JPH0558307B2 - - Google Patents

Info

Publication number
JPH0558307B2
JPH0558307B2 JP60062414A JP6241485A JPH0558307B2 JP H0558307 B2 JPH0558307 B2 JP H0558307B2 JP 60062414 A JP60062414 A JP 60062414A JP 6241485 A JP6241485 A JP 6241485A JP H0558307 B2 JPH0558307 B2 JP H0558307B2
Authority
JP
Japan
Prior art keywords
frequency
interference
port
signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60062414A
Other languages
Japanese (ja)
Other versions
JPS61220545A (en
Inventor
Junji Namiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60062414A priority Critical patent/JPS61220545A/en
Priority to CA000499209A priority patent/CA1235751A/en
Priority to DE8686100232T priority patent/DE3681798D1/en
Priority to EP86100232A priority patent/EP0187672B1/en
Priority to AU52119/86A priority patent/AU574995B2/en
Priority to US06/817,380 priority patent/US4701935A/en
Publication of JPS61220545A publication Critical patent/JPS61220545A/en
Publication of JPH0558307B2 publication Critical patent/JPH0558307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15571Relay station antennae loop interference reduction by signal isolation, e.g. isolation by frequency or by antenna pattern, or by polarization

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマイクロ波帯のデイジタル伝送の中継
器に係る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a repeater for digital transmission in the microwave band.

(従来技術とその問題点) 従来のマイクロ波帯の中継方式では、1往復シ
ステムを2つの搬送波で構成する2周波方式を採
用している。第2図にその様子を示す。100,
101,102は中継器を示し、12は2つの
搬送波周波数を示す。この例で中継器101に例
を取ると、左右2方向に同一周波数1で送信し、
同一周波数2を逆の左右2方向から受信してい
る。かかる方式の詳細は文献桑原守二/監修“デ
イジタルマイクロ波通信”(企画センター)に述
べられている。
(Prior art and its problems) The conventional microwave band relay system employs a two-frequency system in which one round-trip system is configured with two carrier waves. Figure 2 shows the situation. 100,
101 and 102 indicate repeaters, and 1 and 2 indicate two carrier frequencies. In this example, if we take the repeater 101 as an example, it transmits at the same frequency 1 in two directions, left and right,
The same frequency 2 is being received from two opposite directions, left and right. The details of this method are described in the document "Digital Microwave Communication" (Kikaku Center) supervised by Moriji Kuwahara.

2周波方式は後で述べる様に送信と受信を別周
波数を使用しているため、送受間干渉を軽減する
ことができるという利点を有するが、次に述べる
一周波方式に比較して2倍の周波数帯域を必要と
するという問題がある。
As described later, the two-frequency method uses different frequencies for transmission and reception, so it has the advantage of being able to reduce interference between transmitter and receiver, but compared to the single-frequency method described below, the two-frequency method uses different frequencies for transmission and reception. There is a problem that a frequency band is required.

第3図は一周波方式を説明するための図で、通
常送信用と受信用に別々のアンテナを用意し、そ
の間の干渉をできるだけ少くする様に直横に並べ
て運用するものである。
FIG. 3 is a diagram for explaining the single frequency system, in which separate antennas are usually prepared for transmission and reception, and are operated side by side to minimize interference between them.

第4図は一周波方式の送受間干渉を説明する図
で、第3図の101の中継器を例にとつて描れて
いる。上り回線として信号203が左から右へ2
00となつて中継され、下り回線として信号20
1が右から左へ202となつて中継されている。
今、受信信号201に対する送受間干渉を考えて
みると、上り回線の送信信号200からの干渉信
号203と下り回線の送信信号200からの干渉
信号204が存在する訳である。図中180,1
81は各々上り、下り回線用の再生中継器を示し
ている。
FIG. 4 is a diagram illustrating interference between transmitter and receiver in a single frequency system, and is drawn using the repeater 101 in FIG. 3 as an example. Signal 203 is 2 from left to right as an uplink.
00 and is relayed as a signal 20 as a downlink.
1 is relayed from right to left as 202.
Now, when considering the interference between the transmitter and the receiver for the received signal 201, there are an interference signal 203 from the uplink transmission signal 200 and an interference signal 204 from the downlink transmission signal 200. 180,1 in the figure
Reference numerals 81 indicate regenerative repeaters for uplink and downlink, respectively.

