JPH0559952A - Control of combustion control device of engine and method thereof - Google Patents

Control of combustion control device of engine and method thereof

Info

Publication number
JPH0559952A
JPH0559952A JP3245235A JP24523591A JPH0559952A JP H0559952 A JPH0559952 A JP H0559952A JP 3245235 A JP3245235 A JP 3245235A JP 24523591 A JP24523591 A JP 24523591A JP H0559952 A JPH0559952 A JP H0559952A
Authority
JP
Japan
Prior art keywords
combustion chamber
combustion
air
fuel
distribution state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3245235A
Other languages
Japanese (ja)
Other versions
JP3323523B2 (en
Inventor
Hiroyuki Yamamoto
博之 山本
Toshiyuki Terashita
敏幸 寺下
Hidetoshi Kudo
秀俊 工藤
Muneyuki Oota
統之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP24523591A priority Critical patent/JP3323523B2/en
Publication of JPH0559952A publication Critical patent/JPH0559952A/en
Application granted granted Critical
Publication of JP3323523B2 publication Critical patent/JP3323523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To reduce HC and NOx by providing a control means to uniform a combustion ratio until flame ignited by an ignition gap reaches a peripheral part. CONSTITUTION:That which control an air-fuel ratio distribution state of an air-fuel mixture as a means to uniform combustion ratio are a first fuel injection valve 11 and a second fuel injection valve 12. The first fuel injection valve 11 supplies fuel to the central part of a combustion chamber 2 by way of injecting fuel in the neighbourhood of the upstream edge of a bulkhead 5. The second fuel injection valve 12 supplies fuel to the outer peripheral part of the combustion chamber 2 through the edge part on the side far from the bulkhead 5 of an air intake port 3A. Ignition by an ignition gap 10 is carried out at the richest central part, fire is restrained from extension by a lean intermediate territory and thereafter, fire reaches a rich peripheral part, but as the wall surface is cooled down, the combustion ratio does not increase and comes to be almost the same as the ratio in the intermediate territory. Consequently, it is possible to uniformize the combustion ratio and to restrain generation of HC and NOx.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンの燃焼制御装置
および制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine combustion control device and control method.

【0002】[0002]

【従来技術】エンジンのなかには、1つの燃焼室に対し
て複数の点火ギャップを設けた多点点火式のものがあ
る。特開昭57−148021号公報には、シリンダヘ
ッドとシリンダブロックとの間に環状の保持板を介在さ
せて、この保持板に多数の点火プラグを保持させて、燃
焼室の外周縁部にシリンダ周方向に間隔をあけて複数の
点火ギャップを位置させるようにしたものが開示されて
いる。これにより、多数の点火ギャップによる同時着火
によって急速燃焼を行なって、オット−式エンジンにお
いて理想的な等容燃焼を得ようとするものである。
2. Description of the Related Art Some engines include a multi-point ignition type in which a plurality of ignition gaps are provided for one combustion chamber. In Japanese Unexamined Patent Publication (Kokai) No. 57-148021, an annular holding plate is interposed between a cylinder head and a cylinder block, and a large number of spark plugs are held by the holding plate, and a cylinder is provided at an outer peripheral edge of a combustion chamber. It is disclosed that a plurality of ignition gaps are arranged at intervals in the circumferential direction. As a result, rapid combustion is performed by simultaneous ignition with a large number of ignition gaps, and an ideal equivolume combustion is obtained in the Otto-type engine.

【0003】[0003]

【発明が解決しようとする問題点】ところで最近では、
排気ガス浄化等の観点から、それぞれ燃焼室外周縁部に
燃焼室周方向に間隔をあけて複数の点火ギャップ位置さ
せることが望まれている。これは、燃焼室の周辺から点
火を行なうことにより、燃焼室外周縁部での燃焼性を向
上させてHCを低減させると共に、火炎を燃焼室周方向
で先ず合致させた後燃焼室中心で合致させることにより
火炎の成長を抑制して、所定期間内での燃焼割合を極力
均一化すなわち燃焼速度のピ−ク値を極力小さくして、
NOxの低減を図ろうとするものである。
[Problems to be Solved by the Invention] By the way, recently,
From the viewpoint of exhaust gas purification and the like, it is desired to position a plurality of ignition gaps at the outer peripheral edge of the combustion chamber at intervals in the circumferential direction of the combustion chamber. By igniting from the periphery of the combustion chamber, the combustibility at the outer peripheral edge of the combustion chamber is improved to reduce HC, and the flame is first matched in the circumferential direction of the combustion chamber and then matched at the center of the combustion chamber. By suppressing the growth of flame by this, the combustion ratio within a predetermined period is made as uniform as possible, that is, the peak value of the combustion speed is made as small as possible,
This is intended to reduce NOx.

【0004】上述のように、燃焼室外周縁部でかつ燃焼
室周方向に間隔をあけて複数の点火ギャップを設けるこ
とは、点火プラグの数が多くなり得策でない。このた
め、燃焼室構造として極めて一般的な燃焼室中心部に点
火ギャップを設けた場合に、燃焼割合を均一化すること
ができれば、HCおよびNOx低減の上で好ましいもの
となる。
As described above, providing a plurality of ignition gaps at the outer peripheral edge of the combustion chamber and at intervals in the circumferential direction of the combustion chamber is not a good idea because the number of spark plugs increases. Therefore, if an ignition gap is provided at the center of the combustion chamber, which is a very common combustion chamber structure, if the combustion ratio can be made uniform, it is preferable for reducing HC and NOx.

【0005】したがって、本発明の目的は、燃焼室中心
部に点火ギャップを配置したエンジンにおいて、HCお
よびNOxを共に大幅に低減し得るようにしたエンジン
の燃焼制御装置および制御方法を提供することにある。
Therefore, an object of the present invention is to provide an engine combustion control device and control method capable of significantly reducing both HC and NOx in an engine having an ignition gap arranged in the center of a combustion chamber. is there.

