JPH0559998B2 - - Google Patents

Info

Publication number
JPH0559998B2
JPH0559998B2 JP20798787A JP20798787A JPH0559998B2 JP H0559998 B2 JPH0559998 B2 JP H0559998B2 JP 20798787 A JP20798787 A JP 20798787A JP 20798787 A JP20798787 A JP 20798787A JP H0559998 B2 JPH0559998 B2 JP H0559998B2
Authority
JP
Japan
Prior art keywords
treatment
silicate
degreasing
plate
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20798787A
Other languages
Japanese (ja)
Other versions
JPS6452091A (en
Inventor
Masaji Saito
Toshiaki Kobayashi
Masaaki Yokocho
Yoshitaka Hiromae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP20798787A priority Critical patent/JPS6452091A/en
Publication of JPS6452091A publication Critical patent/JPS6452091A/en
Publication of JPH0559998B2 publication Critical patent/JPH0559998B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 この発明は自動車のボデむパネル等に䜿甚され
る塗装甚のAl合金板に関し、特に塗装前凊理ず
しおアルカリ脱脂凊理を斜したAl合金板に関す
るものである。 埓来の技術 埓来䞀般に自動車のボデむパネルずしおは鋌板
を甚いるのが通垞であ぀たが、最近では寒冷地に
おける凍結防止剀散垃による腐食防止のための耐
食性向䞊の芁求や燃費向䞊のための軜量化の芁求
がたすたす匷くな぀おきおおり、そこで䟋えば
Znめ぀きやZn合金め぀き等の金属め぀きを斜し
た衚面凊理鋌板や、薄くお匷床の高い高匵力鋌板
を自動車のボデむパネルに適甚するこずなどが進
められおいる。しかしながら鋌を玠材ずしおいる
限りは、耐食性向䞊や軜量化も限界があるのが実
情である。 そこで鋌板に代えお、鋌よりも材料特性ずしお
耐食性が優れか぀軜量であるアルミニりム合金を
自動車甚ボデむパネル等に適甚するこずが考えら
れ、䞀郚では実甚化も開始されおいる。 ずころで自動車のボデむパネルは塗装を斜しお
甚いるのが通垞であり、アルミニりム合金板をボ
デむパネルに䜿甚する堎合、先ず前凊理ずしお板
衚面に付着しおいる圧延油や油脂類を陀去するた
めに脱脂凊理を行ない、次いで氎掗した埌塗膜の
䞋地に察する密着性向䞊および塗装䞋地の耐食性
向䞊のために化成凊理を行な぀お化成皮膜を生成
させ、その埌電着塗装を行ない、さらに䞭塗り塗
装および仕䞊塗り塗装を斜すのが䞀般的である。
ここで、埓来アルミニりム合金板の脱脂凊理には
アルカリ脱脂凊理液ずしおケむ酞゜ヌダNa2
SiO3を甚いるのが䞀般的であり、たた化成凊
理ずしおはクロメヌト凊理およびたたはリン酞
亜鉛凊理を斜しお化成皮膜を生成するのが䞀般的
である。 発明が解決すべき問題点 アルミニりム合金はそれ自䜓で鋌よりも耐食性
が優れおおり、したが぀お塗装を斜した板ずしお
もアルミニりム合金塗装板は鋌板塗装板より耐食
性が優れおはいるが、自動車甚ボデむパネルずし
お考慮した堎合、アルミニりム合金塗装板は未だ
満足できる皋床に耐食性が優れおいるずは蚀えな
か぀た。すなわち、自動車ボデむパネルずしお䜿
甚した堎合、凍結防止剀が散垃された道路や海浜
地区など極めお苛酷な腐食環境䞋で長時間䜿甚す
れば、アルミニりム合金塗装板であ぀おも糞錆が
発生し易く、特に矎的倖芳が匷く求められる自動
車甚ボデむパネルずしおは未だ耐食性が充分ずは
蚀えなか぀たのたが実情でる。 そこでアルミニりム合金塗装板の耐食性、特に
耐糞錆性の向䞊を図る技術の開発が匷く求められ
おおり、玠材であるアルミニりム合金の成分面で
の改良や塗装䞋地皮膜である化成皮膜に぀いおの
改良、あるいは塗装技術、塗料の改良などが詊み
られおはいるが、いずれもその効果に限界があ぀
た。 ずころで塗装前凊理ずしおの脱脂凊理は、埓来
は芁はアルミニりム合金板衚面に付着しおいる防
錆油や圧延油等の油脂類さえ陀去できれば良いず
考えられ、衚面の油脂類が完党に陀去れるような
脱脂凊理であれば、塗装板の耐食性を劣化させる
芁因は脱脂凊理には特に存圚しないず考えられお
いた。しかしながら本発明者等がアルミニりム合
金板の脱脂凊理に぀いお詳现に実隓・怜蚎を重ね
たずころ、脱脂凊理盎埌の板の衚面状況が塗装板
における糞錆の発生に倧きく圱響しおいるこずを
芋出し、この発明をなすに至぀たのである。 したが぀おこの発明は、自動車のボデむパネル
等に䜿甚される塗装板ずした状態で優れた耐糞錆
性を瀺すこずが可胜な、塗装甚アルミニりム合金
脱脂凊理板を提䟛するこずを目的ずするものであ
る。 問題点を解決するための手段 この発明の塗装甚アルミニりム合金脱脂凊理板
は、アルカリ脱脂凊理が斜された塗装甚Al合金
板であ぀おか぀衚面に残存するケむ酞塩がSiO2
換算で50mgm2以䞋であるこずを特城ずするもの
である。 䜜 甹 先ずアルミニりム合金塗装板における耐糞錆性
ず、脱脂凊理埌のアルミニりム合金板の衚面状況
ずの関係に぀いお、本発明者等が新芏に芋出した
知芋に぀いお説明する。 既に述べたように埓来のアルミニりム合金板の
脱脂凊理にはアルカリ脱脂凊理剀ずしおケむ酞゜
ヌダを甚いおいるが、この堎合脱脂凊理䞭に凊理
剀から由来するケむ酞塩xSiO2・yM2であら
わされるもの、は敎数、はNa、等の
金属が板衚面に生成されたり、吞着されたりし
お、脱脂凊理埌にも盞圓量のケむ酞塩が板衚面に
残存付着しおいるこずが知芋された。䞀方、ケむ
酞゜ヌダによる脱脂凊理埌、化成凊理を斜しおか
ら電着塗装、䞭塗り塗装、䞊塗り塗装を斜したア
ルミニりム合金塗装板に぀いお、耐糞錆性を評䟡
し、脱脂凊理埌の板衚面のケむ酞塩残存付着量ず
塗装板での耐糞錆性ずの関係を調べたずころ、脱
脂凊理埌のケむ酞塩残存付着量が倚いほど耐糞錆
性が䜎䞋し、特にケむ酞塩の付着量がSiO2に換
算しお片面圓り50mgm2を越えるず耐糞錆性が劣
るこずを新芏に芋出した。このこずから、脱脂凊
理埌のアルミニりム合金板衚面におけるケむ酞塩
残存量がSiO2換算で片面圓り50mgm2以䞋ずな
るようなアルカリ脱脂凊理を行なうこずによ぀お
塗装板における耐糞錆性の向䞊を図り埗るこずを
芋出し、この発明の完成に至぀たのである。 䞊述のようにアルカリ脱脂凊理埌の板衚面のケ
む酞塩の残存量をSiO2換算で50mgm2以䞋ずす
るこずによ぀お塗装板での耐糞錆性を向䞊させ埗
る理由は次のように考えられる。 アルミニりム合金板の塗装凊理工皋においお、
脱脂凊理埌に生成される化成凊理皮膜はアルミニ
りム合金板基材ず塗膜ずの密着性向䞊に倧きな圹
割を果たしおいる。化成凊理皮膜が均䞀にむらな
く緻密に圢成されおいれば、次工皋の電着塗装に
おいお塗膜が均䞀に高い密着性で生成され、この
堎合には塗装板で耐食性が良奜ずなり、糞錆の発
生のおそれは少なくなる。これに察し化成凊理皮
膜にむらがあれば、塗膜の密着性が劣る郚分が生
じたり塗膜欠陥が生じたりし、このような塗膜の
密着性が劣る郚分や塗膜欠陥の郚分で糞錆が発生
する。しかるに、化成凊理前の脱脂凊理板の状態
でアルミニりム合金板の衚面にケむ酞塩が倚量に
残存付着しおいればそのケむ酞塩に阻害されお次
の化成凊理工皋においお皮膜生成が均䞀に進行せ
ず、そのためむらのある䞍均䞀な化成凊理皮膜が
生成されおしたい、これにより塗膜にも密着性の
劣る郚分や塗膜欠陥が生じ、その郚分で糞錆が発
生し易くなる。脱脂凊理埌のケむ酞塩付着量が
SiO2換算で50mgm2以䞋であれば、化成凊理皮
膜をほが均䞀にむらなく生成させるこずができ、
そのため塗膜の密着性も均䞀か぀良奜でたた塗膜
欠陥も少なくなり、糞錆発生のおそれが少なくな
るものである。 なおアルミニりム合金板に察する脱脂凊理剀ず
しおは、Alが䞡性であるずころから、酞性のも
の、アルカリ性のものの䞡者いずれも適甚可胜ず
考えられるが、この発明ではアルカリ脱脂を行な
うものずする。すなわち、アルカリ性凊理剀は、
材料衚面に存圚する防錆油や圧延油等の油脂類を