第5図は第4図の送受間干渉のある中継器の等
価ベースバンドモデルを示したものである。図中
180′,181′は再生中継器に対応する信号識
別器(送信符号を識別する)、遅延回路134,
135,136,137は送信用アンテナから受
信用アンテナまでの伝搬時間に対応するもので、
送受間干渉信号に必ず付いて回るものである。ま
た掛算器130,131,132,133は各々
の搬送周波数の微妙な差により発生する干渉波信
号の位相回転を表わしており、その回転角速度
Δωiは一般に Δωi≪シンボル・レート である。加算器140,141は受信信号に送受
間干渉信号が加わることを示すものである。端子
1001,1003は送信アンテナ、端子100
4,1005は受信アンテナに接続される。
FIG. 5 shows an equivalent baseband model of the repeater shown in FIG. 4 with interference between transmitting and receiving. In the figure, 180' and 181' are signal identifiers (identifying transmission codes) corresponding to the regenerative repeater, delay circuits 134,
135, 136, and 137 correspond to the propagation time from the transmitting antenna to the receiving antenna,
It is always attached to interference signals between transmitter and receiver. Multipliers 130, 131, 132, and 133 represent the phase rotation of the interference wave signal caused by a slight difference in each carrier frequency, and the rotational angular velocity Δω i is generally Δω i <<symbol rate. Adders 140 and 141 indicate that a transmitter-receiver interference signal is added to the received signal. Terminals 1001 and 1003 are transmitting antennas, terminal 100
4,1005 is connected to a receiving antenna.

(発明の目的) 本発明の目的は係る送受間干渉を適応制御技術
により除去し、周波数利用効率にすぐれた一周波
方式を実現することにある。
(Objective of the Invention) An object of the present invention is to eliminate such interference between transmitter and receiver by adaptive control technology, and to realize a single frequency system with excellent frequency utilization efficiency.

(発明の構成) 本発明は、送信ポートより第1のデイジタル変
調波を送信し、送信ポートと同方向に設けられた
受信ポートより、前記第1のデイジタル変調波の
第2のデイジタル変調波を受信する一周波中継器
において (a) 前記第1のデイジタル変調波の一部を抽出
し、前記第1,第2のデイジタル変調波の送受
信周波数差だけ周波数シフトして出力する周波
数シフター (b) 前記送信ポートと受信ポートとの間の干渉量
に比例する係数を前記周波数シフター出力に乗
ずる乗算器 (c) 該乗算器出力を前記受信ポートから得られる
第2のデイジタル変調波から減ずる減算器 (d) 前記乗算器出力と前記受信ポートを復調した
信号の符号識別誤差(復調信号−復調信号の識別
値)との間の位相差を検出し、該位相差の極性に
応じて前記周波数シフタの周波数シフト量を制御
する位相差検出器とを含み 前記送信ポートから前記受信ポートへの伝送間
干渉を除去する一周波中継器である。
(Structure of the Invention) The present invention transmits a first digitally modulated wave from a transmitting port, and transmits a second digitally modulated wave of the first digitally modulated wave from a receiving port provided in the same direction as the transmitting port. In the receiving single-frequency repeater, (a) a frequency shifter that extracts a part of the first digital modulated wave, shifts the frequency by the difference between the transmission and reception frequencies of the first and second digital modulated waves, and outputs the frequency shifter (b) (c) a multiplier that multiplies the output of the frequency shifter by a coefficient proportional to the amount of interference between the transmission port and the reception port; a subtractor (c) that subtracts the output of the multiplier from the second digital modulated wave obtained from the reception port; d) Detecting a phase difference between the multiplier output and a code identification error (demodulated signal - identification value of the demodulated signal) of the signal demodulated from the receiving port, and adjusting the frequency shifter according to the polarity of the phase difference. The single frequency repeater includes a phase difference detector that controls a frequency shift amount, and eliminates interference between transmissions from the transmitting port to the receiving port.

