JPH055874B2 - - Google Patents

Info

Publication number
JPH055874B2
JPH055874B2 JP7465288A JP7465288A JPH055874B2 JP H055874 B2 JPH055874 B2 JP H055874B2 JP 7465288 A JP7465288 A JP 7465288A JP 7465288 A JP7465288 A JP 7465288A JP H055874 B2 JPH055874 B2 JP H055874B2
Authority
JP
Japan
Prior art keywords
molecular weight
weight
alkyl
antifouling agent
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7465288A
Other languages
Japanese (ja)
Other versions
JPH01247488A (en
Inventor
Naoyuki Ikenaga
Mitsuhiro Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP7465288A priority Critical patent/JPH01247488A/en
Publication of JPH01247488A publication Critical patent/JPH01247488A/en
Publication of JPH055874B2 publication Critical patent/JPH055874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は原油または原油のさまざまな溜分の処
理、および原油からつくられる石油製品の生成を
改変する各種のプロセスから回収された製品およ
び溜分の処理において、高温度の熱伝導部を有す
る装置における汚れ付着の防止、すなわつ熱伝達
装置内面上に沈着および堆積する付着物を減少さ
せるための汚れ防止剤およびこれを用いる汚れ防
止方法に関する。さらに詳細には原油の常圧蒸留
工程において、シエルアンドチユーブ型の原油予
熱熱交換器内部に生じる汚れの付着を防止するた
めの添加剤組成物および汚れ防止方法に関する。 〔従来の技術〕 石油精製工業では各種処理工程において、非常
に多くの熱交換器を用いてプロセス流の加熱およ
び冷却を行つている。例えば常圧蒸留工程におい
ては、原油は加熱炉入口に到達する間に多くの熱
交換器を通つて予熱される。シエルアンドチユー
ブ型熱交換器では加熱側(シエル側)は常圧蒸留
残油が使用される。すなわち加熱源である常圧蒸
留残油は冷却され、チユーブ内と通る原油は加熱
される。このような処理工程において、熱交換器
内面上に沈着および堆積する付着物、すなわち汚
れが問題となる。この汚れ物質は熱伝達効率の低
下、圧力降下の増大および通油量の損失という重
大な障害を引き起こす。このような障害が生じた
場合には装置の運転を停止し、汚れ付着物を除去
する作業を定期的に行わなければならないが、こ
の清掃作業を頻繁に行うことは経済的に極めて不
利なものである。汚れ物質の付着を防止するため
に、従来より供給原料に薬剤を添加する多くの方
法が提案されている。斯かる薬剤としては、例え
ばモノカルボン酸とアルキレンポリアミンとのア
ミド縮合生成物(特公昭46−23504号)、アンモニ
ア(特開昭54−69106号)、ポリアルキレンアミン
(特開昭54−129490号)、ポリオキシアルキレンカ
ルバメート(特開昭59−232170号)などが公知で
ある。しかし、これらの化合物を原油などの供料
原料に添加することによつて、ある程度汚れの付
着を防止することができるが、まだ十分なもので
はない。 〔発明が解決しようとする課題〕 従つて、本発明は、石油精製工程において、液
体炭化水素熱交換器および各種処理装置の汚れの
付着を防止する高性能な添加剤組成物および汚れ
防止方法を提供することを目的とするものであ
る。さらに詳細には常圧蒸留工程において、原油
の予熱熱交換器内面上に汚れが付着するのを防止
する高性能な添加剤組成物および汚れ防止方法を
提供することを目的とするものである。 〔課題を解決するための手段〕 斯かる実状に鑑み、本発明者は、汚れ物質の分
析と汚れ付着機構について鋭意研究を行つた結
果、上記目的にかなつた汚れ防止用添加剤を見出
し、本発明を完成した。 すなわち、本発明は、次の成分(A)及び(B)、 (A) 炭化水素基部分の分子量が300〜5000のアル
キルまたはアルケニルコハク酸イミド、 (B) 極性モノマーをグラフト重合させて得られる
重量平均分子量50000〜500000のポリアルキル
メタクリレート、 を1:9〜9:1の重量割合で含有することを特
徴とする液体炭化水素熱交換器用汚れ防止剤、並
びにこれを使用する汚れ防止方法を提供するもの
である。 本発明汚れ防止剤の(A)成分のアルキルまたはア
ルケニルコハク酸イミドは、アルキルまたはアル
ケニル置換コハク酸あるいはその無水物と窒素原
子を2〜6個有するポリアルキレンポリアミンと
の縮合反応によつて得られる。アルキルまたはア
ルケニル置換コハク酸の炭化水素基部分の分子量
は300〜5000、特に600〜3000が好ましい。分子量
が大きすぎても、小さすぎてもアルキルまたはア
ルケニルコハク酸イミドの油溶解性が悪くなり、
十分な油中分散性を示すことができず好ましくな
い。窒素原子を2〜6個有するポリアルキレンポ
リアミンとしては、エチレンジアミン、ジエチレ
ントリアミン、トリエチレンテトラミン、テトラ
エチレンペンタミン、ペンタエチレンヘキサミ
ン、N−オクタデジルプロピレンジアミン、N−
オレイルプロピレンジアミン、N−オクタデシル
ジプロピレントリアミン、N−オレイルトリプロ
ピレンテトラミンなどを例示することができる。 また、(B)成分のポリアルキルメタクリレート
は、炭素数10〜18個を有する脂肪族一価アルコー
ルとメタクリル酸を反応させて得られるアルキル
メタクリレートモノマーと極性モノマーをグラフ
ト共重合させることにより製造される。好ましい
極性モノマーとしてはビニルピロリドン、ビニル
ピリジン、ジエチルアミノエチルメタクリレート
などを例示できるが、ビニルピロリドンが特に好
ましい。ポリアルキルメタクリレート中の極性モ
ノマーの割合は1〜10重量%が好ましく、特に3
〜7重量%が好ましい。極性モノマーの割合が多
すぎても、少なすぎても十分な油中分散性を示す
ことができず好ましくない。またこのポリアルキ
ルメタクリレートの重量平均分子量は50000〜
500000、特に150000〜300000が好ましい。平均分
子量が小さすぎると立体障害効果による分散性能
が悪くなり、大きすぎると粘度が高くなり、また
油溶解性が悪くなつて好ましくない。 (A)成分と(B)成分の混合割合は、処理する原油や
石油製品の種類によつても異なるが、重量割合で
1:9〜9:1特に3:7〜7:3が好ましい。 本発明の汚れ防止剤を用いて汚れを防止するに
は、例えば、汚れ防止剤を有機溶剤に溶解し、取
り扱いやすい粘度としておき、連続的に炭化水素
流に5〜200PPMの割合で注入するのが好まし
い。添加濃度が少なすぎると汚れ防止効果が発揮
されず、逆に多すぎると添加剤の分解生成物によ
る悪影響や経済的にみても不都合が生じることに
なるため、特に10〜50PPMの添加が好ましい。
原油の常圧蒸留工程を例にとると、添加場所は原
油側、残油側の何れでもよいが、原油側に添加す
る場合には脱塩槽出口で注入するのが好ましく、
残油側に添加する場合には蒸留塔残油出口ポンプ
のサクシヨン側に注入するのが好ましい。 〔作用〕 本発明における(A)および(B)成分の組合せによる
汚れ防止は、汚れ物質の分散、表面状態の変化に
よる凝集の防止、及び熱交換器内表面の保護等の
複合効果によつて達成されるものと考えられる。 〔実施例〕 次に実施例により本発明をさらに具体的に説明
するが、本発明はこれらの実施例によつて限定さ
れるものではない。 実施例 1 汚れ防止剤の汚れ防止性能試験は、アルコア試
験装置を使用して行つた。この試験の原理は次の
通りである。一定の入口温度に電気的に加熱され
るテストチユーブを含む管中に試験油を一定流速
で供給し、出口温度を一定に保つように十分な熱
をテストチユーブに供給する。テストチユーブ上
に汚れが析出すると、熱伝導性が悪くなり試験油
の出口温度を一定に保つためにはテストチユーブ
の温度を上昇させなければならない。最初のテス
トチユーブの温度と試験最終時までの温度変化、
およびテストチユーブの試験前後での重量変化を
測定する。この温度上昇(ΔT)およびテストチ
ユーブ上の析出物の量が汚れの程度を示してい
る。試験時間は7時間とした。 試験油は中東系重質原油と中東系重質常圧残油
を重量比1:1の割合で混合したものを使用し
た。 実施例および比較例の試験に用いた汚れ防止剤
は次の通りである。 添加剤A: アルケニルコハク酸イミド(炭化
水素基部分の分子量1500) 添加剤B: ポリアルキルメタクリレート(ビ
ニルピロリドン6重量%含有) 添加剤C: モノカルボン酸とポリアルキレン
ポリアミンの縮合アミド生成物。 添加剤D: 市販品(ポリアルキルメタクリレ
−ト系) 表−1に汚れ防止剤および混合割合、添加量、
テストチユーブの温度上昇(ΔT)および汚れ付
着による重量増加分を示した。この結果より本発
明の汚れ防止剤は、低添加量でテストチユーブの
温度上昇および汚れの付着による重量増加分が小
さく、汚れ防止性能が優れていた。