ケン化によ぀お陀去するだけではなく、衚面の酞
化物局や油焌付局、その他の汚染局を゚ツチング
溶解によ぀お陀去し、アルミニりム合金板衚面に
掻性な面を露呈させお、次工皋で化成凊理皮膜を
均䞀にむらなく生成させ、ひいおは塗膜の密着性
を均䞀か぀良奜にしお、糞錆発生を防止するに寄
䞎する。たた、アルカリ性の脱脂凊理液を甚いた
堎合には溶解゚ツチングにより衚面の埮现な凹凞
が生じ、この凹凞は、衚面積を増加させるずずも
に埌工皋の電着塗装でのアンカヌ効果を担う圹割
を果たし、したが぀おこのこずも塗膜の密着性の
向䞊、ひいおは耐糞錆性向䞊に寄䞎する。 䜆し、既に述べたようにアルカリ脱脂凊理であ
぀おも脱脂埌の衚面のケむ酞塩残存量が倚いよう
な脱脂凊理では、そのケむ酞塩が均䞀な化成凊理
皮膜の生成に悪圱響を及がすから、ケむ酞塩残存
量はSiO2換算で50mgm2以䞋に芏制しなければ
ならない。ここで前述のようにアルカリ脱脂凊理
により゚ツチング溶解させるこずず、脱脂凊理埌
のケむ酞塩残存量を少量に芏制するこずずは盞互
に関連しおいる。すなわち、ケむ酞塩残留付着量
が倚いような脱脂凊理では、その脱脂凊理䞭も衚
面のケむ酞塩によ぀お゚ツチング溶解の進行が阻
害され、゚ツチング溶解による掻性な面や凹凞が
生じにくくなり、掻性な面や凹凞による耐糞錆性
向䞊効果が埗られにくくなるが、ケむ酞塩残留付
着量が50mgm2以䞋ず少量ずなるような脱脂凊理
であれば、゚ツチング溶解が進行し、掻性な面お
よび凹凞が埗られ、前述のような耐糞錆性向䞊効
果が埗られるようになるのである。 第図および第図に、Al−Mg系アルミニり
ム合金であるJIS 5182合金、およびAl−Mg−Si
系アルミニりム合金であるJIS 6061合金に぀い
お、脱脂凊理埌にケむ酞塩が倚量に残存するよう
な脱脂凊理を行な぀た堎合、すなわち脱脂凊理剀
ずしおケむ酞゜ヌダ系凊理剀を甚いた堎合ず、脱
脂凊理埌にケむ酞塩がほずんど残らないような脱
脂凊理を行な぀た堎合、すなわち脱脂凊理剀ずし
おリン酞゜ヌダ系凊理剀を甚いた堎合ずに぀い
お、板衚面の゚ツチング溶解量を凊理時間を関数
ずしお瀺す。なおここでケむ酞゜ヌダ系凊理剀ず
しおは、ケむ酞ナトリりムを30含有する液枩45
℃のものを甚い、リン酞゜ヌダ系凊理剀ずしおは
リン酞ナトリりムを含有する液枩70℃のもの
を甚いた。 第図、第図に瀺したようにケむ酞゜ヌダ系
凊理剀を甚いた堎合は、凊理時間を長くしおも゚
ツチング溶解は極めおわずかしか進行しなか぀た
のに察し、リン酞゜ヌダ系凊理剀を甚いた堎合は
凊理時間が長くなるに埓぀お゚ツチング溶解量は
著しく倚くな぀おいる。ちなみに、ケむ酞゜ヌダ
系凊理剀を甚いた堎合に板衚面に残留するケむ酞
塩残留量はSiO2換算は、埌述する実斜䟋に
も瀺しおいるように、通垞60mgm2〜数100mg
m2であり、䞀方リン酞塩系凊理剀を甚いた堎合は
10mgm2皋床以䞋であり、このこずからも、ケむ
酞塩皮膜の゚ツチング溶解に察する圱響が倧きい
こずが明らかでる。 なお既に述べたようにこの発明の堎合はアルカ
リ脱脂凊理埌の板衚面のケむ酞塩残留量が50mg
m2以䞋であれば、塗装板においお良奜な耐糞錆性
が埗られるが、別に本発明者等が脱脂凊理での゚
ツチング溶解量ず塗装板における糞錆性ずの関係
に぀いお調べたずころ、゚ツチング溶解量平
均が、0.05ÎŒm以䞊であれば塗装板においお優
れた耐糞錆性が埗られるこずが刀明しおいる。 発明の実斜のための具䜓的な説明 この発明においお察象ずなるアルミニりム合金
の皮類は特に問わず、党おのアルミニりム合金に
適甚可胜であるが、自動車甚ボデむパネル等に適
甚されるこずが考えられるAl−Mg系合金JIS
5000番系合金およびAl−Mg−Si系合金JIS
6000番系合金のうちでは、特にAl−Mg−Siç³»
合金の堎合にケむ酞塩残留による耐糞錆性の䜎䞋
が顕著であり、したが぀おAl−Mg−Si系合金の
堎合が最もこの発明で有効ずなる。 アルカリ脱脂凊理は、芁は脱脂凊理埌の板衚面
のケむ酞塩残留量がSiO2換算で50mgm2以䞋ず
なるように行えば良く、そのためにはアルカリ脱
脂凊理液ずしお、ケむ酞を実質的に含たないよう
なものを甚いれば良い。具䜓的には、リン酞ナト
リりム、炭酞ナトリりム、重炭酞ナトリりム、氎
酞化ナトリりム、氎酞化カリりム、硫酞ナトリり
ムNa2SO4・10H2、セスキ硫酞ナトリりム
Na2CO3・NaHCO3・2H2、あるいはそれら
の皮類以䞊を含有するものを凊理液ずしお甚い
れば良い。なおケむ酞゜ヌダ以倖の凊理液を甚い
た堎合でも、垌釈のための工業甚氎には若干の
SiO2が含たれおいるのが通垞であり、したが぀
おその堎合でも凊理埌の衚面にはわずかにケむ酞
塩が残留するこずが倚いが、既に述べたようにそ
の量がSiO2換算で50mgm2以䞋であれば支障は
ない。䜆し倚量のSiO2を含む氎を垌釈氎ずしお
䜿甚するこずは避けるべきである。 アルカリ脱脂凊理における凊理液のPHは以䞊
であれば良く、たたその濃床も特に限定はしない
が、通垞は〜の濃床で䜿甚するこずが望た
しい。 なおこの発明による脱脂凊理板に぀いお実際に
塗装を斜すにあた぀おは、䞊述のような脱脂凊理
を行な぀た埌、氎掗し、次いでクロメヌト凊理お
よびたたはリン酞亜鉛凊理によ぀お化成凊理を
斜し、さらに氎掗した埌、電着塗装を行ない、さ
らに必芁に応じお局たたは局以䞊の焌付け塗
装を行なうのが通垞である。 実斜䟋 Al−Mg系合金であるJIS 5182合金、およびAl
−Mg−Si系合金であるJIS 6061合金の詊隓片に
぀いお、第衚に瀺すような皮々の条件でアルカ
リ脱脂凊理を行な぀た。脱脂凊理埌、氎掗し、さ
らに化成凊理ずしおクロメヌト凊理を斜し、次い
で氎掗および玔氎掗を行な぀た埌、゚ポキシ暹脂
のカチオン電着塗装180℃×20分を厚さ20ÎŒm
で行ない、さらに䞭塗り塗装ずしおメラミンアル
キド暹脂の焌付塗装140℃×30分を厚さ35ÎŒm
で行ない、その埌䞊塗り塗装ずしおメラミンアル
キド暹脂の焌付塗装140℃×30分を厚さ35ÎŒm
で行な぀た。 このようにしお埗られた塗装詊隓片に぀いお次
のような条件の詊隓を行ない、耐糞錆性の評䟡を
行な぀た。 すなわち先ず塗膜にクロスカツトを入れお、
JIS Z2371に準拠した塩氎噎霧詊隓を24時間行な
い、続いお湿最詊隓ずしお、枩床25℃、湿床85
RHの湿最雰囲気に42日間攟眮し、衚面に発生し
た糞錆の長さにより耐糞錆性を評䟡した。その結
果を第衚に瀺す。なおここで、耐糞錆性評䟡
は、糞錆の長さが1.0mm以䞋では良奜ずしお◎印、
1.0〜2.0mmでやや良奜ずしお○印、2.0〜4.0mmで
やや䞍良ずしお△印、mm以䞊で䞍良ずしお×印
を付した。
INDUSTRIAL APPLICATION FIELD The present invention relates to an Al alloy plate for painting used for automobile body panels, etc., and particularly to an Al alloy plate subjected to alkali degreasing treatment as a pre-painting treatment. Conventional technology In the past, steel plates were generally used for automobile body panels, but recently there has been a demand for improved corrosion resistance to prevent corrosion caused by spraying anti-freezing agents in cold regions, and for weight reduction to improve fuel efficiency. The demands are becoming stronger and stronger, so for example