【0006】[0006]

【発明の構成】上記目的を達成するため、本発明にあっ
ては、次のような構成としてある。すなわち、燃焼室の
中心部に点火ギャップを位置させたエンジンにおいて、
前記点火ギャップにより着火されることにより生じる火
炎が燃焼室外周縁部に到達するまでの間における燃焼割
合が均一化するように、混合気の燃焼に寄与する因子を
制御する制御手段を備えている、ような構成としてあ
る。
To achieve the above object, the present invention has the following configuration. That is, in an engine in which the ignition gap is located in the center of the combustion chamber,
A control unit that controls a factor that contributes to the combustion of the air-fuel mixture is provided so that the combustion ratio of the flame generated by the ignition by the ignition gap reaches the outer peripheral edge of the combustion chamber is uniform. It has such a structure.

【0007】前記制御手段は、より具体的には、燃焼中
心部および燃焼室外周縁部の火炎伝幡がそれぞれ早くな
るように、かつ燃焼室中心部と外周縁部との中間領域の
火炎伝幡が遅くなるように、燃焼に寄与する因子を制御
するものとして構成し得る。この場合、燃焼室中心部の
火炎伝幡が燃焼室外周縁部の火炎伝幡よりも早くなるよ
うにすることもできる。
More specifically, the control means is configured so that the flame spread in the combustion center portion and the outer peripheral edge portion of the combustion chamber is accelerated, and the flame spread portion in the intermediate region between the center portion of the combustion chamber and the outer peripheral edge portion is increased. Can be configured to control the factors that contribute to combustion. In this case, the flame spread at the center of the combustion chamber may be faster than the flame spread at the outer peripheral edge of the combustion chamber.

【0008】燃焼に寄与する因子としては、混合気の空
燃比があり、この場合は、燃焼室内での空燃比の分布状
態が所定の状態となるように制御される。より具体的に
は、燃焼室中心部と燃焼室外周縁部との空燃比をリッチ
とする一方、この間の中間領域をリ−ンにればよい。空
燃比の分布状態は、吸気スワ−ル、燃焼室形状、燃焼室
壁面温度を勘案して設定することができる。また、燃焼
に寄与する因子としては、EGRガスがあり、この場合
はEGRガスの燃焼室内での分布状態が所定の状態とな
るように制御される。
The factor contributing to combustion is the air-fuel ratio of the air-fuel mixture, and in this case, the distribution state of the air-fuel ratio in the combustion chamber is controlled to a predetermined state. More specifically, the air-fuel ratio between the center of the combustion chamber and the outer peripheral edge of the combustion chamber may be made rich, while the intermediate region between them may be made lean. The distribution state of the air-fuel ratio can be set in consideration of the intake swirl, the combustion chamber shape, and the combustion chamber wall surface temperature. EGR gas is a factor that contributes to combustion, and in this case, the distribution state of EGR gas in the combustion chamber is controlled to a predetermined state.

【0009】[0009]

【発明の効果】本発明によれば、燃焼に寄与する因子を
制御して、燃焼室中心部に配置した点火ギャップにより
着火された混合気の燃焼は、その燃焼割合が均一化とな
るように、換言すれば燃焼速度のピ−ク値を小さくして
燃焼割合が燃焼期間全体に渡って均一化するように制御
されるので、NOxが大幅に低減され、また燃焼室外周
縁部でも十分な燃焼が行なわれてHCが大幅に低減され
る。
According to the present invention, the factors contributing to combustion are controlled so that the combustion ratio of the air-fuel mixture ignited by the ignition gap arranged in the center of the combustion chamber becomes uniform. In other words, since the peak value of the combustion speed is reduced to control the combustion ratio to be uniform over the entire combustion period, NOx is significantly reduced and sufficient combustion is achieved even at the outer peripheral edge of the combustion chamber. Is performed, and HC is significantly reduced.

【0010】燃焼室内での混合気の空燃比分布状態を制
御するときは、燃焼室中心部と外周縁部とがリッチとさ
れ、その中間領域がリ−ンとされる。これにより、点火
ギャップによる確実な着火を得た後、燃焼は中間領域で
抑制されつつ進行し、燃焼室外周縁部でも十分な燃焼が
行なわれる。この場合、燃焼室中心部の空燃比を燃焼室
外周縁部よりもリッチとすることにより、より確実な着
火と、燃焼室外周縁部での異常燃焼防止(ノッキング防
止を図る上で好ましいものとなる。
When controlling the air-fuel ratio distribution state of the air-fuel mixture in the combustion chamber, the central portion of the combustion chamber and the outer peripheral edge portion are made rich, and the intermediate region thereof is made lean. As a result, after the reliable ignition by the ignition gap is obtained, the combustion proceeds while being suppressed in the intermediate region, and sufficient combustion is also performed in the outer peripheral edge of the combustion chamber. In this case, by making the air-fuel ratio of the center of the combustion chamber richer than that of the outer peripheral edge of the combustion chamber, it is preferable for more reliable ignition and prevention of abnormal combustion in the outer peripheral edge of the combustion chamber (prevention of knocking).

【0011】燃焼に寄与する因子としてEGRガスを選
択した場合は、燃焼室内でのEGRガスの分布状態は、
空燃比の分布状態とは逆の状態とされる、すなわち、燃
焼室中心部と外周縁部とがEGRガスがリ−ンとされ、
中間領域でEGRガスがリッチとされる。本発明の好ま
しい態様および利点は以下の実施例の説明から明らかと
なる。
When EGR gas is selected as a factor contributing to combustion, the distribution state of EGR gas in the combustion chamber is
The distribution state of the air-fuel ratio is set to the opposite state, that is, the EGR gas is lean in the central portion of the combustion chamber and the outer peripheral edge portion,
The EGR gas is rich in the intermediate region. Preferred aspects and advantages of the invention will be apparent from the description of the examples below.

【0012】[0012]

【実施例】図1において、1はシリンダヘッド、2は燃
焼室で、シリンダヘッド1には、それぞれ燃焼室2に開
口する2つの吸気ポ−ト3A、3Bと2つの排気ポ−ト
4A、4Bとが形成されている。吸・排気ポ−ト3A、
3B、4A、4Bは、既知のようにクランク軸の回転と
同期して、図示を略す吸・排気弁により周知のタイミン
グで開閉される。そして、燃焼室2の中心には、点火ギ
ャップ10が配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, 1 is a cylinder head, 2 is a combustion chamber, and the cylinder head 1 has two intake ports 3A and 3B and two exhaust ports 4A which open into the combustion chamber 2, respectively. 4B are formed. Intake / exhaust port 3A,
As is known, 3B, 4A, and 4B are opened / closed at known timing by intake / exhaust valves (not shown) in synchronization with the rotation of the crankshaft. An ignition gap 10 is arranged in the center of the combustion chamber 2.

