacture of nuclear-fuel coated pipe having zirconium partition layer and internal liner
JPS61210166A (en) Production of zirconium/niobium alloy thin walled pipe
US5618356A (en) Method of fabricating zircaloy tubing having high resistance to crack propagation
US5469481A (en) Method of preparing fuel cladding having an alloyed zirconium barrier layer
JPH0529080B2 (en)
JPS6361989A (en) Manufacture of composite coated tube for nuclear fuel
JPS6313160B2 (en)
JPH0560076B2 (en)
JPH0528357B2 (en)
JPH0519670B2 (en)
EP0194797B1 (en) Water reactor fuel element cladding tube
JPS639187B2 (en)
EP0195154B1 (en) Water reactor fuel cladding tubes
JPS60129690A (en) Nuclear fuel composite coated pipe and manufacture thereof
JP3371303B2 (en) Reactor fuel cladding
JPH04148893A (en) Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking
JPH0812259B2 (en) Nuclear fuel element
JPS58216986A (en) Fuel rod plug