Progress is being made in applying surface-treated steel sheets with metal plating, such as Zn plating or Zn alloy plating, and thin, high-strength high-tensile steel sheets to automobile body panels. However, the reality is that as long as steel is used as a material, there are limits to improving corrosion resistance and reducing weight. Therefore, instead of steel plates, it has been considered to use aluminum alloys, which have better corrosion resistance and are lighter in material properties than steel, for automobile body panels, etc., and practical use has begun in some cases. By the way, automobile body panels are usually painted before use, and when aluminum alloy plates are used for body panels, they are first degreased as a pretreatment to remove rolling oil and fats and oils that adhere to the plate surface. After treatment and washing with water, a chemical conversion treatment is performed to improve the adhesion of the paint to the base and the corrosion resistance of the paint base to form a chemical film, followed by electrodeposition, followed by intermediate coating and finishing. It is common to apply a coat of paint.
Conventionally, sodium silicate (Na 2
SiO 3 ) is generally used, and as a chemical conversion treatment, a chromate treatment and/or a zinc phosphate treatment is generally performed to form a chemical conversion film. Problems to be Solved by the Invention Aluminum alloy itself has better corrosion resistance than steel, and therefore even as a painted plate, an aluminum alloy coated plate has better corrosion resistance than a painted steel plate, but it is not suitable for automobiles. When considered as a vehicle body panel, aluminum alloy coated plates cannot yet be said to have satisfactory corrosion resistance. In other words, when used as an automobile body panel, if it is used for a long time in an extremely corrosive environment such as on roads sprayed with anti-freezing agents or in coastal areas, even aluminum alloy coated plates can easily become rusty. In particular, the corrosion resistance is still not sufficient for automobile body panels, where aesthetic appearance is highly sought after. Therefore, there is a strong need for the development of technology to improve the corrosion resistance of aluminum alloy coated plates, especially the thread rust resistance. Attempts have also been made to improve painting techniques and paints, but all have had their effectiveness limited. By the way, in the past, degreasing as a pre-painting treatment was thought to only be enough to remove the oils and fats such as anti-rust oil and rolling oil that adhered to the surface of the aluminum alloy plate, and the oils and fats on the surface could be completely removed. It was thought that such a degreasing treatment would not cause any particular factors that would degrade the corrosion resistance of a painted plate. However, when the present inventors conducted detailed experiments and studies on the degreasing of aluminum alloy plates, they found that the surface condition of the plate immediately after the degreasing treatment greatly influenced the occurrence of thread rust on painted plates. This led to his invention. Therefore, an object of the present invention is to provide an aluminum alloy degreased plate for painting, which can exhibit excellent thread rust resistance when used as a painted plate for use in automobile body panels, etc. It is something. Means for Solving the Problems The aluminum alloy degreased plate for painting of the present invention is an Al alloy plate for painting that has been subjected to alkali degreasing treatment, and the silicate remaining on the surface is SiO 2
