JPH0559597B2 - - Google Patents

Info

Publication number
JPH0559597B2
JPH0559597B2 JP31949589A JP31949589A JPH0559597B2 JP H0559597 B2 JPH0559597 B2 JP H0559597B2 JP 31949589 A JP31949589 A JP 31949589A JP 31949589 A JP31949589 A JP 31949589A JP H0559597 B2 JPH0559597 B2 JP H0559597B2
Authority
JP
Japan
Prior art keywords
printed circuit
resin
laminate
acid
allyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31949589A
Other languages
Japanese (ja)
Other versions
JPH03180091A (en
Inventor
Yukio Toyoda
Satoshi Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP31949589A priority Critical patent/JPH03180091A/en
Publication of JPH03180091A publication Critical patent/JPH03180091A/en
Publication of JPH0559597B2 publication Critical patent/JPH0559597B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、電気機器、電子機器、通信機器等に
用いられるプリント基板に関するものである。 「従来の技術」 従来よりプリント基板は、紙基材フエノール樹
脂積層板、紙基材不飽和ポリエステル樹脂積層板
もしくはガラス布基材エポキシ樹脂積層板などの
積層板に電気回路を形成して製造されている。こ
れらのプリント基板に用いられる積層板は、基材
に樹脂を含浸させ積層し、これらを加熱硬化する
ことにより製造されるものである。 「発明が解決しようとする課題」 ところが、フエノール樹脂を用いて積層板を製
造した場合には、フエノール樹脂の硬化に伴い水
等の反応副生物が発生し、この反応副生物が積層
板の物性、すなわちこれを用いたプリント基板の
物性に悪影響を与えるという問題があり、これを
避けるためには、通常大型のプレス機などで過大
な圧力をかける必要が生じる。さらに、フエノー
ル樹脂を用いた積層板およびこの積層板を用いた
プリント基板は、誘電率、誘電正接、耐トラツキ
ング等の電気特性が低いという欠点がある。 また、紙を基材としたフエノール樹脂またはガ
ラス布を基材としたエポキシ樹脂を用いて積層板
を製造する場合、通常樹脂を溶剤に溶かして溶液
とし、この溶液を基材に含浸させ、この含浸され
た基材から溶剤を除去することによりプリプレグ
と称する中間体を形成し、このプリプレグを高温
加圧下で積層することにより積層板が製造されて
いた。しかしながらこのようなプリプレグ法で積
層板を製造した場合は、原料価格や設備費が高く
なり、また工程も複雑となるという問題がある。 このような問題点を解決すべく、紙を基材とし
た不飽和ポリエステル樹脂による積層板が提案さ
れたが、不飽和ポリエステル樹脂は元来耐熱性が
乏しいため、その積層板およびこの積層板を用い
たプリント基板も熱間時の剛性が小さく、熱間時
の強度が不足するなどの問題がある。 本発明は、上記事情に鑑みてなされたもので、
プリプレグ法を用いずに製造でき、しかも熱間時
の剛性、強度等の物性が良好なプリント基板を提
供することを目的とするものである。 「課題を解決するための手段」 本発明者らは種々検討の結果、多塩基酸および
多価アルコールより構成されてなるポリエステル
の末端にアリルエステル基を有するアリルエステ
ル樹脂と、アリルエステル樹脂を溶解し、かつラ
ジカル重合可能な液状架橋性モノマーとを必須成
分として含有する含浸液を基材に含浸し、この含
浸した基材を積層してなる積層板を用いたことを
特徴とするプリント基板により上記目的が達成さ
れることを見出だし、本発明を完成するに至つた
ものである。 すなわち、紙基材フエノール樹脂積層板やガラ
ス布基材エポキシ樹脂積層板の製造上の問題点
を、上記含浸液を用いることにより解決し、しか
もこの含浸液を用いて積層板を形成し、この積層
板に電気回路を形成してプリント基板とすること
により、不飽和ポリエステル樹脂を用いて製造さ
れた積層板に電気回路を形成してなるプリント基
板よりも熱間時の諸物性が高く、かつフエノール
樹脂を用いて製造された積層板に電気回路を形成
してなるプリント基板よりも電気特性が良好なプ
リント基板を得ることができるのである。 以下、本発明のプリント基板について詳しく説
明する。 本発明に用いられるアリルエステル樹脂は、多
塩基酸と多価アルコールより構成されてなるポリ
エステルの末端の少なくとも一つにアリルエステ
ル基を有する樹脂である。 上記多塩基酸としては、例えば二塩基酸とし
て、オルソフタル酸、オルソフタル酸無水物、イ
ソフタル酸、テレフタル酸等のフタル酸類、テト
ラヒドロフタル酸、メチルテトラヒドロフタル
酸、エンドメチレンテトラヒドロフタル酸、メチ
ルエンドメチレンテトラヒドロフタル酸、ヘキサ
ヒドロフタル酸、メチルヘキサヒドロフタル酸及
びそれらの酸無水物等のヒドロフタル酸類、マロ
ン酸、コハク酸、グルタル酸、アジピン酸等の脂
肪族二塩基酸類、テトラブロムフタル酸、テトラ
クロロフタル酸、クロレンド酸及びそれらの酸無
水物等のハロゲン化二塩基酸類などが挙げられ、
三官能以上の多塩基酸としては、トリメリツト
酸、ピロメリツト酸及びそれらの酸無水物が挙げ
られる。これらの多塩基酸は、単独でも混合して
も用いることができる。 また、多価アルコールとしては、エチレングリ
コール、1,2−プロピレングリコール、1,4
−ブタンジオール、1,6−ヘキサンジオール、
ネオペンチルグリコール、1,4−シクロヘキサ
ンジメタノール、パラキシレングリコール等の脂
肪族、脂環族または芳香族を含んだ二価のアルコ
ール類の他 (Rは、水素または鎖状のアルキル基、nは2
〜10の整数) で表されるエチレンオキサイド、プロピレンオキ
サイド等のアルキレンオキサイドの付加反応によ
つて得られる二価のアルコールなどがあげられ
る。三価以上の多価アルコールとしては、例えば
グリセリン、トリメチロールプロパン等の脂肪族
の三価のアルコールやペンタエリスリトール、ソ
ルビトール等の四価以上のアルコールがあげられ
る。また、ジブロムネオペンチルグリコールやテ
トラブロムビスフエノールAのエチレンオキサイ
ドやプロピレンオキサイドの付加物のようなハロ
ゲン原子を含む脂肪族、脂環族、芳香族のハロゲ
ン化多価アルコールがあげられる。これらは、単
独でも混合しても使用することができる。 アリルエステル樹脂の製造法としては、例えば
特願昭63−262217号に提案されている方法などの
既知の方法が用いられ、特に限定されるものでな
い。 例えば、ジアリルテレフタレートなどの二塩基
酸のジアリルエステルと、上記多価アルコールと
をエステル交換触媒と共に反応器に仕込みアリル
アルコールを留去させながら反応させる方法など
がある。また、工業的にさらに有効な方法として
は、ジアリルテレフタレートの代りにジメチルテ
レフタレートなどの二塩基酸のジアルキルエステ
ルとアリルアルコールを多価アルコールとエステ
ル交換触媒と共に反応器に仕込み、メタノール等
の副製するアルコールを留去しながら反応させて
得る方法などが用いられる。また、反応温度によ
つてはハイドロキノンのような重合禁止剤を反応
液中に共存させても良い。 このようにしてポリエステルの末端の少なくと
も一つにアリル基を有するアリルエステル樹脂が
製造される。 このアリルエステル樹脂は、1種類で用いても
2種類以上混合して用いても良い。 また、上記多塩基酸の種類と上記多価アルコー
ルの種類を種々選ぶことによりアリルエステル樹
脂の種類を様々に変えることができ、この種々の
アリルエステル樹脂の中から、最適なものを選択
し、これを用いてプリント基板を製造することに
より、耐熱性を維持しながら、電気特性、打抜
性、難燃性などの良好なプリント基板を得ること
ができる。 また、本発明に用いられる架橋性モノマーと
は、ラジカル重合可能な炭素炭素二重結合をもつ
モノマーを示すものである。 このような架橋性モノマーとしては、例えばジ
アリルオルソフタレート、ジアリルイソフタレー
ト、ジアリルテレフタレート、スチレン、α−メ
チルスチレン、クロルスチレン、ビニルトルエ
ン、ジビニルベンゼン、(メタ)アクリル酸メチ
ル、(メタ)アクリル酸エチル、(メタ)アクリル
酸ブチル、(メタ)アクリル酸−2−エチルヘキ
シル、(メタ)アクリル酸ラウリル、(メタ)アク
リル酸ベンジル、アクリルニトリル、酢酸ビニ
ル、酢酸アリル、アクリルアミド、塩化ビニル、
トリメチロールプロパントリ(メタ)アクリレー
ト、ペンタエリスリトールトリ(メタ)アクリレ
ート等が挙げられる。 これら架橋性モノマーは、1種類でも、また2
種類以上混合して用いてもよい。 上記アリルエステル樹脂と、架橋性モノマーと
のラジカル重合を行う際に用いられる硬化触媒と
しては、有機過酸化物が適している。 このような有機過酸化物としては、例えば、メ
チルエチルケトンパーオキサイド、アセチルアセ
トンパーオキサイド等のケトンパーオキサイド
類、1,1−ビス(t−ブチルパーオキシ)3,
3,5−トリメチルシクロヘキサン、1,1−ビ
ス(t−ブチルパーオキシ)シクロヘキサン、
2,2−ビス(t−ブチルパーオキシ)オクタ
ン、n−ブチル−4,4−ビス(t−ブチルパー
オキシ)バレレート等のパーオキシケタール類、
t−ブチルハイドロパーオキサイド、クメンハイ
ドロパーオキサイド、ジイソプロピルベンゼンハ
イドロパーオキサイド、p−メンタンハイドロパ
ーオキサイド、2,5−ジメチルヘキサン−2,
5−ハイドロパーオキサイド、1,1,3,3−
テトラメチルブチルハイドロパーオキサイド等の
ハイドロパーオキサイド類、ジ−t−ブチルパー
オキサイド、t−ブチルクミルパーオキサイド、
ジクミルパーオキサイド、α,α′−ビス(t−ブ
チクミルパーオキサイド、α,α′−ビス(t−ブ
チルパーオキシ−m−イソプロピル)ベンゼン、
2,5−ジメチル−2,5−ジ(t−ブチルパー
オキシ)ヘキサン、2,5−ジメチル2,5−ジ
(t−ブチルパーオキシ)ヘキシン−3等のジア
ルキルパーオキサイド類、アセチルパーオキサイ
ド、iso−ブチリルパーオキサイド、オクタノイ
ルパーオキサイド、デカノイルパーオキサイド、
ラウロイルパーオキサイド、3,5,5−トリメ
チルヘキサノイルパーオキサイド、ベンゾイルパ
ーオキサイド、2,4−ジクロロベンゾイルパー
オキサイド等のジアシルパーオキサイド類、ジ−
iso−プロピルパーオキシジカーボネート、ジ−
2−エチルヘキシルパーオキシジカーボネート、