【0013】2つの吸気ポ−ト3A、3Bは、燃焼室2
の中心を通るクランク軸と平行な直線L1よりもシリン
ダヘッド1の一側面側において燃焼室2に開口して、互
いにクランク軸方向に並列に形成されている。また、2
つの排気ポ−ト4A、4Bは、上記直線L1よりもシリ
ンダヘッド1の他側面側において燃焼室2に開口して、
互いにクランク軸方向に並列に形成されている。吸気ポ
−ト3A、3Bはシリンダヘッドの一側面側に開口し、
排気ポ−ト4A、4Bはシリンダヘッド1の他側面側に
開口して、シリンダヘッド1はいわゆるクロスフロ−型
とされている。
The two intake ports 3A and 3B are connected to the combustion chamber 2
Are opened in the combustion chamber 2 on one side surface side of the cylinder head 1 with respect to the straight line L1 passing through the center of the cylinder and parallel to each other in the crank axis direction. Also, 2
The two exhaust ports 4A, 4B open into the combustion chamber 2 on the other side surface side of the cylinder head 1 with respect to the straight line L1,
They are formed in parallel with each other in the crankshaft direction. The intake ports 3A, 3B open on one side of the cylinder head,
The exhaust ports 4A, 4B are opened to the other side surface side of the cylinder head 1, and the cylinder head 1 is of a so-called cross flow type.

【0014】2つの吸気ポ−ト3A、3Bは、その下流
側端部すなわち燃焼室2近傍部分が、隔壁5により画成
された分岐部3a、3bとされ、その上流側部分が互い
に集合した集合部3cとされている。吸気ポ−ト3A
は、その上流側から下流側に向けてすなわち集合部3c
から分岐部3aに向けて、クランク軸とほぼ直交するよ
うにほぼストレ−トに形成されている。
The two intake ports 3A, 3B have their downstream end portions, that is, the portions near the combustion chamber 2 as branch portions 3a, 3b defined by a partition wall 5, and their upstream portions gather together. It is a collecting unit 3c. Intake port 3A
From the upstream side to the downstream side, that is, the collecting portion 3c
From the to the branch portion 3a, it is formed in a substantially straight shape so as to be substantially orthogonal to the crankshaft.

【0015】吸気ポ−ト3Bは、その分岐部3bから集
合部3cに向けて湾曲形成されている。この湾曲につい
て説明すると、燃焼室2の中心を通ってクランク軸と直
交する(直線L1と直交する)直線L2を考える。この
とき、隔壁5の上流端は直線L2上にあり、したがっ
て、分岐部3bは、吸気ポ−ト3A側に向けてオフセッ
トするようにして湾曲されているものとなる。
The intake port 3B is curved from its branch portion 3b toward the collecting portion 3c. Explaining this curve, consider a straight line L2 that passes through the center of the combustion chamber 2 and is orthogonal to the crankshaft (orthogonal to the straight line L1). At this time, the upstream end of the partition wall 5 is on the straight line L2, and therefore the branch portion 3b is curved so as to be offset toward the intake port 3A side.

【0016】集合部3cには、スワ−ル弁6が配置され
ている。このスワ−ル弁6は、その上流端に設けた回動
軸7を中心に揺動自在とされ、図1中実線で示す状態が
全閉状態であり、一点鎖線で示す状態が全開状態であ
る。回動軸7は、集合部3cのうち、吸気ポ−ト3Bと
は反対側の側壁直近に位置され、全閉状態では、スワ−
ル弁6の下流端(自由端)が、隔壁5の上流端と小間隔
をあけて位置される。また、スワ−ル弁6の全開状態で
は、クランク軸とほぼ直交する状態すなわちほぼストレ
−ト形状とされた吸気ポ−ト3Aとほぼ平行に伸びる状
態とされる。なお、スワ−ル弁6は、実施例では、低負
荷時に全閉とされ、中負荷時には負荷が大きくなるほど
その開度が大きくなり、高負荷時には全開とされる。
A swirl valve 6 is arranged in the collecting portion 3c. The swirl valve 6 is swingable around a rotary shaft 7 provided at the upstream end thereof. The state shown by the solid line in FIG. 1 is the fully closed state, and the state shown by the one-dot chain line is the fully opened state. is there. The rotating shaft 7 is located near the side wall of the collecting portion 3c on the side opposite to the intake port 3B.
The downstream end (free end) of the valve 6 is located at a small distance from the upstream end of the partition wall 5. Further, when the swirl valve 6 is fully opened, the swirl valve 6 is in a state of being substantially orthogonal to the crankshaft, that is, in a state of extending substantially parallel to the intake port 3A having a substantially straight shape. In the embodiment, the swirl valve 6 is fully closed when the load is low, the opening increases as the load increases when the load is medium, and is fully opened when the load is high.

【0017】図2にも示すように、前記集合部3cには
第1燃料噴射弁11が配置され、分岐部3bには第2燃
料噴射弁12が配置されている。この各燃料噴射弁1
1、12の燃料噴射幅はかなり狭くなるように設定され
ており、吸気弁が開いた所定タイミングで燃料噴射を実
行するようになっている。なお、第1燃料噴射弁11の
高さ方向の位置設定は、例えば図2中実線で示す位置
と、一点鎖線で示す位置とのいずれでも採択し得る。
As shown in FIG. 2, a first fuel injection valve 11 is arranged in the collecting portion 3c, and a second fuel injection valve 12 is arranged in the branch portion 3b. Each fuel injection valve 1
The fuel injection widths of 1 and 12 are set to be quite narrow, and the fuel injection is executed at a predetermined timing when the intake valve is opened. The position of the first fuel injection valve 11 in the height direction may be set at either the position shown by the solid line in FIG. 2 or the position shown by the alternate long and short dash line.