INDUSTRIAL APPLICATION The present invention is useful in the treatment of crude oil or various fractions of crude oil, and in the treatment of products and fractions recovered from various processes that modify the production of petroleum products made from crude oil. The present invention relates to an antifouling agent for preventing fouling in a device having a heat conduction portion, that is, for reducing fouling that deposits and accumulates on the inner surface of a heat transfer device, and a fouling preventing method using the same. More specifically, the present invention relates to an additive composition and a method for preventing dirt from forming inside a shell-and-tube type crude oil preheating heat exchanger in a crude oil atmospheric distillation process. BACKGROUND OF THE INVENTION The petroleum refining industry uses numerous heat exchangers to heat and cool process streams in various processing steps. For example, in an atmospheric distillation process, crude oil is preheated through a number of heat exchangers before reaching the furnace inlet. In shell and tube heat exchangers, atmospheric distillation residual oil is used on the heating side (shell side). That is, the atmospheric distillation residual oil, which is a heating source, is cooled, and the crude oil passing through the tube is heated. In such processing steps, deposits or dirt that settles and accumulates on the inner surface of the heat exchanger becomes a problem. This fouling material causes serious problems in terms of reduced heat transfer efficiency, increased pressure drop, and loss of oil flow. If such a problem occurs, the operation of the equipment must be stopped and the dirt deposits must be removed periodically, but it is economically disadvantageous to perform this cleaning work frequently. It is. In order to prevent the adhesion of fouling substances, many methods have been proposed in the past for adding chemicals to the feedstock. Examples of such agents include amide condensation products of monocarboxylic acids and alkylene polyamines (Japanese Patent Publication No. 46-23504), ammonia (Japanese Patent Publication No. 54-69106), polyalkylene amines (Japanese Patent Publication No. 54-129490). ), polyoxyalkylene carbamate (Japanese Unexamined Patent Publication No. 59-232170), and the like are known. However, although it is possible to prevent the adhesion of dirt to some extent by adding these compounds to raw materials such as crude oil, it is still not sufficient. [Problems to be Solved by the Invention] Therefore, the present invention provides a high-performance additive composition and a method for preventing fouling of liquid hydrocarbon heat exchangers and various processing equipment in petroleum refining processes. The purpose is to provide More specifically, it is an object of the present invention to provide a high-performance additive composition and a method for preventing dirt from adhering to the inner surface of a crude oil preheating heat exchanger during an atmospheric distillation process. [Means for Solving the Problems] In view of the above-mentioned circumstances, the inventor of the present invention conducted intensive research on the analysis of dirt substances and the dirt adhesion mechanism, and as a result, discovered a dirt-preventing additive that met the above purpose, and developed the present invention. Completed the invention. That is, the present invention is obtained by graft polymerizing the following components (A) and (B), (A) an alkyl or alkenyl succinimide whose hydrocarbon group has a molecular weight of 300 to 5,000, and (B) a polar monomer. Provided is an antifouling agent for a liquid hydrocarbon heat exchanger, characterized in that it contains a polyalkyl methacrylate having a weight average molecular weight of 50,000 to 500,000 in a weight ratio of 1:9 to 9:1, and a antifouling method using the same. It is something to do. The alkyl or alkenyl succinimide as component (A) of the antifouling agent of the present invention is obtained by a condensation reaction between an alkyl or alkenyl substituted succinic acid or its anhydride and a polyalkylene polyamine having 2 to 6 nitrogen atoms. . The molecular weight of the hydrocarbon group moiety of the alkyl- or alkenyl-substituted succinic acid is preferably 300 to 5,000, particularly preferably 600 to 3,000. If the molecular weight is too large or too small, the alkyl or alkenyl succinimide will have poor oil solubility.
It is not preferable because it cannot exhibit sufficient dispersibility in oil. Examples of polyalkylene polyamines having 2 to 6 nitrogen atoms include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-octadecylpropylenediamine, N-