It is characterized by an amount of 50 mg/m 2 or less in terms of conversion. Function First, the findings newly discovered by the present inventors regarding the relationship between thread rust resistance of an aluminum alloy coated plate and the surface condition of the aluminum alloy plate after degreasing treatment will be explained. As already mentioned, sodium silicate is used as an alkaline degreasing agent in the conventional degreasing treatment of aluminum alloy plates, but in this case, silicate derived from the treatment agent (xSiO 2 yM 2 O (represented by: x, y are integers, M is a metal such as Na, K, etc.) is generated or adsorbed on the plate surface, and a considerable amount of silicate remains attached to the plate surface even after degreasing treatment. It was discovered that this was the case. On the other hand, we evaluated the string rust resistance of aluminum alloy coated plates that had been degreased with sodium silicate, chemically treated, and then electrocoated, intermediate coated, and finished coated. When we investigated the relationship between the amount of silicate remaining attached and the thread rust resistance of painted boards, we found that the greater the amount of silicate remaining after degreasing, the lower the thread rust resistance. It has been newly discovered that when the amount exceeds 50 mg/m 2 per side in terms of SiO 2 , thread rust resistance is poor. From this, we found that by performing alkaline degreasing treatment such that the residual amount of silicate on the surface of the aluminum alloy plate after degreasing is less than 50 mg/m 2 per side in terms of SiO 2 , it is possible to improve the thread rust resistance of painted plates. They discovered that it is possible to improve the performance of the invention, and have completed the present invention. As mentioned above, the reason why the thread rust resistance of a painted board can be improved by reducing the residual amount of silicate on the board surface after alkaline degreasing to 50 mg/m 2 or less in terms of SiO 2 is as follows. It can be thought of as follows. In the painting process of aluminum alloy plates,
The chemical conversion film formed after degreasing plays a major role in improving the adhesion between the aluminum alloy plate substrate and the coating film. If the chemical conversion coating is formed evenly and densely, the coating will be formed uniformly and with high adhesion in the next process of electrodeposition coating, and in this case, the coated plate will have good corrosion resistance and will be free from thread rust. The risk of occurrence is reduced. On the other hand, if the chemical conversion coating is uneven, there will be areas with poor adhesion or defects in the coating, and such areas with poor adhesion or defects in the coating will cause threads to form. Rust occurs. However, if a large amount of silicate remains and adheres to the surface of the aluminum alloy plate in the degreased state before chemical conversion treatment, the silicate will inhibit the formation of a uniform film in the next chemical conversion process. This results in the formation of an uneven and non-uniform chemical conversion coating, which causes areas of poor adhesion and defects in the coating film, making thread rust more likely to occur in those areas. The amount of silicate deposited after degreasing is
If it is less than 50 mg/m 2 in terms of SiO 2 , a chemical conversion film can be formed almost uniformly,
Therefore, the adhesion of the coating film is uniform and good, and there are fewer defects in the coating film, and there is less risk of thread rust. Note that since Al is amphoteric, both acidic and alkaline degreasing agents can be applied to aluminum alloy plates; however, in the present invention, alkaline degreasing is performed. In other words, the alkaline processing agent is