ジ−n−プロピルパーオキシジカーボネート、ジ
ミリスチルパーオキシジカーボネート、ジ−2−
エトキシエチルパーオキシジカーボネート、ジメ
トキシ−iso−プロピルパーオキシジカーボネー
ト、ジ(3−メチル−3−メトキシブチル)パー
オキシジカーボネート、ジアリルパーオキシジカ
ーボネート等のパーオキシジカーボネート類、t
−ブチルパーオキシアセテート、t−ブチルパー
オキシ−iso−ブチレート、t−ブチルパーオキ
シピバレート、t−ブチルパーオキシネオデカノ
エート、クミルパーオキシネオデカノエート、t
−ブチルパーオキシ−2−エチルヘキサノエー
ト、t−ブチルパーオキシ−3,5,5−トリメ
チルヘキサノエート、t−ブチルパーオキシラウ
レート、t−ブチルパーオキシベンゾエート、ジ
−t−ブチルジパーオキシ−iso−フタレート、
2,5−ジメチル−2,5−ジ(ベンゾイルパー
オキシ)ヘキサン、t−ブチルパーオキシイソプ
ロピルカーボネート、クミルパーオキシオクトエ
ート、t−ヘキシルパーオキシネオデカノエー
ト、t−ブチルパーオキシネオデカノエート、t
−ヘキシルパーオキシピバレート、t−ヘキシル
パーオキシネオヘキサノエート、クミルパーオキ
シネオヘキサノエート等のパーオキシエステル類
等があげられる。 これらの有機過酸化物は、1種類又は2種類以
上混合して、樹脂の種類、硬化条件に応じて用い
ることができる。また、硬化触媒としてはこのよ
うな有機過酸化物が適しているが、これに限られ
るものでなく他の硬化触媒であつてもよい。 本発明においては、含浸液の樹脂分中のアリル
エステル樹脂の量が40〜95重量%、好ましくは50
〜90重量%であり、また架橋性モノマーの量が5
〜60重量%、好ましくは10〜50重量%の範囲内で
あることが好ましい。 アリルエステル樹脂が40重量%より少ない場合
は、架橋密度が下がり本来の耐熱性が低下してし
まい、95重量%より多い場合は、含浸液の粘度が
高くなり基材への含浸時の取扱いが難しくなるた
め好ましくない。 また、架橋性モノマーを配合するのは、溶剤等
を使用したプリプレグ法を用いずに積層板の製造
を行うことにより、製造工程を簡略化することに
あり、本来固形もしくは粘調な液体であるアリル
エステル樹脂の粘度を下げることが第1の目的で
ある。また、架橋性モノマーは、その種類によつ
て、ラジカル反応による硬化速度を上げたり、材
料コストを下げる等の利点もあるが、配合量が多
すぎるとアリルエステル樹脂の本来の耐熱性を損
なうことになる。 従つて、架橋性モノマーの量が、5重量%より
少ない場合は、含浸時の取扱いが難しくなるとい
う問題を生じ、60重量%より多い場合は、上述し
たようにアリルエステル樹脂の本来の耐熱性を低
下させてしまうため好ましくない。 本発明に用いられる含浸液には必要に応じて難
燃剤、添加型の可塑剤、充填剤(たとえば水酸化
アルミニウム等の粒子)、安定剤、潤滑剤、無機
顔料、補強材、着色剤、離型剤、硬化促進剤等の
各種添加剤を添加することもできる。 特にプリント基板を得るにあたつて、難燃化処
法は重要であり、例えば骨格にハロゲン化多塩基
酸またはハロゲン化多価アルコールよりなるアリ
ルエステル樹脂を使用する難燃化の方法の他、添
加型の難燃剤や反応型の難燃剤を用いて難燃化す
る方法などが用いられる。 添加型の難燃剤としては、トリオクチルホスフ
エート、トリフエニルホスフエート、トリクレジ
ルホスフエート、トリフエニルホスフアイト、ト
リス(クロルエチル)ホスフエート等のリン系難
燃剤、塩素化パラフイン、デカブロムジフエニル
エーテル、テトラブロムジフエニルエーテル等の
ハロゲン系難燃剤、三酸化アンチモン、五酸化ア
ンチモン等のアンチモン化合物、ホウ酸亜鉛や水
酸化アルミニウム等があげられる。 また、反応型の難燃剤としては、難燃性および
得られる樹脂の物性の点から反応型のハロゲン含
有難燃性ビニルモノマーが好ましい。特に好まし
くは、炭素数1〜18の臭素もしくは塩素を含む脂
肪族もしくは脂環式飽和炭化水素基を有する多価
アルコールと飽和多塩基酸とのエステル化物にモ
ノグリシジルメタクリレートもしくはモノグリシ
ジルアクリレートを付加してなるハロゲン含有難
燃性ビニルモノマー1、一般式A,Bで表わされ
る臭素含有難燃性ビニルモノマー2,3が挙げら
れる。 なお、一般式中、R11,R12,R13は水素または
メチル基を表わす。 難燃性モノマー1の合成に用いられる多価アル
コールとしては脂肪族もしくは脂環式の炭素数1
〜12のアルコールが好ましく、入手が容易なもの
としてはジブロムネオペンチルグリコールを挙げ
ることができるが、これに限定されるものではな
い。また、難燃性モノマー2,3はジブロムネオ
ペンチルグリコールとメタアクリル酸とのエステ
ル化反応により合成することができる。 これら難燃性モノマーはプリント基板の難燃化
の要請にしたがつて種類および添加割合が選定さ
れるが、含浸液中に5〜70重量%の範囲で添加さ
れることが好ましい。添加量が5重量%より少な
い場合は難燃性の向上が期待できず、70重量%を
越えると難燃性以外の物性が低下するため好まし
くない。 なお、難燃化の方法としては上記アリルエステ
ル樹脂構成元素の一部にハロゲン原子を用いる方
法、添加型の難燃剤を用いる方法、反応型の難燃
剤を用いる方法などを組合せるて用いることも可
能である。 次に、上記含浸液を用いたプリント基板の製造
方法について説明する。 まず、プリント基板に用いられる積層板を製造
する方法の一例としては、基材に上記含浸液を含
浸させ、含浸させた基材を複数枚積層し(例えば
2〜20枚)、無圧または加圧下で加熱し、硬化成
形するといつた方法などが挙げられる。 上記基材としては、従来より積層板に用いられ
ている基材と同じものが使用でき、例えばガラス
繊維布、ガラス不織布等のガラス繊維状のもの、
クラフト紙、リンター紙等のセルロース系繊維を
主体とした紙、石綿等の無機質繊維系のシート
状、または帯状物などが挙げられる。基材として
紙を用いる場合、含浸性や品質の観点から、風乾
時の密度が0.3〜0.7g/cm3であるような、セルロ
ース繊維を主体とした紙、例えばクラフト紙が好
ましい。 これらの基材は、含浸液で含浸させる前にあら
かじめ、シランカツプリング剤、メチロールメラ
ミン、メチロールフエノール、メチロールグアナ
ミン、Nメチロール化合物等の処理剤を用い、含
浸乾燥処理を施すことことが好ましい。このよう
な処理を施すことにより、製造されるプリント基
板の電気特性の向上が図れる。 本発明のプリント基板に用いられる積層板の厚
みは、基材の種類、含浸させる樹脂組成物の組
成、積層板の用途によつて異るが通常0.5〜3mm
である。また、積層板中における樹脂組成物の割
合は30〜80重量%程度である。 このような積層板に、電気回路を形成すること
により本発明のプリント基板が得られる。 電気回路を形成する方法としては、通常用いら
れるエツチドフオイル法やアデイテイブ法が用い
られる。 エツチドフオイル法により電気回路を形成し、
プリント基板を製造するためには、予め上記積層
板に銅箔を貼り合わせる必要がある。 この銅箔としてはプリント基板への用途を目的
とした、電解銅箔が市販されており、これを用い
ることが、耐蝕性、エツチング性、接着性の観点
から好ましいが、本発明はこれに限定されるもの
でない。銅箔は厚み10〜100ミクロン程度が好ま
しい。 銅箔と基材とを効果的に接着させるためには、
接着剤を用いることが好ましく、接着剤としては
硬化過程で不必要な副反応生成物の発生しない液
状、もしくは半流動体の接着剤が好ましい。この
ような接着剤としては、例えばアクリレート系接
着剤、エポキシ樹脂系接着剤、エポキシアクリレ
ート系接着剤、イソシアネート系接着剤、もしく
はこれらの各種変性接着剤などを挙げることがで
きるが、積層板との接着性や耐トラツキング性の
点において、エポキシ樹脂系接着剤が好ましい。
エポキシ樹脂としては、ビスフエノールA型のも
のが好適であり、これに用いられるアミン硬化剤
としては、例えば脂肪族アミン、芳香族アミンな
どの通常アミン型硬化剤として用いられるもので
あればいかなるものであつてもよい。また、ポリ
アミド樹脂、末端アミノ基ポリブタジエンニトリ
ルゴムなども用いることができる。また上記硬化
剤の混合物を用いても良い。 この銅張積層板を得るには、本発明に用いられ
る積層板を一旦形成した後その上に上記接着剤を
用いて銅箔を張合わせても良いし、上記積層板を
得る際銅箔を同時に上記接着剤を用いるかもしく
は用いずして張合せて銅張積層板としても良い。 このようにして得られた銅張積層板をエツチン
グして電気回路を形成することによりプリント基
板が得られる。 また、アデイテイブ法による場合は、上記積層
板上へ無電解メツキ、さらに必要により電解メツ
キにより電気回路形成上必要な部分に銅を析出さ
せる方法が用いられる。 「実施例」 以下、本発明の積層板用樹脂組成物およびこの
樹脂組成物を用いた積層板について、実施例を用
いて具体的に説明するが、以下の実施例は、本発
明を限定するものではない。 〔アリルエステル樹脂Aの製造〕 蒸留装置を具備した1の三ツ口フラスコにジ
アリルテレフタレート610g、エチレングリコー
ル80g、ジブチル錫オキサイド0.1gを仕込んで窒
素気流下で180℃に加熱し、生成してくるアリル
アルコールを留去した。アリルアルコールが
143g程留出したところで、フラスコ内を50mmHg
まで減圧にし、留去速度を速めた。理論量のアリ
ルアルコールが留出した後、反応液を薄膜蒸発器
を用いて200℃に維持しながら、1mmHgにおい
て、未反応のジアリルテレフタレートを留去し
た。反応液をバツトにあけ冷却、粉砕して、粉状
のアリルエステル樹脂()を得た。 また、第1表に示す材料を用いた他は、上記ア
リルエステル樹脂()を得た方法と同様の方法
を用いて、アリルエステル樹脂(),()を得
た。用いた材料およびその配合量を第1表に示
す。