(構成の詳細な説明) 第5図の干渉モデルの内、端子1200→12
01の干渉、すなわちアンテナのサイド・サイド
干渉が最も大きな干渉であるので、これだけを考
えることにする。また遅延回路134で表わされ
ている送信用アンテナから受信用アンテナまでの
伝搬時間は伝送レートに対し無視できるものとし
て単純化すると、最大の干渉パスは単に掛算器1
30で表わされる送受間周波数差Δωによる周波
数シフト回路に置き換えることができる。第6図
は入力端子1200に加えられるωIF〔rad/s〕
の中間周波帯の入力信号p(t)をΔωだけ周波
数シフトしてq(t)=p(t)exp(jΔωt)を出力
する周波数シフタを示している。図中11,12
は乗算器、13はπ/2位相シフタ、15,16は 低域波器14はωIF〔rad/s〕を出力する発振
器でブロツク90を構成し、これは同期検波器と
して働いている。今発振器14の出力周波数を
ΔωVとすると、ブロツク90の2つの出力端子を
複素出力端子と考え、先の入力信号p(t)を p(t)=BR(t)cosωIFt+BI(t)sinωIFt (B(t)=BR(t)+jBI(t)) と表わせるとすると、 γ(t)=B(t)・exp{j(ωIF−ωV)t} なる出力が得られる。ブロツク91は同じく乗算
器17,18π/2位相シフタ19,ωIFを発振周波 数とする発振器20、加算器21よりなる通常の
直交変調器であり、Re{r(t)}cosωIFt+In
{r(t)}sinωIFtを出力する。これにより出力
端子1201には入力信号p(t)に対してq
(t)=p(t)・exp{j(ωIF−ωV)t}が得られ
る。ωIF−ωVを送受信号間の周波数差△ωに等し
く選ぶと、この周波数シフター1は第5図の乗算
器130を完全に模擬することになる。
(Detailed explanation of the configuration) In the interference model in Fig. 5, terminal 1200→12
01 interference, that is, side-to-side interference of the antenna, is the largest interference, so only this will be considered. Furthermore, if we simplify by assuming that the propagation time from the transmitting antenna to the receiving antenna represented by the delay circuit 134 is negligible with respect to the transmission rate, the maximum interference path is simply the multiplier 1.
It can be replaced with a frequency shift circuit based on the frequency difference Δω between transmitting and receiving, represented by 30. Figure 6 shows ω IF [rad/s] applied to the input terminal 1200.
This figure shows a frequency shifter that frequency-shifts the input signal p(t) in the intermediate frequency band by Δω and outputs q(t)=p(t)exp(jΔωt). 11, 12 in the figure
13 is a multiplier, 13 is a π/2 phase shifter, 15 and 16 are low-frequency wave generators 14, and an oscillator that outputs ω IF [rad/s] constitutes a block 90, which functions as a synchronous detector. Now, if the output frequency of the oscillator 14 is Δω V , the two output terminals of the block 90 are considered as complex output terminals, and the previous input signal p(t) is expressed as p(t)=B R (t)cosω IF t+B I ( t) sinω IF t (B(t)=B R (t)+jB I (t)), then γ(t)=B(t)・exp{j(ω IF −ω V )t} The following output is obtained. The block 91 is a normal quadrature modulator consisting of a multiplier 17, an 18π/2 phase shifter 19, an oscillator 20 whose oscillation frequency is ω IF , and an adder 21, and Re{r(t)} cosω IF t+I n
{r(t)}sinω IF t is output. As a result, the output terminal 1201 has q for the input signal p(t).
(t)=p(t)·exp{j(ω IF −ω V )t} is obtained. If ω IF −ω V is chosen equal to the frequency difference Δω between the transmitted and received signals, this frequency shifter 1 will perfectly simulate the multiplier 130 of FIG. 5.