Not only does it remove oils and fats such as rust preventive oil and rolling oil that exist on the material surface through saponification, but it also removes surface oxide layers, oil-baked layers, and other contaminant layers through etching and dissolution. By exposing the active surface on the surface of the aluminum alloy plate, a chemical conversion film can be formed uniformly and evenly in the next step, which in turn makes the adhesion of the paint film uniform and good, which contributes to preventing the occurrence of thread rust. In addition, when an alkaline degreasing solution is used, fine irregularities occur on the surface due to dissolution etching, and these irregularities not only increase the surface area but also serve as an anchor effect in the subsequent electrodeposition coating process. This also contributes to improving the adhesion of the coating film and, ultimately, to improving the thread rust resistance. However, as mentioned above, even in alkaline degreasing, if a large amount of silicate remains on the surface after degreasing, the silicate will have a negative effect on the formation of a uniform chemical conversion film. The residual amount of silicate must be regulated to 50 mg/m 2 or less in terms of SiO 2 . Here, as mentioned above, etching and dissolving by alkaline degreasing treatment and controlling the amount of silicate remaining after degreasing treatment to a small amount are mutually related. In other words, in a degreasing treatment in which a large amount of silicate remains attached, the progress of etching dissolution is inhibited by the silicate on the surface even during the degreasing treatment, and active surfaces and unevenness due to etching dissolution are less likely to occur. Although it becomes difficult to obtain the effect of improving thread rust resistance due to the active surface and unevenness, if the degreasing treatment reduces the residual amount of silicate to less than 50mg/ m2 , etching dissolution will progress and the activation will be improved. As a result, a smooth surface and unevenness can be obtained, and the above-mentioned effect of improving thread rust resistance can be obtained. Figures 1 and 2 show JIS 5182 alloy, which is an Al-Mg-based aluminum alloy, and Al-Mg-Si.
JIS 6061 alloy, which is an aluminum alloy, is degreased in such a way that a large amount of silicate remains after degreasing, that is, when a sodium silicate-based treatment agent is used as the degreasing agent, and when the degreasing treatment The amount of etching dissolution on the plate surface is shown as a function of treatment time when a degreasing treatment is performed so that almost no silicate remains afterward, that is, when a sodium phosphate treatment agent is used as the degreasing agent. Here, the sodium silicate treatment agent is a solution containing 30% sodium silicate at a temperature of 45%.
The sodium phosphate treatment agent used was a solution containing 2% sodium phosphate at a temperature of 70°C. As shown in Figures 1 and 2, when a sodium silicate treatment agent was used, etching dissolution progressed only slightly even if the treatment time was increased, whereas the sodium phosphate treatment When the etching agent was used, the amount of etching dissolution increased significantly as the treatment time became longer. By the way, when a sodium silicate treatment agent is used, the amount of silicate remaining on the board surface (in terms of SiO 2 ) is usually 60 mg/m 2 to several times as shown in the examples below. 100mg/
m2 , while when using a phosphate treatment agent,
It is about 10 mg/m 2 or less, and from this it is clear that the effect on etching dissolution of the silicate film is large. As already mentioned, in the case of this invention, the residual amount of silicate on the board surface after alkaline degreasing is 50mg/