"Field of Industrial Application" The present invention relates to printed circuit boards used in electrical equipment, electronic equipment, communication equipment, and the like. ``Prior Art'' Conventionally, printed circuit boards have been manufactured by forming electrical circuits on laminates such as paper-based phenolic resin laminates, paper-based unsaturated polyester resin laminates, or glass cloth-based epoxy resin laminates. ing. The laminates used for these printed circuit boards are manufactured by impregnating base materials with resin, laminating them, and curing them by heating. ``Problems to be Solved by the Invention'' However, when a laminate is manufactured using a phenolic resin, reaction by-products such as water are generated as the phenolic resin hardens, and these reaction by-products affect the physical properties of the laminate. That is, there is a problem in that it adversely affects the physical properties of printed circuit boards using it, and in order to avoid this, it is usually necessary to apply excessive pressure using a large press or the like. Furthermore, a laminate using a phenolic resin and a printed circuit board using this laminate have a drawback that electrical properties such as dielectric constant, dielectric loss tangent, and tracking resistance are low. In addition, when manufacturing laminates using paper-based phenolic resin or glass cloth-based epoxy resin, the resin is usually dissolved in a solvent to form a solution, and the base material is impregnated with this solution. Laminates have been manufactured by removing the solvent from the impregnated substrate to form an intermediate called prepreg, and laminating the prepregs under pressure at high temperatures. However, when a laminate is manufactured using such a prepreg method, there are problems in that raw material costs and equipment costs are high, and the process is complicated. In order to solve these problems, a paper-based laminate made of unsaturated polyester resin was proposed, but since unsaturated polyester resin inherently has poor heat resistance, the laminate and this laminate were The printed circuit board used also has problems such as low rigidity when hot and insufficient strength when hot. The present invention was made in view of the above circumstances, and
The object of the present invention is to provide a printed circuit board that can be manufactured without using the prepreg method and has good physical properties such as rigidity and strength when hot. "Means for Solving the Problem" As a result of various studies, the present inventors dissolved an allyl ester resin having an allyl ester group at the end of a polyester composed of a polybasic acid and a polyhydric alcohol, and an allyl ester resin. and a radically polymerizable liquid crosslinkable monomer as an essential component, the substrate is impregnated with an impregnating liquid, and the impregnated substrates are laminated to form a laminated board. The inventors have discovered that the above object can be achieved and have completed the present invention. That is, the problems in manufacturing paper-based phenolic resin laminates and glass cloth-based epoxy resin laminates are solved by using the above impregnating liquid, and the laminates are formed using this impregnating liquid. By forming an electric circuit on a laminate to make a printed circuit board, it has higher physical properties when hot than a printed circuit board made by forming an electric circuit on a laminate manufactured using unsaturated polyester resin. It is possible to obtain a printed circuit board with better electrical characteristics than a printed circuit board formed by forming an electric circuit on a laminate made of phenolic resin. Hereinafter, the printed circuit board of the present invention will be explained in detail. The allyl ester resin used in the present invention is a polyester composed of a polybasic acid and a polyhydric alcohol, and has an allyl ester group at at least one terminal thereof. Examples of the polybasic acids include dibasic acids such as orthophthalic acid, orthophthalic anhydride, isophthalic acid, phthalic acids such as terephthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, and methylendomethylenetetrahydrophthalic acid. Hydrophthalic acids such as phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid and their acid anhydrides, aliphatic dibasic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, tetrabromophthalic acid, tetrachloro Examples include halogenated dibasic acids such as phthalic acid, chlorendic acid, and their acid anhydrides;
Examples of trifunctional or higher-functional polybasic acids include trimellitic acid, pyromellitic acid, and acid anhydrides thereof. These polybasic acids can be used alone or in combination. In addition, as polyhydric alcohols, ethylene glycol, 1,2-propylene glycol, 1,4
-butanediol, 1,6-hexanediol,
In addition to dihydric alcohols containing aliphatic, alicyclic or aromatic compounds such as neopentyl glycol, 1,4-cyclohexanedimethanol, paraxylene glycol, etc. (R is hydrogen or a chain alkyl group, n is 2