第7図は送受間干渉除去装置を示すものであ
る。図中、4は送信器、5は受信器で各々アンテ
ナ8,9によつて一周波中継によつて運用されて
いる。1は周波数シフタ、2は送受間干渉量α
(αは複素係数)に対応して干渉を除去すべく周
波数シフタの出力に−αを乗ずる乗算器、3は送
受間干渉α・p(t)exp(j△ωt)と正規の受信
信号R(t)の和r(t)=α・p(t)exp(j△
ωt)+R(t)から先の乗算器出力α・p(t)
exp(jΔωt)を減じて正規の信号R(t)のみを残
すための減算器である。これにより受信器5に入
力される信号はR(t)となり完全に送受間干渉
が除去されたものになつている。
FIG. 7 shows a transmitter-receiver interference removing device. In the figure, 4 is a transmitter, and 5 is a receiver, which are operated by single-frequency relay using antennas 8 and 9, respectively. 1 is the frequency shifter, 2 is the amount of interference between transmitter and receiver α
(α is a complex coefficient), a multiplier that multiplies the output of the frequency shifter by -α in order to remove interference, 3 is a multiplier that multiplies the output of the frequency shifter by -α in order to remove interference corresponding to (t) sum r(t)=α・p(t)exp(j△
Multiplier output α・p(t) after ωt)+R(t)
This is a subtracter for subtracting exp(jΔωt) and leaving only the normal signal R(t). As a result, the signal input to the receiver 5 becomes R(t), with interference between transmitter and receiver completely removed.

第7図においてはアンテナのサイド・サイド干
渉の除去の例を示したが、同様に第8図の様にす
ることにより、フロント・バツク間の干渉も除去
することができる訳である。図中の各要素は第7
図の同一参照番号の要素と等しいものであるが、
6は遅延回路で第5図の干渉モデルの遅延135
に対応するもので、再生中継の場合、これが無視
できないのが普通であるので挿入されている。
Although FIG. 7 shows an example of removing antenna side-to-side interference, by doing the same as shown in FIG. 8, front-to-back interference can also be removed. Each element in the diagram is the seventh
is equivalent to the element with the same reference number in the figure, but
6 is a delay circuit, which is the delay 135 of the interference model in Figure 5.
It corresponds to this, and is inserted because it is normal that this cannot be ignored in the case of replay relay.