If it is less than m 2 , good thread rust resistance can be obtained on the coated board, but when the present inventors separately investigated the relationship between the amount of etching dissolved in degreasing treatment and the thread rust resistance on the coated board, it was found that the etching It has been found that when the dissolved amount (average) is 0.05 ÎŒm or more, excellent thread rust resistance can be obtained in the coated plate. Specific explanation for carrying out the invention This invention is applicable to all aluminum alloys, regardless of the type of aluminum alloy to which it is applied, but Al -Mg alloy (JIS
5000 series alloy) and Al-Mg-Si series alloy (JIS
6000 series alloys), the decrease in thread rust resistance due to residual silicate is particularly noticeable in the case of Al-Mg-Si alloys, and therefore Al-Mg-Si alloys are the most This invention is effective. Alkaline degreasing should be carried out so that the amount of silicate remaining on the board surface after degreasing is 50 mg/m 2 or less in terms of SiO 2 , and in order to do so, the alkaline degreasing solution must contain virtually no silicic acid. It is best to use something that does not include the Specifically, sodium phosphate, sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, sodium sulfate (Na 2 SO 4・10H 2 O), sodium sesquisulfate (Na 2 CO 3・NaHCO 3・2H 2 O) or a solution containing two or more of these may be used as the treatment liquid. Note that even if a treatment liquid other than sodium silicate is used, some industrial water for dilution may be used.
Normally, SiO 2 is included, and even in that case, a small amount of silicate often remains on the surface after treatment, but as already mentioned, the amount is calculated in terms of SiO 2 . There is no problem if it is less than 50mg/ m2 . However, use of water containing a large amount of SiO 2 as dilution water should be avoided. The pH of the treatment liquid in the alkaline degreasing treatment may be 8 or higher, and its concentration is not particularly limited, but it is usually desirable to use it at a concentration of 1 to 3%. In addition, when actually painting the degreased board according to the present invention, after performing the degreasing treatment as described above, it is washed with water, and then chemical conversion treatment is performed by chromate treatment and/or zinc phosphate treatment. After applying the coating and washing with water, it is usual to perform electrodeposition coating and, if necessary, to perform one or more layers of baking coating. Example JIS 5182 alloy, which is an Al-Mg alloy, and Al
- Test pieces of JIS 6061 alloy, which is a Mg-Si alloy, were subjected to alkaline degreasing under various conditions as shown in Table 1. After degreasing, washing with water, chromate treatment as a chemical conversion treatment, washing with water and pure water, and then applying cationic electrodeposition coating (180°C x 20 minutes) of epoxy resin to a thickness of 20 Όm.
Then, as an intermediate coating, melamine alkyd resin baking coating (140℃ x 30 minutes) was applied to a thickness of 35ÎŒm.
After that, apply a baking coat of melamine alkyd resin (140℃ x 30 minutes) to a thickness of 35ÎŒm as a top coat.
I did it at The painted test pieces thus obtained were tested under the following conditions to evaluate their thread rust resistance. In other words, first make cross cuts in the paint film,
A salt spray test in accordance with JIS Z2371 was conducted for 24 hours, followed by a humidity test at a temperature of 25°C and a humidity of 85%.
It was left in a humid atmosphere of RH for 42 days, and the thread rust resistance was evaluated based on the length of thread rust generated on the surface. The results are shown in Table 1. In addition, in the thread rust resistance evaluation, if the length of thread rust is 1.0 mm or less, it is considered to be good and marked with ◎.
A value of 1.0 to 2.0 mm was marked as somewhat good, a mark of ◯, a value of 2.0 to 4.0 mm was marked as △, and a value of 4 mm or more was marked as poor.