Examples include dihydric alcohols obtained by the addition reaction of alkylene oxides such as ethylene oxide and propylene oxide (an integer of ~10). Examples of trihydric or higher polyhydric alcohols include aliphatic trihydric alcohols such as glycerin and trimethylolpropane, and tetrahydric or higher alcohols such as pentaerythritol and sorbitol. Other examples include aliphatic, alicyclic, and aromatic halogenated polyhydric alcohols containing halogen atoms, such as dibromneopentyl glycol and adducts of tetrabrombisphenol A with ethylene oxide or propylene oxide. These can be used alone or in combination. The method for producing the allyl ester resin is not particularly limited, and may be any known method such as the method proposed in Japanese Patent Application No. 63-262217. For example, there is a method in which a diallyl ester of a dibasic acid such as diallyl terephthalate and the above-mentioned polyhydric alcohol are charged into a reactor together with a transesterification catalyst and reacted while distilling off allyl alcohol. In addition, as an industrially more effective method, instead of diallyl terephthalate, a dialkyl ester of a dibasic acid such as dimethyl terephthalate and allyl alcohol are charged into a reactor together with a polyhydric alcohol and a transesterification catalyst to produce by-products such as methanol. A method is used in which the alcohol is reacted while being distilled off. Further, depending on the reaction temperature, a polymerization inhibitor such as hydroquinone may be allowed to coexist in the reaction solution. In this way, an allyl ester resin having an allyl group at at least one end of the polyester is produced. This allyl ester resin may be used alone or in combination of two or more types. In addition, by selecting various types of the polybasic acid and polyhydric alcohol, the type of allyl ester resin can be varied, and from among these various allyl ester resins, the most suitable one is selected, By manufacturing a printed circuit board using this, it is possible to obtain a printed circuit board with good electrical properties, punchability, flame retardancy, etc. while maintaining heat resistance. Further, the crosslinking monomer used in the present invention refers to a monomer having a radically polymerizable carbon-carbon double bond. Examples of such crosslinking monomers include diallyl orthophthalate, diallyl isophthalate, diallyl terephthalate, styrene, α-methylstyrene, chlorostyrene, vinyltoluene, divinylbenzene, methyl (meth)acrylate, and ethyl (meth)acrylate. , butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, benzyl (meth)acrylate, acrylonitrile, vinyl acetate, allyl acetate, acrylamide, vinyl chloride,
Examples include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, and the like. These crosslinking monomers may be one type or two types.
More than one type may be mixed and used. Organic peroxides are suitable as the curing catalyst used when radical polymerizing the allyl ester resin and the crosslinkable monomer. Examples of such organic peroxides include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, 1,1-bis(t-butylperoxy)3,
3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane,
Peroxyketals such as 2,2-bis(t-butylperoxy)octane, n-butyl-4,4-bis(t-butylperoxy)valerate,
t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, p-menthane hydroperoxide, 2,5-dimethylhexane-2,
5-hydroperoxide, 1,1,3,3-
Hydroperoxides such as tetramethylbutyl hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide,
Dicumyl peroxide, α,α′-bis(t-butycumyl peroxide, α,α′-bis(t-butylperoxy-m-isopropyl)benzene,
Dialkyl peroxides such as 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexine-3, acetyl peroxide , iso-butyryl peroxide, octanoyl peroxide, decanoyl peroxide,
Diacyl peroxides such as lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, di-
iso-propyl peroxydicarbonate, di-
2-ethylhexyl peroxydicarbonate,
Di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di-2-
Peroxydicarbonates such as ethoxyethyl peroxydicarbonate, dimethoxy-iso-propyl peroxydicarbonate, di(3-methyl-3-methoxybutyl)peroxydicarbonate, diallyl peroxydicarbonate, t
-butyl peroxy acetate, t-butyl peroxy-iso-butyrate, t-butyl peroxy pivalate, t-butyl peroxy neodecanoate, cumyl peroxy neodecanoate, t
-butylperoxy-2-ethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxybenzoate, di-t-butyldi peroxy-iso-phthalate,
2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxyisopropyl carbonate, cumylperoxyoctoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecano Eight, t
Examples include peroxy esters such as -hexyl peroxy pivalate, t-hexyl peroxy neohexanoate, and cumyl peroxy neohexanoate. These organic peroxides can be used alone or in combination of two or more depending on the type of resin and curing conditions. Furthermore, although such organic peroxides are suitable as curing catalysts, the present invention is not limited thereto, and other curing catalysts may be used. In the present invention, the amount of allyl ester resin in the resin content of the impregnating liquid is 40 to 95% by weight, preferably 50% by weight.