以上の説明は△ωがほとんど変化しない場合の
話で、△ωの微少変化に供う干渉成分の位相回転
は乗算器2の係数(複素数)αが吸収する訳であ
る。(本実施例にはαの制御回路は記されていな
い。)しかし実際にはマイクロ波帯の発振器の安
定度から△ωを定数と考えることはできない。そ
こで△ωの変化を適確に観測し、これに基いて周
波数シフタの周波数シフト量を制御する方式が必
要となる。送信符号をSとすると、これが受信側
に干渉としてα・S・exp(j△ωit)として現
われる。よつて受信信号r(t)は正規の受信信
号をR(t)とするとr(t)=R(t)+αSexp(j
△ωt)一方、減算器3(第7図)を通して干渉
除去の信号が加えられているので、復調後のベー
スバンド信号としてはr(t)からα′・S・exp
(j△ω2t)の値が減算される形になる。よつて
受信器側の符号識別誤差(符号識別器の入出力の
差)e(t)は、 e(t)=R(t)+α・Sexp(j△ω1t) −α′・Sexp(j△ω2t)−R(t) =S{α・exp(j△ω1t)−α′・exp(j
△ω2t)}e(t)に送信符号Sの複素共役S〓を
乗ずることによりe(t)・S〓は干渉成分と干渉
除去信号との間の誤差ベクトルを表わし、その値
は、e(t)・(乗算器2の出力)〓 =|P(t)|2・[α・α′〓・exp{j△w1t−
△w2t)}−|α′|2] ここで α=a・exp(jθI) 干渉信号の干渉を表わす
複素係数 α′=a′・exp(jθc) 干渉除去信号の初期位相、
振幅 と表わすと、上式の虚数部は θe(t)=|p(t)|2aa′・Sin(θI+△ω1
−〔θc
+△ω2t〕)上式で得られたθeは、干渉成分と送
信信号から作つた(干渉信号)除去信号が逆位相
で相殺する最適値からのずれ位相を示している事
になる。そこで、このずれ角θeだけ除去信号の位
相を回転させてやる必要がある。これは第6図に
その構成を示した周波数シフタ1の中の発振器2
0を電圧制御型発振器にし、この周波数を一瞬t
秒間、△だけ変化させてやれば出力1201へ
出てくる信号位相は2π(△t(rad)シフトした事
になる。具体的にはこの制御は至つて簡単でθe
(例えば電圧で出てくる)をそのまま先の電圧制
御型発振器の制御信号として加えてやれば良い。
もし、過制御であればθeの極性が反転し逆の方向
に制御が掛かる事になる。
The above explanation is for the case where Δω hardly changes, and the coefficient (complex number) α of the multiplier 2 absorbs the phase rotation of the interference component caused by a slight change in Δω. (A control circuit for α is not shown in this embodiment.) However, in reality, Δω cannot be considered as a constant due to the stability of a microwave band oscillator. Therefore, a method is required to accurately observe the change in Δω and control the frequency shift amount of the frequency shifter based on this. Assuming that the transmission code is S, this appears as interference on the receiving side as α·S·exp(j△ω i t). Therefore, the received signal r(t) is expressed as r(t)=R(t)+αSexp(j
△ωt) On the other hand, since the interference cancellation signal is added through the subtracter 3 (Fig. 7), the baseband signal after demodulation is α′・S・exp from r(t).
The value of (j△ω 2 t) is subtracted. Therefore, the code identification error (difference between the input and output of the code discriminator) e(t) on the receiver side is as follows: e(t) = R(t) + α・Sexp(j△ω 1 t) −α′・Sexp( j△ω 2 t)−R(t) =S{α・exp(j△ω 1 t)−α′・exp(j
By multiplying △ω 2 t)}e(t) by the complex conjugate S〓 of the transmission code S, e(t)・S〓 represents the error vector between the interference component and the interference cancellation signal, and its value is e(t)・(output of multiplier 2) = |P(t)| 2・[α・α′〓・exp{j△w 1 t−
△w 2 t)}−|α′| 2 ] Here, α=a・exp(jθ I ) Complex coefficient representing the interference of the interference signal α′=a′・exp(jθ c ) Initial phase of the interference canceled signal,
Expressed as amplitude, the imaginary part of the above equation is θ e (t) = |p(t) | 2 aa′・Sin(θ I +△ω 1 t
−[θ c
+△ω 2 t]) θe obtained from the above equation indicates the phase shift from the optimal value at which the (interference signal) removal signal created from the interference component and the transmission signal cancels each other out in opposite phases. Therefore, it is necessary to rotate the phase of the removal signal by this deviation angle θe. This is the oscillator 2 in the frequency shifter 1 whose configuration is shown in FIG.
0 is a voltage controlled oscillator, and this frequency is momentarily t
If you change the phase by △ for a second, the signal phase that comes out to the output 1201 will be shifted by 2π (△t (rad). Specifically, this control is very simple and θe
(for example, output as a voltage) can be added as is as a control signal to the voltage-controlled oscillator.
If there is overcontrol, the polarity of θe will be reversed and control will be applied in the opposite direction.