【0018】第1燃料噴射弁11は、隔壁5の上流端付
近に燃料を噴射して、燃焼室中心部に燃料が供給される
ように指向されている。すなわち、第1燃料噴射弁11
から噴射された燃料は、両方の吸気ポ−ト3A、3Bを
より、開弁状態にある吸気弁と干渉しないようにして、
燃焼室2の中心部に到達される。第2燃料噴射弁は、吸
気ポ−ト3Aのうち隔壁5とは遠い側の端部を通して、
燃焼室外周縁部に燃料が供給されるように指向されてい
る。すなわち、第2燃料噴射弁12から噴射された燃料
は、吸気ポ−ト3Aより、開弁状態にある吸気弁と干渉
しないようにして、燃焼室外周縁部に到達される。
The first fuel injection valve 11 is oriented so as to inject fuel near the upstream end of the partition wall 5 and supply the fuel to the center of the combustion chamber. That is, the first fuel injection valve 11
The fuel injected from the both intake ports 3A, 3B is further prevented from interfering with the intake valve in the open state,
It reaches the center of the combustion chamber 2. The second fuel injection valve passes through an end of the intake port 3A on the side far from the partition wall 5,
The fuel is directed to the outer peripheral edge of the combustion chamber. That is, the fuel injected from the second fuel injection valve 12 reaches the outer peripheral edge of the combustion chamber from the intake port 3A so as not to interfere with the intake valve in the open state.

【0019】上述のような燃料噴射によって、燃焼室2
内には、点火ギャップ10による着火直前には、図3、
図4に示すような混合気の空燃比分布状態が形成され
る。すなわち、燃焼室中心部がリッチとされ(これを図
4で符号αで示す)、燃焼室外周縁部もリッチとされ
(これを図4で符号βで示す)、中間領域がリ−ンとさ
れる(これを図4で符号γで示す)。この場合、燃焼室
中心部での空燃比の方が、燃焼室外周縁部での空燃比よ
りもリッチとされる。このような空燃比の分布状態が形
成される課程を、図11〜図13に示してある。なお、
一般的な成層化の空燃比の分布状態を、図3において破
線で示す。
By the fuel injection as described above, the combustion chamber 2
Immediately before ignition by the ignition gap 10,
An air-fuel ratio distribution state of the air-fuel mixture as shown in FIG. 4 is formed. That is, the center of the combustion chamber is made rich (this is indicated by symbol α in FIG. 4), the outer peripheral edge of the combustion chamber is also made rich (this is indicated by symbol β in FIG. 4), and the intermediate region is made lean. (This is indicated by the symbol γ in FIG. 4). In this case, the air-fuel ratio at the center of the combustion chamber is richer than the air-fuel ratio at the outer peripheral edge of the combustion chamber. The process by which such an air-fuel ratio distribution state is formed is shown in FIGS. 11 to 13. In addition,
A general stratified air-fuel ratio distribution state is shown by a broken line in FIG.

【0020】上述のような空燃比の分布状態によって、
燃焼室中心部には空燃比が特にリッチとされているの
で、良好な着火性が得られる。着火により生じた火炎
は、点火ギャップを中心にして燃焼室外周縁部へ広がっ
ていくが、中間領域での空燃比がリ−ンなので、火炎伝
幡が抑制される(燃焼割合の増大抑制)。そして、燃焼
室外周縁部では再び空燃比がリッチとなっているので、
火炎伝幡が早くなろうとするが、燃焼室外周縁部の壁面
は冷えているので極端に燃焼割合が増加することがな
く、中間領域とほぼ同じような燃焼割合が得られる。こ
のような燃焼の様子を図式的に図23に示してあり、こ
の図23には、従来一般的な燃焼の様子を破線で示して
ある。
According to the distribution state of the air-fuel ratio as described above,
Since the air-fuel ratio is particularly rich in the center of the combustion chamber, good ignitability can be obtained. The flame generated by ignition spreads to the outer peripheral edge of the combustion chamber centering on the ignition gap, but since the air-fuel ratio in the middle region is lean, flame spread is suppressed (inhibition of increase in combustion ratio). And, since the air-fuel ratio becomes rich again at the outer peripheral edge of the combustion chamber,
Although the flame spread tends to become faster, the wall ratio of the outer peripheral edge of the combustion chamber is cold, so that the combustion ratio does not increase extremely, and the combustion ratio is almost the same as in the intermediate region. A state of such combustion is schematically shown in FIG. 23, and in FIG. 23, a state of conventional general combustion is shown by a broken line.

【0021】このような燃焼によって、燃焼室中心部で
の燃焼時に燃焼割合がピ−ク値を向かえるが、すぐにリ
−ンとされた中間領域へと火炎面が移行するので、当該
ピ−ク値は小さなものとなり、NOxが大幅に低減され
る。そして、燃焼室外周縁部では従来に比してはるかに
大きな燃焼割合となるので、発熱量も十分なものとなっ
て、HCが大幅に低減される。
Due to such combustion, the combustion ratio changes toward the peak value during combustion in the center of the combustion chamber, but the flame surface immediately moves to the lean intermediate region, so the peak is concerned. The black value becomes small, and NOx is greatly reduced. Further, since the combustion ratio at the outer peripheral edge of the combustion chamber is much larger than that in the conventional case, the calorific value becomes sufficient and HC is significantly reduced.