~90% by weight, and the amount of crosslinking monomer is 5% by weight.
It is preferably within the range of ~60% by weight, preferably 10-50% by weight. If the allyl ester resin is less than 40% by weight, the crosslinking density will decrease and the original heat resistance will decrease, and if it is more than 95% by weight, the viscosity of the impregnating liquid will increase and it will be difficult to handle when impregnating the base material. This is not desirable because it becomes difficult. In addition, the purpose of blending crosslinking monomers is to simplify the manufacturing process by manufacturing laminates without using the prepreg method that uses solvents, etc. The first objective is to lower the viscosity of the allyl ester resin. Additionally, depending on the type of crosslinking monomer, there are advantages such as increasing the curing speed through radical reactions and lowering material costs, but if the amount is too large, it may impair the inherent heat resistance of the allyl ester resin. become. Therefore, if the amount of the crosslinking monomer is less than 5% by weight, handling during impregnation becomes difficult, and if it is more than 60% by weight, the inherent heat resistance of the allyl ester resin will be affected as described above. This is not preferable because it reduces the The impregnation liquid used in the present invention may contain flame retardants, additive plasticizers, fillers (for example, particles of aluminum hydroxide, etc.), stabilizers, lubricants, inorganic pigments, reinforcing materials, colorants, and release agents. Various additives such as molding agents and curing accelerators can also be added. Particularly in obtaining printed circuit boards, flame retardant treatments are important. Methods of making flame retardant using additive-type flame retardants or reactive-type flame retardants are used. Additive flame retardants include phosphorus flame retardants such as trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, triphenyl phosphite, tris(chloroethyl) phosphate, chlorinated paraffin, and decabrom diphenyl ether. , halogenated flame retardants such as tetrabrom diphenyl ether, antimony compounds such as antimony trioxide and antimony pentoxide, zinc borate and aluminum hydroxide. Further, as the reactive flame retardant, a reactive halogen-containing flame-retardant vinyl monomer is preferable from the viewpoint of flame retardancy and physical properties of the resulting resin. Particularly preferably, monoglycidyl methacrylate or monoglycidyl acrylate is added to an esterified product of a polyhydric alcohol having an aliphatic or alicyclic saturated hydrocarbon group containing bromine or chlorine having 1 to 18 carbon atoms and a saturated polybasic acid. Examples include halogen-containing flame-retardant vinyl monomer 1, which is represented by the following formulas, and bromine-containing flame-retardant vinyl monomers 2 and 3, which are represented by general formulas A and B. In addition, in the general formula, R 11 , R 12 and R 13 represent hydrogen or a methyl group. The polyhydric alcohol used in the synthesis of flame retardant monomer 1 is an aliphatic or alicyclic alcohol with 1 carbon number.
-12 alcohols are preferred, and dibromeneopentyl glycol can be mentioned as an easily available alcohol, but is not limited thereto. Moreover, the flame retardant monomers 2 and 3 can be synthesized by an esterification reaction between dibrome neopentyl glycol and methacrylic acid. The type and proportion of these flame-retardant monomers to be added are selected depending on the demand for flame-retardant printed circuit boards, but it is preferable that they be added to the impregnating liquid in an amount of 5 to 70% by weight. If the amount added is less than 5% by weight, no improvement in flame retardancy can be expected, and if it exceeds 70% by weight, physical properties other than flame retardance will deteriorate, which is not preferable. In addition, as a flame retardant method, a method using a halogen atom as a part of the constituent elements of the allyl ester resin, a method using an additive type flame retardant, a method using a reactive type flame retardant, etc. can be used in combination. It is possible. Next, a method for manufacturing a printed circuit board using the above-mentioned impregnating liquid will be explained. First, as an example of a method for manufacturing a laminate used for printed circuit boards, a base material is impregnated with the above impregnating liquid, a plurality of impregnated base materials are laminated (for example, 2 to 20 sheets), and Examples include methods such as heating under pressure and hardening and molding. As the above-mentioned base material, the same base materials as conventionally used for laminates can be used, such as glass fiber cloth, glass non-woven cloth, etc.