【衚】【table】

【衚】 第衚に瀺されるように、脱脂凊理板における
ケむ酞塩の残留量が50mgm2を越えるNo.13No.14
の比范䟋では、特にAl−Mg−Si系合金の堎合に
塗装板での耐糞錆性が劣぀おいた。これに察し脱
脂凊理板においけるケむ酞塩の残留量が50mgm2
以䞋の本発明䟋No.〜No.12ではいずれも塗装
板で良奜な耐糞錆性を瀺すこずが刀明した。 発明の効果 この発明の塗装甚脱脂凊理板は、アルカリ脱脂
凊理埌の板衚面に残存するケむ酞塩がSiO2換算
で50mgm2以䞋のものであり、このようなケむ酞
塩残留量を芏制するこずによ぀お、塗装板の状態
で著しく優れた耐糞錆性を埗るこずができる。し
たが぀おこの発明の脱脂凊理板を甚いた塗装板
は、凍結防止剀が散垃された道路あるいは海浜地
区の劂く苛酷な腐食環境䞋で長時間䜿甚しおも糞
錆発生のおそれが少なく、自動車甚ボデむパネル
や各皮自動車郚品等に䜿甚される塗装板に最適で
ある。
[Table] As shown in Table 1, No. 13 and No. 14 where the residual amount of silicate on the degreased plate exceeds 50 mg/m 2
In the comparative example, the thread rust resistance on the painted plate was poor, especially in the case of the Al-Mg-Si alloy. In contrast, the residual amount of silicate in the degreased board is 50 mg/m 2
In the following examples of the present invention (No. 1 to No. 12), it was found that all coated plates exhibited good thread rust resistance. Effects of the Invention The degreased plate for painting of this invention has silicate remaining on the plate surface after alkaline degreasing treatment is 50 mg/m 2 or less in terms of SiO 2 . By regulating this, it is possible to obtain extremely excellent thread rust resistance in the state of a painted board. Therefore, painted plates using the degreased plate of the present invention have little risk of rusting even when used for long periods of time in harsh corrosive environments such as roads sprayed with antifreeze or beach areas, and are suitable for automobiles. It is ideal for painted plates used for vehicle body panels and various automobile parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はAl−Mg系合金JIS 5182合金に぀
いおリン酞゜ヌダ系凊理剀もしくはケむ酞゜ヌダ
系凊理剀を甚いお脱脂凊理した堎合の凊理時間ず
合金の゚ツチング溶解量ずの関係を瀺すグラフ、
第図はAl−Mg−Si系合金JIS 6061合金に
぀いおリン酞゜ヌダ系凊理剀もしくはケむ酞゜ヌ
ダ系凊理剀を甚いお脱脂凊理した堎合の凊理時間
ず合金の゚ツチング溶解量ずの関係を瀺すグラフ
である。
Figure 1 is a graph showing the relationship between the treatment time and the amount of alloy dissolved in etching when an Al-Mg alloy (JIS 5182 alloy) is degreased using a sodium phosphate treatment agent or a sodium silicate treatment agent. ,
Figure 2 shows the relationship between the treatment time and the amount of etched alloy dissolved when Al-Mg-Si alloy (JIS 6061 alloy) is degreased using a sodium phosphate treatment agent or a sodium silicate treatment agent. This is a graph showing.