Examples include oleylpropylene diamine, N-octadecyldipropylenetriamine, and N-oleyltripropylenetetramine. In addition, the polyalkyl methacrylate of component (B) is produced by graft copolymerizing an alkyl methacrylate monomer obtained by reacting an aliphatic monohydric alcohol having 10 to 18 carbon atoms with methacrylic acid and a polar monomer. . Preferred polar monomers include vinylpyrrolidone, vinylpyridine, diethylaminoethyl methacrylate, and the like, with vinylpyrrolidone being particularly preferred. The proportion of polar monomer in the polyalkyl methacrylate is preferably 1 to 10% by weight, particularly 3% by weight.
~7% by weight is preferred. If the proportion of the polar monomer is too high or too low, sufficient dispersibility in oil cannot be exhibited, which is undesirable. In addition, the weight average molecular weight of this polyalkyl methacrylate is 50,000~
500,000, particularly preferably 150,000 to 300,000. If the average molecular weight is too small, the dispersion performance will be poor due to steric hindrance effect, and if it is too large, the viscosity will be high and the oil solubility will be poor, which is not preferable. The mixing ratio of component (A) and component (B) varies depending on the type of crude oil or petroleum product to be treated, but a weight ratio of 1:9 to 9:1, particularly 3:7 to 7:3, is preferable. To prevent fouling using the antifouling agent of the present invention, for example, the antifouling agent may be dissolved in an organic solvent to a manageable viscosity and continuously injected into a hydrocarbon stream at a rate of 5 to 200 PPM. is preferred. If the additive concentration is too low, the antifouling effect will not be exhibited, and if the additive concentration is too high, the decomposition products of the additive will have an adverse effect and cause economical disadvantages, so addition of 10 to 50 PPM is particularly preferred.
Taking the crude oil atmospheric distillation process as an example, the addition location can be either the crude oil side or the residual oil side, but when adding to the crude oil side, it is preferable to inject it at the outlet of the desalting tank.
When it is added to the residual oil side, it is preferably injected into the suction side of the residual oil outlet pump of the distillation column. [Function] The combination of components (A) and (B) in the present invention prevents fouling due to the combined effect of dispersing fouling substances, preventing agglomeration due to changes in surface conditions, and protecting the inner surface of the heat exchanger. It is believed that this will be achieved. [Examples] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 Antifouling performance testing of antifouling agents was conducted using an Alcoa test apparatus. The principle of this test is as follows. Test oil is fed at a constant flow rate into a tube containing a test tube that is electrically heated to a constant inlet temperature, and sufficient heat is supplied to the test tube to maintain a constant outlet temperature. When dirt is deposited on the test tube, thermal conductivity deteriorates, and the temperature of the test tube must be increased in order to maintain a constant outlet temperature of the test oil. The temperature of the initial test tube and the temperature change until the end of the test,
and measure the weight change of the test tube before and after the test. This temperature rise (ΔT) and the amount of precipitate on the test tube indicate the degree of contamination. The test time was 7 hours. The test oil used was a mixture of Middle Eastern heavy crude oil and Middle Eastern heavy atmospheric residual oil at a weight ratio of 1:1. The antifouling agents used in the tests of Examples and Comparative Examples are as follows. Additive A: Alkenylsuccinimide (molecular weight of hydrocarbon group moiety: 1500) Additive B: Polyalkyl methacrylate (contains 6% by weight of vinylpyrrolidone) Additive C: Condensation amide product of monocarboxylic acid and polyalkylene polyamine. Additive D: Commercial product (polyalkyl methacrylate type) Table 1 shows antifouling agents, mixing ratios, amounts added,
The temperature increase (ΔT) of the test tube and the weight increase due to dirt adhesion are shown. The results show that the antifouling agent of the present invention had excellent antifouling performance, with a small increase in temperature of the test tube and a small increase in weight due to adhesion of dirt when added in a low amount.