Examples include paper mainly composed of cellulose fibers such as kraft paper and linter paper, and sheets or strips made of inorganic fibers such as asbestos. When paper is used as the base material, from the viewpoint of impregnability and quality, it is preferable to use paper mainly composed of cellulose fibers, such as kraft paper, which has an air-dried density of 0.3 to 0.7 g/cm 3 . Before impregnating these substrates with the impregnating liquid, it is preferable to perform an impregnating drying treatment using a treatment agent such as a silane coupling agent, methylol melamine, methylol phenol, methylol guanamine, or N-methylol compound. By performing such treatment, it is possible to improve the electrical characteristics of the manufactured printed circuit board. The thickness of the laminate used in the printed circuit board of the present invention varies depending on the type of base material, the composition of the resin composition to be impregnated, and the use of the laminate, but is usually 0.5 to 3 mm.
It is. Further, the proportion of the resin composition in the laminate is about 30 to 80% by weight. The printed circuit board of the present invention can be obtained by forming an electric circuit on such a laminate. As a method for forming an electric circuit, a commonly used etched oil method or additive method is used. An electric circuit is formed using the etched oil method,
In order to manufacture a printed circuit board, it is necessary to bond copper foil to the laminate in advance. As this copper foil, electrolytic copper foil is commercially available for use in printed circuit boards, and it is preferable to use this from the viewpoints of corrosion resistance, etching properties, and adhesive properties, but the present invention is limited to this. It is not something that can be done. The thickness of the copper foil is preferably about 10 to 100 microns. In order to effectively bond the copper foil and the base material,
It is preferable to use an adhesive, and the adhesive is preferably a liquid or semi-liquid adhesive that does not generate unnecessary side reaction products during the curing process. Examples of such adhesives include acrylate adhesives, epoxy resin adhesives, epoxy acrylate adhesives, isocyanate adhesives, and various modified adhesives thereof. Epoxy resin adhesives are preferred in terms of adhesiveness and tracking resistance.
As the epoxy resin, bisphenol A type is preferred, and as the amine curing agent used therein, any amine curing agent that is commonly used as an amine type curing agent such as aliphatic amines and aromatic amines can be used. It may be. Further, polyamide resin, terminal amino group polybutadiene nitrile rubber, etc. can also be used. A mixture of the above curing agents may also be used. In order to obtain this copper-clad laminate, the laminate used in the present invention may be formed once and then copper foil may be laminated thereon using the above-mentioned adhesive, or the copper foil may be laminated on top of the laminate using the above-mentioned adhesive. At the same time, they may be bonded together to form a copper-clad laminate with or without the above adhesive. A printed circuit board is obtained by etching the copper-clad laminate thus obtained to form an electric circuit. In addition, in the case of an additive method, a method is used in which copper is deposited on the above-mentioned laminate by electroless plating and, if necessary, electrolytic plating in the areas necessary for forming an electric circuit. "Examples" Hereinafter, the resin composition for a laminate of the present invention and a laminate using this resin composition will be specifically explained using Examples, but the following Examples will limit the present invention. It's not a thing. [Production of Allyl Ester Resin A] 610 g of diallyl terephthalate, 80 g of ethylene glycol, and 0.1 g of dibutyltin oxide are charged into a three-necked flask equipped with a distillation device and heated to 180°C under a nitrogen stream to produce allyl alcohol. was removed. allyl alcohol
After distilling about 143g, the inside of the flask was adjusted to 50mmHg.
The distillation rate was increased by reducing the pressure to . After the theoretical amount of allyl alcohol was distilled off, unreacted diallyl terephthalate was distilled off at 1 mmHg while the reaction solution was maintained at 200° C. using a thin film evaporator. The reaction solution was poured into a vat, cooled, and pulverized to obtain a powdery allyl ester resin (). Furthermore, allyl ester resins () and () were obtained using the same method as the method for obtaining the allyl ester resin () above, except that the materials shown in Table 1 were used. Table 1 shows the materials used and their blending amounts.