Claims (1)

【特蚱請求の範囲】[Claims]  アルカリ脱脂凊理が斜された塗装甚Al合金
板であ぀おか぀衚面に残存するケむ酞塩がSiO2
換算で50mgm2以䞋であるこずを特城ずする塗装
甹Al合金脱脂凊理板。
1 This is an Al alloy plate for painting that has been subjected to alkali degreasing treatment, and the silicate remaining on the surface is SiO 2
An Al alloy degreased plate for painting, characterized in that it has a content of 50 mg/m 2 or less in terms of conversion.
JP20798787A 1987-08-21 1987-08-21 Degreased al alloy sheet for coating Granted JPS6452091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20798787A JPS6452091A (en) 1987-08-21 1987-08-21 Degreased al alloy sheet for coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20798787A JPS6452091A (en) 1987-08-21 1987-08-21 Degreased al alloy sheet for coating

Publications (2)

Publication Number Publication Date
JPS6452091A JPS6452091A (en) 1989-02-28
JPH0559998B2 true JPH0559998B2 (en) 1993-09-01

Family

ID=16548806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20798787A Granted JPS6452091A (en) 1987-08-21 1987-08-21 Degreased al alloy sheet for coating

Country Status (1)

Country Link
JP (1) JPS6452091A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715149B2 (en) * 1991-10-21 1995-02-22 新日本補鐵株匏䌚瀟 Aluminum plate with excellent resistance to thread and rust
CN104372366B (en) * 2014-09-30 2017-01-25 苏州长盛机电有限公叞 Multifunctional metal surface treatment agent and preparation method thereof

Also Published As

Publication number Publication date
JPS6452091A (en) 1989-02-28

Similar Documents

Publication Publication Date Title
USRE38285E1 (en) Treating solution and treating method for forming protective coating films on metals
JP4201600B2 (en) Method for coating a metal surface and use of a substrate coated by the method
CA1333147C (en) Process of phosphating steel and/or galvanized steel before painting
JP4189884B2 (en) Chromium-free chemical conversion treatment solution and treatment method
US9163315B2 (en) Pretreatment process for aluminum and high etch cleaner used therein
JP2003526012A (en) Method for applying a phosphate coating and use of a metal part phosphatized by the method
JPH11335865A (en) Processing agent for forming protective coating film on metal and its formation
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
JPH10251509A (en) Metal surface treating solution and surface treated metal plate
US5707505A (en) Method for the electrophoretic dip coating of chromatizable metal surfaces
GB2033432A (en) Conversion coating solution for treating metallic surfaces
JPH0819531B2 (en) Zinc phosphate treatment method for metal surface
JPH0559998B2 (en)
JPH0759755B2 (en) Method for manufacturing A-l alloy coated plate for automobiles having excellent system rust resistance
JPS6017827B2 (en) Pretreatment method for metal surfaces for cationic electrodeposition coating
KR100311062B1 (en) Manufacturing method of zinc-containing metal plated steel sheet with excellent black resistance and whiteness
JP3410910B2 (en) Aluminum material for phosphate treatment and surface treatment method thereof
JPH0348275B2 (en)
JP2781844B2 (en) Undercoating agent for painting
CA2095525A1 (en) Aluminum alloy sheets for auto body panels and method of manufacturing the same
JP3016118B2 (en) High corrosion resistant surface treated steel sheet and its manufacturing method
JPS62284087A (en) Surface-treated steel sheet having excellent coated film adhesion and its production
JP2744697B2 (en) Aluminum alloy plate for automobile body and method of manufacturing the same
JP3330078B2 (en) Manufacturing method of pre-coated aluminum strip with excellent formability
JP2000038683A (en) Treated aluminum alloy plate and production of the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term