【0022】前述の空燃比分布状態は、図21に示すよ
うな吸気スワ−ルを勘案して設定するのが好ましい。図
5には、吸気スワ−ルが強いときの空燃比分布状態を実
線で、吸気スワ−ルが弱いときの空燃比分布状態を破線
で示してある。このように、吸気スワ−ルが強いときは
弱いときに比して、リッチとされる燃焼室中心部と外周
縁部との領域がそれぞれ狭く、すなわち燃焼室中間領域
が広く設定され、しかもリッチとされる部分はよりリッ
チとされると共にリ−ンされる部分はよりリ−ンとされ
る。このようにすることによって、吸気スワ−ルによっ
て燃料が燃焼室2の径方向に移動されようとするのを考
慮した適切な燃焼が得られる。図16には、弱スワ−ル
時の空燃比分布状態を、ペントル−フ型燃焼室とした場
合を例に示してある。なお、燃料をスワ−ル方向にスム
−ズに流入させるには、第1燃料噴射弁11を図2一点
鎖線で示すように配置する方が好ましい。
The above-mentioned air-fuel ratio distribution state is preferably set in consideration of the intake swirl as shown in FIG. In FIG. 5, the air-fuel ratio distribution state when the intake swirl is strong is shown by a solid line, and the air-fuel ratio distribution state when the intake swirl is weak is shown by a broken line. As described above, when the intake swirl is strong, as compared with when it is weak, the regions of the combustion chamber center portion and the outer peripheral edge portion, which are considered to be rich, are each narrow, that is, the combustion chamber intermediate region is set wide, and the rich region is set. The portion to be filled is made richer and the portion to be leaned is made leaner. By doing so, appropriate combustion can be obtained in consideration of the fact that the fuel is about to be moved in the radial direction of the combustion chamber 2 by the intake swirl. FIG. 16 shows an example in which the air-fuel ratio distribution state at the time of a weak swirl is a pentorf type combustion chamber. In order to allow the fuel to smoothly flow in the swirl direction, it is preferable to dispose the first fuel injection valve 11 as shown by the alternate long and short dash line in FIG.

【0023】燃焼室2の外周縁部一部にスキッシュエリ
アを有する場合があり、図6に矢印Y1でスキッシュ流
を示してある。この場合は、空燃比の分布状態をスキッ
シュ流方向にはリ−ン領域γを狭く、かつリッチ領域α
とβとを広くして、各領域が全体として楕円になるよう
にするとよい(スキッシュ流に対抗した火炎伝幡の促
進)。このスキッシュの影響は、吸気スワ−ルが弱い場
合に顕著になるので、吸気スワ−ルが弱い場合にのみ考
慮するようにしてもよい。図14には、スキッシュエリ
アの具体的設定例と空燃比分布状態との関係を示してあ
る。図15、16には、弱スワ−ル時の空燃費分布状態
を、ペントル−フ型燃焼室(スキッシュエリアなし)と
した場合を例に示してある。弱スワ−ル時は圧縮上死点
近傍で図15中左右端が狭くなり、この部分に混合気が
入り込みにくく中心方向へ向かう流れが存在する。この
ように、燃焼室2の径方向中心に向かう流れがある場合
は、この流れ方向における中間領域γを狭くするように
空燃比の分布状態を設定する(径方向の流れがある方向
を長軸とする楕円状に領域α、βを設定)。
The combustion chamber 2 may have a squish area in a part of its outer peripheral edge, and the squish flow is shown by an arrow Y1 in FIG. In this case, the distribution state of the air-fuel ratio is set so that the lean region γ is narrow in the squish flow direction and
It is recommended to widen and β so that each area becomes an ellipse as a whole (promotion of flame spread against squish flow). Since the influence of the squish becomes remarkable when the intake swirl is weak, it may be considered only when the intake swirl is weak. FIG. 14 shows a relationship between a specific setting example of the squish area and the air-fuel ratio distribution state. FIGS. 15 and 16 show an example in which the air fuel consumption distribution state at the time of a weak swirl is a pentorf type combustion chamber (without a squish area). At the time of weak swirl, the left and right ends in FIG. 15 become narrow near the compression top dead center, and there is a flow toward the center where it is difficult for the air-fuel mixture to enter this part. Thus, when there is a flow toward the radial center of the combustion chamber 2, the distribution state of the air-fuel ratio is set so as to narrow the intermediate region γ in this flow direction (the radial flow direction is the major axis). Set the areas α and β in an elliptical shape.

【0024】図6に示すような空燃比分布状態を得るに
は、燃料噴射弁11、12からの燃料噴射を間欠的に行
なうことにより得られる。すなわち、図18に示すよう
に、弱スワ−ルの場合は実線(第2燃料噴射弁12)お
よび破線(第1燃料噴射弁11)で示すように噴射パル
スを間欠的なものとし、強スワ−ルの場合は、一点鎖線
で示すように連続噴射とすればよい。なお、連続噴射と
間欠噴射とを使い分ける場合は、最小噴射パルス幅の関
係から、燃圧も合せて調整するとよい(連続噴射の際の
燃圧を小とする)。
The air-fuel ratio distribution state shown in FIG. 6 can be obtained by intermittently injecting fuel from the fuel injection valves 11 and 12. That is, as shown in FIG. 18, in the case of a weak swirl, the injection pulse is intermittent as shown by the solid line (second fuel injection valve 12) and the broken line (first fuel injection valve 11), and the strong swirl is performed. In case of -le, continuous injection may be performed as indicated by the alternate long and short dash line. When the continuous injection and the intermittent injection are selectively used, it is preferable to adjust the fuel pressure in accordance with the relationship of the minimum injection pulse width (the fuel pressure during the continuous injection is small).

【0025】図7は、燃焼形状に応じた空燃比の好まし
い分布状態を示す。図7では、実線がコ−ン燃焼室で、
燃焼室外周縁部に向くほど燃焼室高さが低くなる場合を
示し、破線がパンケ−キ型で燃焼室高さが燃焼室径方向
でほぼ同一の場合を示す。燃焼室高さを考慮した空燃比
の分布は、低い部分はリッチに、高い部分はリ−ンにす
る(火炎面面積変化による燃焼速度の増減調整)。燃焼
室形状を図15に示すようなペントル−フ型とした場合
の空燃比分布状態を図17に示してある。なお、図17
に示すように、領域βをかなり広く設定するときは、第
2燃料噴射弁12の噴射角度と燃圧を共に大きくすれば
よい。
FIG. 7 shows a preferable distribution state of the air-fuel ratio according to the combustion shape. In FIG. 7, the solid line indicates the cone combustion chamber,
The case where the height of the combustion chamber becomes lower toward the outer peripheral edge of the combustion chamber is shown, and the broken line shows the case where the height of the combustion chamber is substantially the same in the radial direction of the combustion chamber. The distribution of the air-fuel ratio considering the height of the combustion chamber is made rich in the low part and lean in the high part (combustion velocity increase / decrease adjustment by changing the flame surface area). FIG. 17 shows the state of air-fuel ratio distribution when the combustion chamber is of the Pentorf type as shown in FIG. Note that FIG.
As shown in, when the region β is set to be considerably wide, both the injection angle of the second fuel injection valve 12 and the fuel pressure may be increased.