【表】 実施例 2 実施例1に示した汚れ防止剤(表−1のA/B
=5/5)を原油の常圧蒸留装置の常圧蒸留残油
の流れに25PPM、4カ月間常時添加し、熱交換
器を通過する原油の熱交換器出口温度を測定し
た。4カ月通油後同一原油について比較した結果
は表−2の通りであつた。汚れ防止剤の添加によ
り、熱交換器の熱交換効率が高まり、原油の熱交
換器出口温度は添加しない場合に比べ1.2℃高ま
つた。これにより原油の熱交換器出口温度の低下
傾向が約15%改善された。
[Table] Example 2 Antifouling agent shown in Example 1 (A/B in Table 1)
= 5/5) was constantly added at 25 PPM to the atmospheric distillation residue stream of the crude oil atmospheric distillation apparatus for 4 months, and the heat exchanger outlet temperature of the crude oil passing through the heat exchanger was measured. Table 2 shows the results of comparing the same crude oil after 4 months of oil circulation. The addition of the antifouling agent increased the heat exchange efficiency of the heat exchanger, and the crude oil heat exchanger outlet temperature was 1.2°C higher than when no antifouling agent was added. This improved the tendency for the crude oil heat exchanger outlet temperature to decrease by approximately 15%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、石油精製工業の各種処理工程
においては、熱交換器内面上に沈着および堆積す
る付着物の量を著しく低減することができる。特
に常圧蒸留工程に用いられると、原油予熱熱交換
器への汚れの付着が著しく低減され、汚れ付着物
の除去作業の頻度を少なくすることができるとと
もに、加熱炉入口の温度低下を防止し、燃料消費
量を著しく節減することができる。本発明の汚れ
防止剤を添加して精製された重油は、燃焼機器に
使用される際の熱交換器やパイプの汚れをも低減
し得る。
According to the present invention, it is possible to significantly reduce the amount of deposits deposited and deposited on the inner surface of a heat exchanger in various processing steps in the petroleum refining industry. In particular, when used in the atmospheric distillation process, the adhesion of dirt to the crude oil preheating heat exchanger is significantly reduced, making it possible to reduce the frequency of removal work of dirt and adhesion, and preventing a drop in temperature at the inlet of the heating furnace. , fuel consumption can be significantly reduced. Heavy oil refined by adding the antifouling agent of the present invention can also reduce fouling of heat exchangers and pipes when used in combustion equipment.