〔不飽和ポリエステル樹脂の製造〕[Manufacture of unsaturated polyester resin]

攪拌機、温度計、ガス導入管、冷却器を備えた
1のセパラブルフラスコにプロピレングリコー
ル101g、イソフタル酸84gを仕込み、窒素吹込み
条件下、縮合水を留出させながら185℃で3時間
反応させた。次に、フマル酸88gを添加後185℃
で6時間反応させた。最後に系内を約12mmHgま
で減圧にし、フラスコ内温度を200℃まで上げ反
応を終え、酸価30の樹脂を得た。この樹脂をスチ
レンに溶解しスチレン濃度45%の不飽和ポリエス
テル樹脂()を得た。 (実施例 1〜3) 坪量135g/m2のクラフト紙をニカレジンS−
305(商品名、日本カーバイド製メチロールメラミ
ン)水溶液に浸してローラーで絞り、120℃で30
分間乾燥した。 得られた紙基材中にはメチロールメラミンが15
重量%展着していた。この紙を第2表に示す配合
の含浸液に浮かべて片面より樹脂液を含浸させ
た。 樹脂液の含浸された紙8枚と接着剤付銅箔MK
−61(三井金属鉱業製)を重ねあわせて、上下に
2枚のルミラーフイルム(東レ製、ポリエステル
フイルム)にはさみプレス機で熱圧した。熱圧条
件は140℃で10分間、圧力は10Kg/cm2であつた。
さらにその後乾燥機で150℃、1時間加熱し、硬
化を終了させた。得られた銅張積層板の肉厚は、
1.58〜1.62mmであつた。 この銅張積層板にエツチドフオイル法にて電気
回路を形成し、プリント基板を作製した。その電
気的特性の測定結果を第3表に示す。 (従来例 1) 積層板用樹脂組成物として、ジベンゾイルパー
オキサイド2部を加えた不飽和ポリエステル樹脂
()を用いた他は、実施例1と同様にして、プ
リント基板を作製した。その各種特性の測定結果
を第3表に示す。 (従来例 2) 市販の紙フエノール積層板(肉厚1.6mm、XPC
グレード)を使用し、実施例1と同様にしてプリ
ント基板を作製した。その各種特性の測定結果を
第3表に示す。
101 g of propylene glycol and 84 g of isophthalic acid were placed in a separable flask equipped with a stirrer, a thermometer, a gas inlet tube, and a condenser, and the mixture was reacted at 185°C for 3 hours under nitrogen bubbling conditions while distilling condensed water. Ta. Next, add 88g of fumaric acid and then heat to 185°C.
The mixture was allowed to react for 6 hours. Finally, the pressure inside the system was reduced to about 12 mmHg, and the temperature inside the flask was raised to 200°C to complete the reaction, and a resin with an acid value of 30 was obtained. This resin was dissolved in styrene to obtain an unsaturated polyester resin (2) with a styrene concentration of 45%. (Examples 1 to 3) Kraft paper with a basis weight of 135 g/m 2 was coated with Nikaresin S-
305 (trade name, Nippon Carbide Methylol Melamine) Soaked in an aqueous solution, squeezed with a roller, and heated at 120℃ for 30 minutes.
Dry for a minute. The resulting paper base contains 15 methylolmelamine.
% by weight was spread. This paper was floated in an impregnating liquid having the composition shown in Table 2, and one side of the paper was impregnated with the resin liquid. 8 sheets of paper impregnated with resin liquid and copper foil MK with adhesive
-61 (manufactured by Mitsui Kinzoku Mining Co., Ltd.) were stacked on top of each other and placed between two Lumirror films (manufactured by Toray Industries, Ltd., polyester film) and hot pressed using a scissor press. The heat and pressure conditions were 140°C for 10 minutes and a pressure of 10Kg/cm 2 .
Thereafter, it was heated in a dryer at 150°C for 1 hour to complete curing. The thickness of the obtained copper-clad laminate is
It was 1.58-1.62mm. An electric circuit was formed on this copper-clad laminate using the etched oil method to produce a printed circuit board. Table 3 shows the measurement results of the electrical characteristics. (Conventional Example 1) A printed circuit board was produced in the same manner as in Example 1, except that an unsaturated polyester resin () to which 2 parts of dibenzoyl peroxide was added was used as the resin composition for a laminate. The measurement results of various properties are shown in Table 3. (Conventional example 2) Commercially available paper phenol laminate (thickness 1.6 mm, XPC
A printed circuit board was produced in the same manner as in Example 1 using the same grade. The measurement results of various properties are shown in Table 3.