(実施例) 第1図は本発明の一実施例を示す図で、図中
1,2,3,4,5は第7図、第8図のものと同
一である。7は位相差検出器で、上記θe(t)を
求めるためのもので70の符号識別器と減算器7
1とから符号識別誤差ε(t)が求まり、72の
乗算器ε(t)と(乗算器2の出力)の共役値の
積が取られ、その虚数部を出力し、上式θe(t)
を直接出力することになる。
(Embodiment) FIG. 1 is a diagram showing an embodiment of the present invention, in which numerals 1, 2, 3, 4, and 5 are the same as those in FIGS. 7 and 8. 7 is a phase difference detector for determining the above θe(t), which includes a code discriminator 70 and a subtracter 7.
The code discrimination error ε(t) is found from )
will be output directly.

なお、通常送受間干渉信号と送信元信号との間
には時間差が存在するので、この時間差を吸収す
るたには第8図の様な遅延回路を乗算器2の後に
入れる必要がある。
Note that since there is normally a time difference between the transmitter-receiver interference signal and the source signal, it is necessary to insert a delay circuit as shown in FIG. 8 after the multiplier 2 in order to absorb this time difference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は
従来の2周波中継方式を説明する図、第3図は一
周波中継方式を説明する図、第4図は一周波中継
方式における送受間干渉を説明するための図、第
5図は第4図のベースバンド等価回路を示す図、
第6図は本発明の構成要素の一つ、周波数シフタ
の一実施例を示す図、第7図は基本的な送受間干
渉除去回路のブロツク図を示す図、第8図はフロ
ント・バツクの送受間干渉除去回路のブロツク図
を示す図である。 図において、1……周波数シフタ、2……乗算
器、3……減算器、4……送信器、5……受信
器、6……遅延回路、8,9……アンテナ、をそ
れぞれ示す。
Figure 1 is a diagram showing an embodiment of the present invention, Figure 2 is a diagram explaining a conventional two-frequency relay system, Figure 3 is a diagram explaining a single-frequency relay system, and Figure 4 is a diagram explaining a single-frequency relay system. FIG. 5 is a diagram showing the baseband equivalent circuit of FIG. 4,
Fig. 6 shows an embodiment of a frequency shifter, which is one of the components of the present invention, Fig. 7 shows a block diagram of a basic transmitter/receiver interference removal circuit, and Fig. 8 shows a front back FIG. 3 is a diagram showing a block diagram of a transmitter-receiver interference cancellation circuit. In the figure, 1...frequency shifter, 2...multiplier, 3...subtractor, 4...transmitter, 5...receiver, 6...delay circuit, 8, 9...antenna, respectively.

Claims (1)