Claims (1)

【特許請求の範囲】 1 次の成分(A)及び(B)、 (A) 炭化水素基部分の分子量が300〜5000のアル
キルまたはアルケニルコハク酸イミド、 (B) 極性モノマーをグラフト重合させて得られる
重量平均分子量50000〜500000のポリアルキル
メタクリレート、 を1:9〜9:1の重量割合で含有することを特
徴とする液体炭化水素熱交換器用汚れ防止剤。 2 アルキルまたはアルケニルコハク酸イミド
が、炭化水素基部分の分子量が300〜5000のアル
キルまたはアルケニルコハク酸と、窒素原子を2
〜6個有するポリアルキレンポリアミンとの反応
によつて得られるものであることを特徴とする請
求項1記載の汚れ防止剤。 3 ポリアルキルメタクリレートが、極性モノマ
ーとしてビニルピロリドンを1〜10重量%グラフ
ト重合させたものであることを特徴する請求項1
記載の汚れ防止剤。 4 液体炭化水素を熱交換器に通し加熱または冷
却を行うに際し、次の成分(A)及び(B)、 (A) 炭化水素基部分の分子量が300〜5000のアル
キルまたはアルケニルコハク酸イミド、 (B) 極性モノマーをグラフト重合させて得られる
重量平均分子量50000〜500000のポリアルキル
メタクリレート、 を1:9〜9:1の重量割合で含有する汚れ防止
剤を添加することを特徴とする汚れ防止方法。
[Scope of Claims] 1. A compound obtained by graft polymerizing the following components (A) and (B), (A) an alkyl or alkenyl succinimide whose hydrocarbon group has a molecular weight of 300 to 5,000, and (B) a polar monomer. An antifouling agent for a liquid hydrocarbon heat exchanger, characterized in that it contains a polyalkyl methacrylate having a weight average molecular weight of 50,000 to 500,000 in a weight ratio of 1:9 to 9:1. 2 Alkyl or alkenyl succinimide is an alkyl or alkenyl succinimide whose hydrocarbon group has a molecular weight of 300 to 5000 and a nitrogen atom of 2
2. The antifouling agent according to claim 1, wherein the antifouling agent is obtained by a reaction with a polyalkylene polyamine having .about.6 polyalkylene polyamines. 3. Claim 1, wherein the polyalkyl methacrylate is obtained by graft polymerizing 1 to 10% by weight of vinylpyrrolidone as a polar monomer.
Antifouling agent listed. 4 When heating or cooling liquid hydrocarbon through a heat exchanger, the following components (A) and (B), (A) an alkyl or alkenyl succinimide whose hydrocarbon group has a molecular weight of 300 to 5000, ( B) A stain prevention method characterized by adding a stain prevention agent containing a polyalkyl methacrylate having a weight average molecular weight of 50,000 to 500,000 obtained by graft polymerization of a polar monomer in a weight ratio of 1:9 to 9:1. .
JP7465288A 1988-03-30 1988-03-30 Antifouling agent and antifoulding method for liquid hydrocarbon heat exchanger Granted JPH01247488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7465288A JPH01247488A (en) 1988-03-30 1988-03-30 Antifouling agent and antifoulding method for liquid hydrocarbon heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7465288A JPH01247488A (en) 1988-03-30 1988-03-30 Antifouling agent and antifoulding method for liquid hydrocarbon heat exchanger