【0026】図8は、EGRガスを供給する場合の燃焼
室内でのEGRガス分布状態を示す。EGRガスは燃焼
抑制作用があるので、分布状態は、基本的には空燃比の
分布状態と逆になる。このEGRガスを利用した燃焼制
御する場合は、図20に示すように、燃焼室2の中間領
域(図4のγで示す領域)に向けて指向するEGRガス
導入通路41を吸気ポ−ト3Bに開口させ、この導入通
路41に対して開閉弁からなる制御弁42を接続する。
そして、制御弁42の開時期を、開弁状態にある吸気弁
と干渉しないタイミングで開くようにすればよい(図2
2参照)。勿論、このような導入通路41と制御弁42
とは、各気筒毎に設けられる。なお、吸気初期にEGR
ガスを導入しても、吸気スワ−ルによって、EGRガス
が燃焼室中心へ向けて拡散するのが防止され、着火性の
点で何等問題を生じない。
FIG. 8 shows the EGR gas distribution state in the combustion chamber when EGR gas is supplied. Since the EGR gas has a combustion suppressing effect, the distribution state is basically the reverse of the air-fuel ratio distribution state. When performing combustion control using this EGR gas, as shown in FIG. 20, the EGR gas introduction passage 41 directed toward the intermediate region (region indicated by γ in FIG. 4) of the combustion chamber 2 is provided to the intake port 3B. The control valve 42, which is an on-off valve, is connected to the introduction passage 41.
Then, the opening timing of the control valve 42 may be opened at a timing that does not interfere with the intake valve in the open state (FIG. 2).
2). Of course, such an introduction passage 41 and a control valve 42
And are provided for each cylinder. In addition, in the early stage of intake, EGR
Even if the gas is introduced, the intake swirl prevents the EGR gas from diffusing toward the center of the combustion chamber and causes no problem in terms of ignitability.

【0027】領域α、βの広さの変更には、前述したよ
うに、例えば燃料噴射弁11、12の噴射角度(幅)を
変更することにより行なえばよい。この噴射角度変更の
ためには、例えば図9に示すように、燃料噴射弁11、
12に設けられたエアポ−ト13からのアシストエア量
を調整することにより行なえばよく、スワ−ルの強さと
アシストエア量との関係を図10に示してある。勿論、
空燃比の分布状態を設定する場合、2つの燃料噴射弁1
1、12を用いる代りに、図19に示すように、2噴孔
タイプの1つの燃料噴射弁51を用いるようにしてもよ
い。
The widths of the regions α and β can be changed by changing the injection angle (width) of the fuel injection valves 11 and 12, as described above. In order to change this injection angle, for example, as shown in FIG.
It may be carried out by adjusting the amount of assist air from the air port 13 provided in 12, and the relationship between the swirl strength and the amount of assist air is shown in FIG. Of course,
When setting the distribution state of the air-fuel ratio, two fuel injection valves 1
Instead of using 1 and 12, as shown in FIG. 19, one fuel injection valve 51 of two injection hole type may be used.

【0028】燃焼室壁面温度に差がある場合は、壁面温
度が高いほど火炎伝幡が早くなるという点を考慮して、
空燃比の分布状態等を決定すればよい。より具体的に
は、壁面温度が燃焼室の径方向に変化する場合は、壁面
温度が低い部分の空燃比をリッチに、壁面温度が高いほ
どリ−ンにすればよい。
When there is a difference in the wall temperature of the combustion chamber, considering that the higher the wall temperature, the faster the flame spread,
The distribution state of the air-fuel ratio may be determined. More specifically, when the wall surface temperature changes in the radial direction of the combustion chamber, the air-fuel ratio of the portion where the wall surface temperature is low may be made rich, and the higher the wall surface temperature, the leaner it may be.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は燃焼室に対する吸気ポ−トと点火ギャッ
プと燃料噴射方向との設定例を示す図。
FIG. 1 is a diagram showing a setting example of an intake port, an ignition gap, and a fuel injection direction with respect to a combustion chamber.

【図2】図2は図1に示す燃料噴射方向を側方から示し
た図。
FIG. 2 is a view showing the fuel injection direction shown in FIG. 1 from the side.

【図3】図3は空燃比分布状態の基本形態を示す図。FIG. 3 is a diagram showing a basic form of an air-fuel ratio distribution state.

【図4】図4は空燃比分布状態の基本形態をより具体的
に示す平面図。
FIG. 4 is a plan view more specifically showing a basic form of an air-fuel ratio distribution state.

【図5】図5はスワ−ル強さに応じた空燃比分布状態示
す図。
FIG. 5 is a diagram showing an air-fuel ratio distribution state according to swirl strength.

【図6】図6はスキッシュ流を加味した空燃比分布状態
を示す図。
FIG. 6 is a diagram showing an air-fuel ratio distribution state in which a squish flow is added.

【図7】図7は燃焼室高さに応じた空燃比分布状態を示
す図。
FIG. 7 is a diagram showing an air-fuel ratio distribution state according to the height of a combustion chamber.

【図8】図8はEGRガスの分布状態を示す図。FIG. 8 is a diagram showing a distribution state of EGR gas.

【図9】図9はアシストエアにより噴射角度を調整し得
るようにした燃料噴射弁の一例を示す図。
FIG. 9 is a view showing an example of a fuel injection valve in which the injection angle can be adjusted by assist air.

【図10】図10はアシストエア量とスワ−ル強さとの
関係を示す図。
FIG. 10 is a diagram showing a relationship between an assist air amount and a swirl strength.

【図11】図11は吸気初期の空燃比分布状態を示す
図。
FIG. 11 is a diagram showing an air-fuel ratio distribution state in the early stage of intake.

【図12】図12は吸気末期の空燃比分布状態を示す
図。
FIG. 12 is a diagram showing an air-fuel ratio distribution state at the end of intake.