【表】【table】

【表】 第3表より明らかなように実施例のプリント基
板は、従来例1に示す不飽和ポリエステル樹脂を
用いて製造されたプリント基板より耐熱性が高
く、従来例2に示すフエノール樹脂を用いたプリ
ント基板よりも電気特性にすぐれている。 なお、第3表中の誘電率、誘電正接、絶縁抵
抗、表面抵抗および熱間曲げ弾性率の測定方法
は、JIS C6481に準じて行なつた。また、比較ト
ラツキング指数は、IEC法にて測定した。誘電率
および誘電正接の測定値は1MHzにおける値で、
表面抵抗は積層板面にて測定した値を示し、比較
トラツキング指数の値は接着面にて測定した値を
示す。 耐熱性は、プリント基板を260℃、1分間半田
浴浸漬した後、目視による外観検査により行つ
た。 「発明の効果」 以上説明したように、本発明のプリント基板
は、多塩基酸および多価アルコールより構成され
てなるポリエステルの末端にアリルエステル基を
有するアリルエステル樹脂と、アリルエステル樹
脂を溶解し、かつラジカル重合可能な液状架橋性
モノマーとを必須成分として含有する含浸液を基
材に含浸し、この含浸した基材を積層してなる積
層板を用いたことを特徴とするプリント基板であ
るので、プリント基板を製造する際に、プリプレ
グ法を用いることなくプリント基板が製造でき、
これにより原料価格や設備費などのコストを低下
させることができると共に簡単な工程でプリント
基板を製造することができ、かつ得られたプリン
ト基板は、耐熱性および電気的特性に優れたもの
である。 従つて、本発明は耐熱性および電気的特性に優
れたプリント基板を低コストで提供することがで
きるという効果を有するものである。
[Table] As is clear from Table 3, the printed circuit board of the example has higher heat resistance than the printed circuit board manufactured using the unsaturated polyester resin shown in Conventional Example 1, and the printed circuit board manufactured using the phenol resin shown in Conventional Example 2 has higher heat resistance. It has better electrical characteristics than conventional printed circuit boards. The methods for measuring the dielectric constant, dielectric loss tangent, insulation resistance, surface resistance, and hot bending modulus in Table 3 were conducted in accordance with JIS C6481. In addition, the comparative tracking index was measured using the IEC method. The measured values of permittivity and dielectric loss tangent are at 1MHz,
The surface resistance shows the value measured on the laminate surface, and the comparative tracking index value shows the value measured on the adhesive surface. Heat resistance was determined by visual inspection of the printed circuit board after immersing it in a solder bath at 260°C for 1 minute. "Effects of the Invention" As explained above, the printed circuit board of the present invention is produced by dissolving an allyl ester resin having an allyl ester group at the end of a polyester made of a polybasic acid and a polyhydric alcohol, and an allyl ester resin. , and a radically polymerizable liquid crosslinkable monomer as essential components, the substrate is impregnated with an impregnating liquid, and the impregnated substrates are laminated to form a laminated board. Therefore, when manufacturing printed circuit boards, printed circuit boards can be manufactured without using the prepreg method.
This makes it possible to reduce costs such as raw material prices and equipment costs, and to manufacture printed circuit boards through simple processes, and the resulting printed circuit boards have excellent heat resistance and electrical properties. . Therefore, the present invention has the effect that a printed circuit board with excellent heat resistance and electrical characteristics can be provided at low cost.

Claims (1)

【特許請求の範囲】[Claims] 1 多塩基酸および多価アルコールより構成され
てなるポリエステルの末端にアリルエステル基を
有するアリルエステル樹脂と、アリルエステル樹
脂を溶解し、かつラジカル重合可能な液状架橋性
モノマーとを必須成分として含有する含浸液を基
材に含浸し、この含浸した基材を積層してなる積
層板を用いたことを特徴とするプリント基板。
1 Contains as essential components an allyl ester resin having an allyl ester group at the end of a polyester composed of a polybasic acid and a polyhydric alcohol, and a liquid crosslinking monomer that dissolves the allyl ester resin and is capable of radical polymerization. A printed circuit board characterized by using a laminate board made by impregnating a base material with an impregnating liquid and laminating the impregnated base materials.
JP31949589A 1989-12-08 1989-12-08 Printed board Granted JPH03180091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31949589A JPH03180091A (en) 1989-12-08 1989-12-08 Printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31949589A JPH03180091A (en) 1989-12-08 1989-12-08 Printed board

Publications (2)

Publication Number Publication Date
JPH03180091A JPH03180091A (en) 1991-08-06
JPH0559597B2 true JPH0559597B2 (en) 1993-08-31

Family

ID=18110858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31949589A Granted JPH03180091A (en) 1989-12-08 1989-12-08 Printed board

Country Status (1)

Country Link
JP (1) JPH03180091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122048A (en) * 1994-10-20 1996-05-17 Tokyo Denki Komusho:Kk Clearance measuring/recording device by use of taper gauge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727094B2 (en) * 2001-09-17 2011-07-20 利昌工業株式会社 Method for producing thermosetting resin laminated tube
JP2010162737A (en) * 2009-01-14 2010-07-29 Sumitomo Bakelite Co Ltd Laminate plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122048A (en) * 1994-10-20 1996-05-17 Tokyo Denki Komusho:Kk Clearance measuring/recording device by use of taper gauge

Also Published As

Publication number Publication date
JPH03180091A (en) 1991-08-06

Similar Documents

Publication Publication Date Title
US4929494A (en) Fibrous substrates impregnated with a curable composition
US5116670A (en) Allyl ester resin composition and laminated sheet using the same
JPH0559597B2 (en)
JPS642136B2 (en)
JPH03115415A (en) Resin composition for laminate and laminate prepared by using same
JPH0236218A (en) Thermosetting resin composition and laminated sheet for electric use
JPH0425450A (en) Copper-clad laminated sheet
JPH03134032A (en) Production of laminated board
KR950011045B1 (en) Method of forming a electric layer-board
JPH0615662B2 (en) Flame-retardant unsaturated polyester resin composition
JPH03182515A (en) Laminating resin composition
KR100559744B1 (en) Manufacturing method of printed circuit board made of flame-proof polyester film
JPH04129738A (en) Fire retardant electric laminated sheet
JPH03182514A (en) Laminating resin composition
JPH04105932A (en) Electric laminated sheet
JPH0410928A (en) Fire-retardant copper-clad laminated sheet
JPS5930813A (en) Flame-retardant unsaturated polyester resin composition and laminated board
JPH03181548A (en) Resin composition for laminated sheet
JPH0582292B2 (en)
JPS59191709A (en) Flame-retarding unsaturated polyester resin composition and its molding
JPH04106995A (en) Electric laminate
JPH0251446B2 (en)
JPH0618908B2 (en) Method for manufacturing electrical laminate
JPH0412843A (en) Metal foil clad laminated sheet
JPH04141413A (en) Electric laminate