Publications (2)

Publication Number Publication Date
JPH01247488A JPH01247488A (en) 1989-10-03
JPH055874B2 true JPH055874B2 (en) 1993-01-25

Family

ID=13553373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7465288A Granted JPH01247488A (en) 1988-03-30 1988-03-30 Antifouling agent and antifoulding method for liquid hydrocarbon heat exchanger

Country Status (1)

Country Link
JP (1) JPH01247488A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662504A1 (en) * 1994-01-10 1995-07-12 Nalco Chemical Company Corrosion inhibition and iron sulfide dispersing in refineries using the reaction product of a hydrocarbyl succinic anhydride and an amine
JP2007106926A (en) * 2005-10-14 2007-04-26 Hakuto Co Ltd Stain adhesion-preventing agent for petroleum refining and method of preventing stain of petroleum-refining plant
WO2021152718A1 (en) * 2020-01-29 2021-08-05 株式会社片山化学工業研究所 Method for preventing fouling of heat exchanger in petroleum processing
JPWO2022004434A1 (en) * 2020-07-01 2022-01-06

Also Published As

Publication number Publication date
JPH01247488A (en) 1989-10-03

Similar Documents

Publication Publication Date Title
US4440625A (en) Method for minimizing fouling of heat exchanges
US4200518A (en) Heat exchanger anti-foulant
US3558470A (en) Antifoulant process using phosphite and ashless dispersant
JPH0643453B2 (en) Copolymers having nitrogen-containing functional groups and hydrocarbon middle distillate compositions containing them as cloud point depressants
TWI447095B (en) Improved antifoulant for hydrocarbon processing equipment
CN105482851B (en) It is a kind of for antisludging agent of refining process and preparation method thereof
EP0149623B1 (en) Polyoxazolines in aqueous quenchants
JPH0748393A (en) Imide-ring-terminated aminephosphates, their production and their use as additives for engine fuel
CN1063417C (en) Method for inhibiting hydrate formation
US4425223A (en) Method for minimizing fouling of heat exchangers
JPH055874B2 (en)
US4090946A (en) Method of stabilizing mineral oil and its refinery products
TW202425B (en)
JPH0633077A (en) Anti fouling agent for petroleum refining
CA2239466C (en) Wax deposit inhibitors
US20190203131A1 (en) Reduced fouling of hydrocarbon oil
US3585123A (en) Acylated hydrocarbon succinates and uses thereof
JP2007106926A (en) Stain adhesion-preventing agent for petroleum refining and method of preventing stain of petroleum-refining plant
US5158667A (en) Methods for inhibiting fouling in fluid catalytic cracking units
US20210246390A1 (en) Antifouling compositions for petroleum process streams
RU2359996C2 (en) Application of dispersant for prevention of salt sedimentations in devices of petroleum refinery and application method
EP0345008A1 (en) Low pour crude oil compositions
JPS59232170A (en) Heat exchanger contamination prevention
US4397737A (en) Heat exchanger antifoulant
JP3597770B2 (en) Scale formation inhibitor composition