【図13】図13は圧縮末期の空燃比分布状態を示す
図。
FIG. 13 is a diagram showing an air-fuel ratio distribution state at the final stage of compression.

【図14】図14はスキッシュエリアの具体的な設定例
と空燃比分布状態との関係を示す図。
FIG. 14 is a diagram showing a relationship between a specific setting example of a squish area and an air-fuel ratio distribution state.

【図15】図15はコ−ン型燃焼室形状を示す図。FIG. 15 is a view showing the shape of a cone type combustion chamber.

【図16】図16はコ−ン型燃焼室形状の場合にスワ−
ルが弱くて燃焼室径方向の流れが存在するときの空燃比
分布状態を示す図。
FIG. 16 shows a swirl in the case of a cone type combustion chamber.
FIG. 6 is a diagram showing an air-fuel ratio distribution state when the flow is weak in the combustion chamber and a flow in the radial direction of the combustion chamber exists.

【図17】図17は図15に示すコ−ン型燃焼室形状の
場合に燃焼室高さの変化を考慮して設定された空燃比分
布状態を示す図。
17 is a diagram showing an air-fuel ratio distribution state set in consideration of a change in the height of the combustion chamber in the case of the cone type combustion chamber shape shown in FIG.

【図18】図18は空燃比分布状態の変更のために燃料
噴射のタイミングを変更する場合の例を示す図。
FIG. 18 is a diagram showing an example in which the fuel injection timing is changed to change the air-fuel ratio distribution state.

【図19】図19は2噴孔タイプの燃料噴射弁により空
燃比の分布状態を得るようにした例を示す図。
FIG. 19 is a diagram showing an example in which an air-fuel ratio distribution state is obtained by a two-hole injection type fuel injection valve.

【図20】図20はEGRガス導入経路の設定例を示す
図。
FIG. 20 is a diagram showing an example of setting an EGR gas introduction path.

【図21】図21は吸気スワ−ルを示す図。FIG. 21 is a view showing an intake swirl.

【図22】図22はEGRガス導入タイミングを示す
図。
FIG. 22 is a diagram showing an EGR gas introduction timing.

【図23】図23は燃焼割合が変化する様子を示す図。FIG. 23 is a diagram showing how the combustion ratio changes.

【符号の説明】[Explanation of symbols]

1 シリンダヘッド 2 燃焼室 3A 吸気ポ−ト 3B 吸気ポ−ト 4A 排気ポ−ト 4B 排気ポ−ト 10 点火ギャップ 11 第1燃料噴射弁 12 第2燃料噴射弁 α 燃焼室中心部のリッチ領域 β 燃焼室外周縁部のリッチ領域 γ 燃焼室中心部と外周縁部との間のリ−ン領域 DESCRIPTION OF SYMBOLS 1 Cylinder head 2 Combustion chamber 3A Intake port 3B Intake port 4A Exhaust port 4B Exhaust port 10 Ignition gap 11 First fuel injection valve 12 Second fuel injection valve α Rich region β in the center of combustion chamber Rich region at the outer peripheral edge of the combustion chamber γ Lean region between the center of the combustion chamber and the outer peripheral edge

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/04 305 Z 9039−3G 43/00 301 U 8109−3G E 8109−3G 45/00 301 J 8109−3G F02P 13/00 301 A 8923−3G (72)発明者 太田 統之 広島県安芸郡府中町新地3番1号 マツダ 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display area F02D 41/04 305 Z 9039-3G 43/00 301 U 8109-3G E 8109-3G 45/00 301 J 8109-3G F02P 13/00 301 A 8923-3G (72) Inventor Noriyuki Ota 3-3 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Motor Corporation