【特許請求の範囲】 1 送信ポートより第1のデイジタル変調波を送
信し、送信ポートと同方向に設けられた受信ポー
トより、前記第1のデイジタル変調波と同一周波
数の第2のデイジタル変調波を受信する一周波中
継器において、 (a) 前記第1のデイジタル変調波の一部を抽出
し、前記第1,第2のデイジタル変調波の送受
信周波数差だけ周波数シフトして出力する周波
数シフター (b) 前記送信ポートと受信ポートとの間の干渉量
に比例する係数を前記周波数シフター出力に乗
ずる乗算器 (c) 該乗算器出力を前記受信ポートから得られる
第2のデイジタル変調波から減ずる減算器 (d) 前記乗算器出力と前記受信ポートを復調した
信号の符号識別誤差(復調信号−復調信号の識
別値)との間の位相差を検出し、該位相差の極
性に応じて前記周波数シフターの周波数シフト
量を制御する位相差検出器とを含み 前記送信ポートから前記受信ポートへの送受間
干渉を除去することを特徴とする一周波中継器。
[Claims] 1. A first digital modulated wave is transmitted from a transmission port, and a second digital modulated wave having the same frequency as the first digital modulated wave is transmitted from a reception port provided in the same direction as the transmission port. (a) a frequency shifter that extracts a part of the first digital modulated wave, shifts the frequency by a difference between the transmission and reception frequencies of the first and second digital modulated waves, and outputs the same; b) a multiplier for multiplying the frequency shifter output by a coefficient proportional to the amount of interference between the transmitting port and the receiving port; (c) a subtractor for subtracting the multiplier output from the second digitally modulated wave obtained from the receiving port; (d) Detecting the phase difference between the multiplier output and the code identification error (demodulated signal - identification value of the demodulated signal) of the signal demodulated at the receiving port, and adjusting the frequency according to the polarity of the phase difference. A single frequency repeater, comprising: a phase difference detector that controls a frequency shift amount of a shifter; and removes interference between transmission and reception from the transmission port to the reception port.
JP60062414A 1985-01-09 1985-03-27 One frequency repeater Granted JPS61220545A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60062414A JPS61220545A (en) 1985-03-27 1985-03-27 One frequency repeater
CA000499209A CA1235751A (en) 1985-01-09 1986-01-08 One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference
DE8686100232T DE3681798D1 (en) 1985-01-09 1986-01-09 SINGLE-FREQUENCY RADIO RELAY FOR A DIGITAL MICROWAVE RADIO SYSTEM WITH COMPENSATION OF INTERFREQUENCY BETWEEN TRANSMITTERS AND RECEIVERS.
EP86100232A EP0187672B1 (en) 1985-01-09 1986-01-09 One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference
AU52119/86A AU574995B2 (en) 1985-01-09 1986-01-09 One frequency digital radio repeater
US06/817,380 US4701935A (en) 1985-01-09 1986-01-09 One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062414A JPS61220545A (en) 1985-03-27 1985-03-27 One frequency repeater

Publications (2)

Publication Number Publication Date
JPS61220545A JPS61220545A (en) 1986-09-30
JPH0558307B2 true JPH0558307B2 (en) 1993-08-26

Family

ID=13199465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062414A Granted JPS61220545A (en) 1985-01-09 1985-03-27 One frequency repeater

Country Status (1)

Country Link
JP (1) JPS61220545A (en)

Also Published As

Publication number Publication date
JPS61220545A (en) 1986-09-30

Similar Documents

Publication Publication Date Title
EP0187672B1 (en) One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference
CA1250022A (en) One frequency repeater having interference cancellation capability in a digital radio system
US5610946A (en) Radio communication apparatus
EP1225711A2 (en) Cross polarization interference canceller and method of canceling cross polarization interference
US6516023B1 (en) System and method of downconversion where the received signal is downconverted
US5261120A (en) Method and apparatus for transmitting a signal with an offset which follows a received signal
JPH0558307B2 (en)
JPH0611125B2 (en) Same frequency relay system
JP2600612B2 (en) Transceiver
JPH0533570B2 (en)
JPH0525420B2 (en)
JPH0533571B2 (en)
JPH0528550B2 (en)
AU742089B2 (en) Method and apparatus for orthogonal frequency conversion
JP3018453B2 (en) Communication method
JPH02280423A (en) Transmission power control system using superimposing modulation
JPH0523652B2 (en)
JPH0412660B2 (en)
JPH0553330B2 (en)
JPH04265025A (en) Receiver for two-station simultaneous transmission diversity wave
JPS6313430A (en) Repeating installation for digital radiocommunication
JPH0767091B2 (en) Diversity radio receiver
JPS63222534A (en) System for compensating interference between cross polarized waves
KR970072842A (en) Single Sideband BPSK Modulation / Demodulation by Phase Estimation and Its Apparatus
JPS62118645A (en) Same frequency relay system