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】燃焼室の中心部に点火ギャップを位置させ
たエンジンにおいて、 前記点火ギャップにより着火されることにより生じる火
炎が燃焼室外周縁部に到達するまでの間における燃焼割
合が均一化するように、混合気の燃焼に寄与する因子を
制御する制御手段を備えている、ことを特徴とするエン
ジンの燃焼制御装置。
1. An engine in which an ignition gap is located at the center of a combustion chamber, so that the combustion ratio is uniform until the flame generated by ignition by the ignition gap reaches the outer peripheral edge of the combustion chamber. A combustion control device for an engine, further comprising: control means for controlling a factor that contributes to combustion of the air-fuel mixture.
【請求項2】請求項1において、 前記制御手段が、燃焼中心部および燃焼室外周縁部の火
炎伝幡がそれぞれ早くなるように、かつ燃焼室中心部と
外周縁部との中間領域の火炎伝幡が遅くなるようにする
もの。
2. The flame spreader according to claim 1, wherein the control means accelerates the flame spread in the combustion center part and the outer peripheral edge part of the combustion chamber, and in the intermediate region between the center part of the combustion chamber and the outer peripheral part. The thing that makes the bats slow down.
【請求項3】請求項2において、 前記制御手段が、燃焼室中心部の火炎伝幡が燃焼室外周
縁部の火炎伝幡よりも早くなるようにするもの。
3. The flame spreader according to claim 2, wherein the flame spread at the center of the combustion chamber is faster than the flame spread at the outer peripheral edge of the combustion chamber.
【請求項4】請求項2において、 前記制御手段が、燃焼室内における混合気の空燃比の分
布状態を設定するもの。
4. The control system according to claim 2, wherein the control means sets a distribution state of the air-fuel ratio of the air-fuel mixture in the combustion chamber.
【請求項5】請求項4において、 前記制御手段が、吸気スワ−ルに応じて、前記空燃比の
分布状態を設定するもの。
5. The control device according to claim 4, wherein the control means sets the distribution state of the air-fuel ratio according to the intake swirl.
【請求項6】請求項5において、 前記制御手段が、吸気スワ−ルに応じて、燃焼室周方向
の空燃比分布状態を設定するもの。
6. The control device according to claim 5, wherein the control means sets an air-fuel ratio distribution state in the combustion chamber circumferential direction according to the intake swirl.
【請求項7】請求項5において、 前記制御手段が、吸気スワ−ルに応じて、燃焼室径方向
の空燃比分布状態を設定するもの。
7. The device according to claim 5, wherein the control means sets an air-fuel ratio distribution state in the combustion chamber radial direction according to the intake swirl.
【請求項8】請求項2において、 前制御手段が、燃焼室形状に応じて空燃比の分布状態を
設定するもの。
8. The device according to claim 2, wherein the pre-control means sets the distribution state of the air-fuel ratio according to the shape of the combustion chamber.
【請求項9】請求項8において、 前記制御手段が、燃焼室高さに応じて空燃比の分布状態
を設定するもの。
9. The control device according to claim 8, wherein the control means sets the distribution state of the air-fuel ratio according to the height of the combustion chamber.
【請求項10】請求項2において、 前記制御手段が、燃焼室壁面温度に応じて空燃比の分布
状態を設定するもの。
10. The device according to claim 2, wherein the control means sets the distribution state of the air-fuel ratio according to the temperature of the wall surface of the combustion chamber.
【請求項11】請求項2において、 前記制御手段が、燃焼室内のEGRガスの分布状態を設
定するもの。
11. The device according to claim 2, wherein the control means sets a distribution state of EGR gas in the combustion chamber.
【請求項12】燃焼室の中心部に点火ギャップを位置さ
せたエンジンにおいて、 前記点火ギャップにより着火されることにより生じる火
炎が燃焼室外周縁部に到達するまでの間における燃焼割
合が均一化するように、混合気の燃焼に寄与する因子を
制御する、ことを特徴とするエンジンの燃焼制御方法。
12. In an engine having an ignition gap located in the center of a combustion chamber, a combustion ratio is uniform until a flame generated by ignition by the ignition gap reaches an outer peripheral edge of the combustion chamber. A method for controlling combustion of an engine, comprising: controlling a factor that contributes to combustion of an air-fuel mixture.
【請求項13】請求項12において、 燃焼中心部および燃焼室外周縁部の火炎伝幡速度がそれ
ぞれ早くなるように、かつ燃焼室中心部と外周縁部との
中間領域の火炎伝幡が遅くなるように制御するもの。
13. The flame spread according to claim 12, wherein the flame transfer speeds of the combustion center part and the outer peripheral edge part of the combustion chamber are respectively high, and the flame transfer speed of the intermediate region between the center part of the combustion chamber and the outer peripheral part is delayed. To control like.
【請求項14】請求項13において、 燃焼室中心部の火炎伝幡が燃焼室外周縁部の火炎伝幡速
度よりも早くなるように制御するもの。
14. The method according to claim 13, wherein the flame transfer rate at the center of the combustion chamber is higher than the flame transfer rate at the outer peripheral edge of the combustion chamber.
JP24523591A 1991-08-30 1991-08-30 Engine combustion control device and control method Expired - Fee Related JP3323523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24523591A JP3323523B2 (en) 1991-08-30 1991-08-30 Engine combustion control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24523591A JP3323523B2 (en) 1991-08-30 1991-08-30 Engine combustion control device and control method

Publications (2)

Publication Number Publication Date
JPH0559952A true JPH0559952A (en) 1993-03-09
JP3323523B2 JP3323523B2 (en) 2002-09-09

Family

ID=17130670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24523591A Expired - Fee Related JP3323523B2 (en) 1991-08-30 1991-08-30 Engine combustion control device and control method

Country Status (1)

Country Link
JP (1) JP3323523B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603301A (en) * 1994-07-07 1997-02-18 Yamaha Hatsudoki Kabushiki Kaisha Fuel-injected engine
US5819706A (en) * 1994-07-01 1998-10-13 Yamaha Hatsudoki Kabushiki Kaisha Air-assisted injection system for multi-valve engine
JP2009002331A (en) * 2007-05-18 2009-01-08 Japan Gas Association Auxiliary chamber type gas engine
JP2009215960A (en) * 2008-03-10 2009-09-24 Toyota Motor Corp Internal combustion engine
JP2010127261A (en) * 2008-12-01 2010-06-10 Nissan Motor Co Ltd Fuel injection control device of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5819706A (en) * 1994-07-01 1998-10-13 Yamaha Hatsudoki Kabushiki Kaisha Air-assisted injection system for multi-valve engine
US5603301A (en) * 1994-07-07 1997-02-18 Yamaha Hatsudoki Kabushiki Kaisha Fuel-injected engine
JP2009002331A (en) * 2007-05-18 2009-01-08 Japan Gas Association Auxiliary chamber type gas engine
JP2009215960A (en) * 2008-03-10 2009-09-24 Toyota Motor Corp Internal combustion engine
JP2010127261A (en) * 2008-12-01 2010-06-10 Nissan Motor Co Ltd Fuel injection control device of internal combustion engine

Also Published As

Publication number Publication date
JP3323523B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
JP3852363B2 (en) Engine control device
JP3105235B2 (en) engine
JP4045844B2 (en) Engine control device
JP2003049691A (en) Control system for self-ignition type engine
US5465695A (en) Ignition system for internal combustion engine
JPH0559952A (en) Control of combustion control device of engine and method thereof
JP2000008913A (en) Variable mixture concentration distribution control method for spark-ignition engine
JPH084641A (en) Multipoint ignition engine
JP2001207890A (en) Combustion control device of internal combustion engine
JPH05248277A (en) Cylinder injection spark ignition engine
JP4055292B2 (en) Direct injection spark ignition internal combustion engine fuel injection control device
JPH0639928B2 (en) Stratified charge engine
JPH06288330A (en) Combustion control device of engine
JP3207624B2 (en) Engine combustion chamber structure
JP3062270B2 (en) engine
JPH06288331A (en) Combustion control device of engine
JPH06288332A (en) Combustion chamber structure of engine
JPH0559953A (en) Combustion control device of engine
JP3131895B2 (en) Control device for multi-cylinder internal combustion engine
JP2896757B2 (en) Stratified charge engine
JPS6111419A (en) Direct injection type diesel engine
JP3273651B2 (en) Ignition timing control device for peripheral ignition engine
JPS6030416A (en) Stratiform charging engine
JP2001207850A (en) Combustion control system for internal combustion engine
JPH05321795A (en) Fuel supplying device for engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees