JPH0558137B2 - - Google Patents

Info

Publication number
JPH0558137B2
JPH0558137B2 JP59222391A JP22239184A JPH0558137B2 JP H0558137 B2 JPH0558137 B2 JP H0558137B2 JP 59222391 A JP59222391 A JP 59222391A JP 22239184 A JP22239184 A JP 22239184A JP H0558137 B2 JPH0558137 B2 JP H0558137B2
Authority
JP
Japan
Prior art keywords
amino acids
sample
formalin
phosphate buffer
sake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59222391A
Other languages
Japanese (ja)
Other versions
JPS61100652A (en
Inventor
Nobuhiko Ishibashi
Toshihiko Imato
Che Azemori
Satoru Ito
Mikyoshi Eto
Taiichi Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Original Assignee
DKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp filed Critical DKK Corp
Priority to JP59222391A priority Critical patent/JPS61100652A/en
Publication of JPS61100652A publication Critical patent/JPS61100652A/en
Publication of JPH0558137B2 publication Critical patent/JPH0558137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は日本酒等のアルコール類などに含まれ
るアミノ酸の定量に有効に採用される全アミノ酸
の分析法に関する。 従来技術及びその問題点 日本の産業構造の変化が農村に於ける生活形態
に影響を及ぼし、農閑期に酒造りに従事していた
杜氏職の人々が急速に減りつつあり、酒造業界に
於いて深刻な問題となつている。このような状況
の中で業界に於いて杜氏の経験と勘に頼ることな
く酒の質を決めるアルコール、全アミノ酸、糖、
全酸、比重等を簡便な計器で管理して合理化し、
体質改善を計ろうという動きがでてきた。 これらの計測項目のうち、酒中の全アミノ酸の
測定法としては従来国税庁所定分析法が採用され
ている。この国税庁所定分析法によると、アミノ
酸は水中に於いて両性イオンとして存在するが、
その解離が弱いため滴定が不可能である。しか
し、中性水溶液ではホルマリンの存在下で解離平
衡が酸側にずれ、アミノ基は安定な化合物を形成
するので、フエノールフタレインを指示薬として
用いればアルカリで滴定できるようになる。即
ち、試料10mlをとり、フエノールフタレイン指示
薬2〜3滴を加えてN/10水酸化ナトリウム溶液
で中和し、これに中性ホルマリン溶液5mlを加
え、遊離した酸をN/10水酸化ナトリウム溶液で
淡桃色になる迄滴定する。この滴定ml数をaと
し、次式によりアミノ酸度として表示する用手法
を採用している。 アミノ酸度=a×F (F:N/10水酸化ナトリウム溶液のフアクタ
ー) この場合、上記に示した用手法は自動化すれば
できないことはないが、装置が大がかりとなるた
め中小企業が多い酒造業界に於いては受け入れら
れず、更に簡便な自動化、省略化を目指す全アミ
ノ酸の分析法が要望されていた。 発明の概要 本発明者らは、上記事情に鑑み、日本酒等の中
に含まれるアミノ酸量を簡便に測定する方法につ
いて鋭意検討を行なつた結果、緩衝液としてアル
カリ性のりん酸緩衝液を選択し、これにホルマリ
ンを加えてホルマリン−りん酸緩衝液の流れ系を
つくり、これにアミノ酸を含む試料を注入するこ
と、これによりホルマリン−緩衝液−試料の混合
溶液が試料中のアミノ酸量に応じた程度でPHが低
下すること、従つてこのPH低下の程度をPH測定電
極で測定し、検知することにより、アミノ酸濃度
を確実に定量し得ることを知見し、本発明をなす
に至つたものである。 即ち、アミノ酸の分析法としては上述した用手
法による滴定法の外、液体クロマトグラフ法、酵
素電極法、比色法であるニンヒドリン法等がある
が、本発明者らはできるだけ従来法に類似した方
法の方が酒造業界に受け入れ易いと考え、国税庁
所定分析法をできるだけ忠実に自動化するように
し、PH変化の検出法を指示薬法から測定の簡便性
を考慮してPH測定電極法を検討した。その結果、
アルカリ性りん酸緩衝液が後述するように最適で
あることを見い出すと共に、このりん酸緩衝液に
ホルマリンを添加して流れ系をつくり、このホル
マリン−りん酸緩衝液が連続的に流れる流れ系の
中に日本酒を注入したところ、日本酒に含まれる
アミノ酸が有機酸に転換し、緩衝液のPHが酸側に
ずれ、このPHのずれは日本酒の中に含まれる全ア
ミノ酸量に対応するので、PHのずれの程度を検知
すれば全アミノ酸量が測定し得、しかもこの場合
PH測定用電極はアルカリ性リン酸緩衝液中で極め
て安定であるので、PHのずれの程度をPH測定用ガ
ラス電極で確実に検出でき、従つてこの方法によ
り全アミノ酸の定量を確実にかつ迅速簡便に行な
うことができることを知見したものである。 以下、本発明につき、図面を参照して更に詳し
く説明する。 発明の構成 本発明の全アミノ酸の分析法は、ホルマリンと
アルカリ性りん酸緩衝液とが混合されて連続的に
流れる流れ系の中にアミノ酸を含む試料を導入
し、この時生ずるホルマリン−アルカリ性りん酸
緩衝液−試料の混合溶液のPH低下程度をPH測定用
電極で検出し、このPH低下程度から試料中のアミ
ノ酸濃度を求めるものである。 ここで本発明法を第1図に示す原理図を参照し
て説明すると、第1図に示す流れ系に於いて、ポ
ンプPを作動させて一方に酸−塩基緩衝液(HA
−A-)を、他方に試料である酸(HB)をそれぞ
れ連続的にV、v、の流速で流す場合、緩衝液の
流れによつて定まるPHセンサSの電極電位E1
下記式で示される。 E1=E°+59logKa,HA+59logC°HA/C°A(mV) ここで、Ka,HAは酸解離定数、C°HA、C°Aはそれ
ぞれHAとA-の初濃度である。この場合緩衝液
と酸HBの混合によりCHA/CAの割合が変化する
と、電位E2は E2=E°+59logKa,HA+59log{(C°HAV+xv)/(C°
AV−xv)} となる。なお、xは酸の濃度を示す。v/V=1
に於いて試料混合による電位変化ΔEは ΔE=59log〔{1+(x/C°HA)}/{1−(x/C°
A-)}〕 で表わされ、従つて酸の濃度xは下記式 x=(C° A-2×10〓E/59−(C°HA2/C°HA+C°10E/59 より求めることができる。 HBが弱酸の時、xはHBの初濃度C°HBに等しい
が、酸解離定数Ka,HBの弱酸の時は、次のように
なる。即ちHA及びHBの酸解離定数をKA及びKB
とするとHAとA-の緩衝液に酸HBを試料として
加えた場合、反応式は A-+HBHA+B- で表わすことができ、平衡定数をKとすると K=(C°HA+x)x/(C°A−x)(C°HB−x)=KB
/KA となり、 x=1/2(K−1)〔{K(C°A+C°HB)+C°HB
−√{(°A+°HB)+°HA2−4(−1)
°A°HB として表わすことができる。但し、K=KB/KA
HA=C°Aの場合、上記ΔEをC°HB/C°HAの割合に
対して図示すると第2図のようになり、C°HB
HAが0〜0.5の範囲では、電位変化は添加試料
濃度C°HBと直線関係がある。第2図より試料の酸
解離定数が緩衝液のHAのそれより103以上であ
れば、同一曲線となることがわかる。 本発明においては、緩衝液中での電極電位の安
定性を利用するので、緩衝液の選択は重要であ
る。そこで塩化アンモニウム・アンモニウム水、
りん酸−水素ナトリウム・水酸化ナトリウム、炭
酸ナトリウム・炭酸水素ナトリウム系の緩衝液に
アミノ酸としてグリシンを添加してPH変化を調べ
た結果、塩化アンモニウム・アンモニア水系の緩
衝液はPH変化が少なく、炭酸ナトリウム・炭酸水
素ナトリウム系緩衝液はPH変化が認められなかつ
たが、上記アルカリ性りん酸緩衝液は、第3に示
すようにPH変化も大で、直線性もあるため、本法
に最適であることを見い出したものである。 なお、第3図に示すグリシン添加時のりん酸緩
衝液(0.1M−NaHPO4−0.05MNaOH系、pKa
12.3)中のPH変化は、グリシン5mlに18%ホルム
アルデヒド(中性)5ml、0.1M−NaHPO410ml、
0.05M−NaOH10mlを加えてPHを測定した結果で
ある。 即ち、ホルマリンと反応して生成した酸のpKa
が6〜7程度であるので、第2図で示した理論曲
線を考慮すると、pKaから程度離れている緩衝液
を使用すれば、アミノ酸の種類によらず同じ感度
で測定できるため、上記HPO4 2-−PO4 3-系りん
酸緩衝液が最適であり、これらのことから本発明
においては緩衝液としてアルカリ性のりん酸緩衝
液を選んだものである。 従つて、以上述べたことから明らかなように、
本発明はホルマリン−アルカリ性りん酸緩衝液の
流れ系の中にアミノ酸を含む試料を注入すること
により、アミノ酸量に応じたPH低下が生じるの
で、このPHの低下程度をPH測定用電極で測定する
ことによつてアミノ酸量が求められるという知見
から完成されたものであるが、本発明を実施する
場合、ホルマリン−アルカリ性りん酸緩衝液の流
速は0.5〜3ml/min、特に1〜2ml/minとする
ことが好ましく、またホルマリンとりん酸緩衝液
との混合比は、試料中のアミノ酸量等によつて相
違するが、アミノ酸の濃度に対してホルマリンの
濃度が100倍程度となるようにホルマリンとりん
酸緩衝液の混合比を決めることが好ましい。な
お、アルカリ性りん酸緩衝液としては、HPO4 2-
−PO4 3-系のものを好適に使用することができ
る。前記ホルマリン−アルカリ性りん酸緩衝液に
対する試料の導入量は必ずしも制限されないが、
2〜500μとすることが好ましい。 また、PH測定に用いる電極やその測定方法は通
常の方法が採用し得、PH測定結果からアミノ酸量
を求めるには検量線を利用するなどの方法が採用
し得る。 第4図は本発明の実施に用いる装置の一例を示
すもので、図中1はりん酸緩衝液槽、2はホルマ
リン槽、3は純水槽、4はポンプ、5は試料注入
器、6はフローセル、7はPH測定用電極、8は比
較電極、9はイオンメータ、10はレコーダー、
11は排液槽であり、ポンプ4を作動させて所定
流速でりん酸緩衝液、ホルマリン、純水を所定流
量で流すと共に、純水にアミノ酸を含む試料を試
料注入器5から注入し、これらの液を混入してフ
ローセル6に導入して混合液のPHを測定し、レコ
ーダー10に記録するものである。なお、上記例
ではホルマリン流路に試料を注入し、次いでホル
マリン流路とりん酸緩衝液流路とを合流させるよ
うにしたが、ホルマリン流路とりん酸緩衝液流路
とを合流させた後、この合流流路に試料を注入す
るようにしてもよい。 以下、この第4図に示す装置を用いて日本酒中
の全アミノ酸の定量を行なつた結果を下記実施例
に示す。 実施例 下記方法により日本酒中の全アミノ酸の分析を
実施した。 りん酸緩衝液(0.1MNaHPO4
0.05MNaOH系pKa=12.3)、18%ホルマリン溶
液、純水の流量を0.5ml/minに設定してフロ
ーセルに流し、電極電位を安定させる。 指示が安定したら検量線を作成する。検量線
の作成は、L−バリン1×10-2、2×10-2、4
×10-2M/の溶液を調製し、それぞれ注入器
より130μ注入する。注入されたL−バリン
はホルマリンによつて次式に示すように酸化さ
れ、 H2NC4H8COOH+nHCHO→HOH2CHNC4H8COOH又は(HOH2C)2N
C4H8COOH 有機酸に変化してりん酸緩衝液中に混合され
る。緩衝液中で酸−塩基反応が起こり、このPH
の変化をフローセルに挿入されているPH測定用
ガラス電極と比較電極で検出する。基準からの
ピーク高さを測定し、第5図に示すような検量
線を作成する。なお、検量線作成のために用い
るアミノ酸は、ホルマリン中ではグリシン、ロ
イシン、L−バリンの解離定数が同じであるた
め、いずれを用いても同じ検量線が得られた。
また、ピークの検出法としては、ピーク高さを
測る方法、電位差を求める方法の何れでも良か
つた。 次に試料を注入し、と同様の操作をして日
本酒中に含まれる各種アミノ酸を有機酸に転換
し、緩衝液のPH変化からピーク高さを求め、あ
らかじめ求めてある検量線から日本酒中の全ア
ミノ酸量を求める。なお、アミノ酸量の算出に
は、データ処理ユニツトを用いて直接濃度をプ
リンターに記録する方法をとつても良い。 メーカーの異なる市販の日本酒5種類を購入
し、本法によつて日本酒中の全アミノ酸量を求
め、併せて国税庁所定分析法と比較した結果を
第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a total amino acid analysis method that is effectively adopted for quantifying amino acids contained in alcohols such as Japanese sake. Conventional technology and its problems Changes in Japan's industrial structure have affected the way of life in rural areas, and the number of sake brewers, who were engaged in sake brewing during the agricultural off-season, is rapidly decreasing, causing serious problems in the sake brewing industry. It's becoming a problem. Under these circumstances, in the industry, alcohol, total amino acids, sugar,
Streamline by managing total acid, specific gravity, etc. with a simple meter,
There has been a movement to try to improve the constitution. Among these measurement items, the National Tax Agency's prescribed analysis method has been used to measure total amino acids in alcoholic beverages. According to this analysis method prescribed by the National Tax Agency, amino acids exist as zwitterions in water, but
Titration is not possible due to its weak dissociation. However, in a neutral aqueous solution, the dissociation equilibrium shifts to the acid side in the presence of formalin, and the amino group forms a stable compound, so if phenolphthalein is used as an indicator, it becomes possible to titrate with an alkali. That is, take 10 ml of a sample, add 2 to 3 drops of phenolphthalein indicator, neutralize with N/10 sodium hydroxide solution, add 5 ml of neutral formalin solution, and remove the liberated acid with N/10 sodium hydroxide solution. Titrate with the solution until it turns pale pink. This titrated ml number is defined as a, and a method is adopted in which it is expressed as the amino acid content using the following formula. Amino acid content = a × F (F: N/10 factor of sodium hydroxide solution) In this case, the method shown above can be automated, but the equipment is large-scale, so the sake brewing industry has many small and medium-sized enterprises. However, there was a need for a method for analyzing all amino acids that would be simpler, more automated, and more abbreviated. SUMMARY OF THE INVENTION In view of the above circumstances, the present inventors conducted intensive studies on a method for easily measuring the amount of amino acids contained in sake, etc., and as a result, selected an alkaline phosphate buffer as the buffer solution. By adding formalin to this to create a flow system of formalin-phosphate buffer, and injecting the sample containing amino acids into this, the mixed solution of formalin-buffer-sample is adjusted according to the amount of amino acids in the sample. We have discovered that the PH decreases by a certain degree, and that by measuring and detecting the degree of this PH decrease with a PH measuring electrode, it is possible to reliably quantify the amino acid concentration, and have come to form the present invention. be. In other words, in addition to the manual titration method described above, there are other methods for analyzing amino acids, such as liquid chromatography, enzyme electrode method, and the colorimetric ninhydrin method. Believing that this method would be more acceptable to the sake brewing industry, we tried to automate the analysis method prescribed by the National Tax Agency as faithfully as possible, and considered changing the method of detecting PH changes from the indicator method to the PH measurement electrode method, taking into account the simplicity of measurement. the result,
We found that alkaline phosphate buffer is optimal as described below, and created a flow system by adding formalin to this phosphate buffer, and created a flow system in which formalin-phosphate buffer continuously flows. When sake is injected into the sake, the amino acids contained in the sake are converted to organic acids, and the PH of the buffer solution shifts to the acid side. This PH shift corresponds to the total amount of amino acids contained in the sake, so the PH changes. By detecting the degree of deviation, the total amount of amino acids can be measured, and in this case
Since the pH measurement electrode is extremely stable in alkaline phosphate buffer, the degree of pH deviation can be reliably detected using the pH measurement glass electrode. Therefore, this method allows reliable, quick and easy quantification of all amino acids. This is what we found out that it can be done. Hereinafter, the present invention will be explained in more detail with reference to the drawings. Structure of the Invention The total amino acid analysis method of the present invention involves introducing a sample containing amino acids into a continuous flow system in which formalin and an alkaline phosphate buffer are mixed, and the formalin-alkaline phosphate buffer produced at this time. The degree of PH reduction in a mixed solution of buffer solution and sample is detected with a PH measurement electrode, and the amino acid concentration in the sample is determined from this PH reduction degree. Here, the method of the present invention will be explained with reference to the principle diagram shown in Fig. 1. In the flow system shown in Fig. 1, pump P is operated and an acid-base buffer (HA) is
-A - ) and the sample acid (HB) on the other hand at flow rates of V and V, respectively, the electrode potential E1 of the PH sensor S determined by the flow of the buffer solution is expressed by the following formula: shown. E 1 = E° + 59logK a,HA +59logC° HA /C° A (mV) where K a,HA is the acid dissociation constant, C° HA and C° A are the initial concentrations of HA and A - , respectively. In this case, when the ratio of C HA /C A changes by mixing the buffer solution and the acid HB, the potential E 2 becomes E 2 = E° + 59logK a,HA + 59log {(C° HA V+xv)/(C°
A V−xv)}. Note that x indicates the concentration of acid. v/V=1
The potential change ΔE due to sample mixing is ΔE=59log [{1+(x/C° HA )}/{1−(x/C°
A - ) } ] Therefore , the acid concentration x is expressed by the following formula /59 can be obtained. When HB is a weak acid, x is equal to the initial concentration of HB, C° HB , but when it is a weak acid with an acid dissociation constant of K a, HB , it becomes as follows. That is, the acid dissociation constants of HA and HB are K A and K B
Then, when acid HB is added as a sample to a buffer solution of HA and A - , the reaction equation can be expressed as A - + HBHA + B - , and if the equilibrium constant is K, then K = (C° HA +x) x / (C ° A −x) (C° HB −x)=K B
/K A , x = 1/2 (K-1) [{K (C° A + C° HB ) + C° HB }
−√{(° AHB )+° HA } 2 −4(−1)
It can be expressed as ° A ° HB . However, K=K B /K A ,
When C° HA = C° A , the above ΔE is plotted against the ratio of C° HB /C° HA as shown in Figure 2, and C° HB /
In the range of C° HA from 0 to 0.5, the potential change has a linear relationship with the added sample concentration C° HB . From FIG. 2, it can be seen that if the acid dissociation constant of the sample is 10 3 or more than that of HA in the buffer, the curves will be the same. In the present invention, the stability of the electrode potential in the buffer is utilized, so the selection of the buffer is important. Therefore, ammonium chloride/ammonium water,
As a result of adding glycine as an amino acid to phosphate-sodium hydrogen/sodium hydroxide and sodium carbonate/sodium hydrogen carbonate buffer solutions, we investigated the PH changes. Although no PH change was observed with the sodium/sodium hydrogen carbonate buffer, the alkaline phosphate buffer mentioned above has a large PH change and is linear, as shown in Section 3, making it ideal for this method. This is what I discovered. In addition, the phosphate buffer (0.1M-NaHPO 4 -0.05MNaOH system, pK a =
12.3) PH change in 5 ml of glycine, 5 ml of 18% formaldehyde (neutral), 10 ml of 0.1M-NaHPO 4 ,
These are the results of measuring PH after adding 10 ml of 0.05M-NaOH. In other words, the pK a of the acid produced by reacting with formalin
is about 6 to 7, so if we consider the theoretical curve shown in Figure 2, if we use a buffer solution that is a certain distance from the pK a , we can measure with the same sensitivity regardless of the type of amino acid. A 4 2- -PO 4 3- based phosphate buffer is optimal, and for these reasons, an alkaline phosphate buffer is selected as the buffer in the present invention. Therefore, as is clear from what has been said above,
In the present invention, by injecting a sample containing amino acids into a formalin-alkaline phosphate buffer flow system, the pH decreases in proportion to the amount of amino acids, and the degree of this decrease in pH is measured using a pH measurement electrode. This method was completed based on the knowledge that the amount of amino acids can be determined by the following methods. When carrying out the present invention, the flow rate of formalin-alkaline phosphate buffer should be 0.5 to 3 ml/min, particularly 1 to 2 ml/min. The mixing ratio of formalin and phosphate buffer varies depending on the amount of amino acids in the sample, etc., but the mixing ratio of formalin and phosphate buffer is such that the concentration of formalin is about 100 times the concentration of amino acids. It is preferable to determine the mixing ratio of the phosphate buffer. In addition, as the alkaline phosphate buffer, HPO 4 2-
-PO 4 3- based compounds can be suitably used. Although the amount of sample introduced into the formalin-alkaline phosphate buffer is not necessarily limited,
The thickness is preferably 2 to 500μ. Further, the electrodes used for PH measurement and the measurement method thereof can be conventional methods, and the amount of amino acids can be determined from the PH measurement results by methods such as using a calibration curve. FIG. 4 shows an example of the apparatus used for carrying out the present invention, in which 1 is a phosphate buffer tank, 2 is a formalin tank, 3 is a pure water tank, 4 is a pump, 5 is a sample injector, and 6 is a Flow cell, 7 is a pH measurement electrode, 8 is a reference electrode, 9 is an ion meter, 10 is a recorder,
Reference numeral 11 denotes a drain tank, in which a pump 4 is operated to flow phosphate buffer, formalin, and pure water at a predetermined flow rate, and a sample containing an amino acid is injected into the pure water from a sample injector 5. The mixed liquid is introduced into the flow cell 6, and the pH of the mixed liquid is measured and recorded on the recorder 10. Note that in the above example, the sample was injected into the formalin channel, and then the formalin channel and the phosphate buffer channel were merged, but after the formalin channel and the phosphate buffer channel were merged, , the sample may be injected into this merging channel. The results of quantifying all amino acids in Japanese sake using the apparatus shown in FIG. 4 are shown in Examples below. Example The total amino acids in Japanese sake were analyzed by the following method. Phosphate buffer (0.1M NaHPO 4
0.05M NaOH system pK a = 12.3), 18% formalin solution, and pure water were set at a flow rate of 0.5 ml/min and flowed through the flow cell to stabilize the electrode potential. Once the readings are stable, create a calibration curve. To create a calibration curve, use L-valine 1×10 -2 , 2×10 -2 , 4
Prepare a ×10 -2 M solution and inject 130μ of each using a syringe. The injected L-valine is oxidized by formalin as shown in the following formula, H 2 NC 4 H 8 COOH + nHCHO → HOH 2 CHNC 4 H 8 COOH or (HOH 2 C) 2 N
C 4 H 8 COOH Converted to organic acid and mixed in phosphate buffer. An acid-base reaction takes place in the buffer, and this pH
Changes in pH are detected using a glass electrode for PH measurement and a reference electrode inserted into the flow cell. The peak height from the standard is measured and a calibration curve as shown in FIG. 5 is created. In addition, since glycine, leucine, and L-valine have the same dissociation constant in formalin as the amino acids used for creating the calibration curve, the same calibration curve was obtained regardless of which amino acid was used.
In addition, the peak detection method may be either a method of measuring the peak height or a method of determining the potential difference. Next, inject the sample, convert the various amino acids contained in the sake into organic acids using the same procedure as above, calculate the peak height from the PH change of the buffer solution, and use the previously determined calibration curve to convert the various amino acids contained in the sake into organic acids. Determine the total amount of amino acids. Note that the amount of amino acids may be calculated by directly recording the concentration on a printer using a data processing unit. Table 1 shows the results of purchasing five types of commercially available Japanese sake from different manufacturers, determining the total amino acid content in the sake using this method, and comparing it with the analysis method prescribed by the National Tax Agency.

【表】 第1表の結果から、本法は従来法と相関係数
0.939と良い一致を示し、本法を用いても日本酒
中の全アミノ酸の定量が可能であることがわかつ
た。 また、第6図にメーカーB及びCの試料を3回
ずつ分析した時のピークの再現性と応答時間を示
す。ピークの再現性は、それぞれCVで2.6及び
2.8%で、反応時間は1回の測定時間がB、C何
れの場合でも30秒であつた。更に第7図に国税庁
所定分析法に準じたアミノ酸の滴定に於いて、サ
ンプルにグリシンを用いた場合(2×10-2M/
グリシン10mlと6Mホルムアルデヒド10mlを使用)
の滴定曲線を示した。第6図のクロマトグラムと
第7図の滴定曲線を比較することにより本発明法
の実用性の高いことが明らかである。 次に、上記した結果より日本酒中の全アミノ酸
の濃度は1.50×10-2〜2.15×10-2M/程度であ
ることがわかつたが、この濃度範囲外での本法の
全アミノ酸濃度追従性をメーカーBの日本酒を用
いて調べた。即ち、アミノ酸濃度が2.05×
10-2M/より濃い溶液を調製する場合はL−バ
リンを添加して日本酒中のアミノ酸量を調整し、
アミノ酸濃度が2.05×10-2M/よりうすい溶液
を調製する場合は純水で希釈した。このような方
法で試料を6点作り、上記と同様に本法と国税庁
所定分析法により全アミノ酸量を求めた。その結
果を第8図に示す。この検討結果に於いても、本
法と国税庁所定分析法の回帰式は y=0.997x−0.019 で相関係数は0.997と良い相関を示し、本法は日
本酒中の全アミノ酸の濃度変化に追従性があるこ
とがわかつた。 以上、日本酒中の全アミノ酸の定量に際し、本
法を適用した場合の実施例について述べたが、そ
の他合成酒、みりん、ビール、ワイン中の全アミ
ノ酸の定量や発酵生産過程の全アミノ酸の工程管
理に本法は有効であつた。また、実施例に於いて
は、試料の測定系への導入は試料注入器を用いて
行つたが、注入器の代りに定量ポンプを用いて一
定量の試料を連続的に送る方法をとつても同様の
結果が得られた。 発明の効果 本発明に係るアミノ酸の分析法は、ホルマリン
−アルカリ性りん酸緩衝液が連続的に流れる流れ
系の中にアミノ酸を含む試料を注入し、この時生
ずるホルマリン−緩衝液−試料の混合溶液のPH低
下程度をPH測定用電極で検出し、このPH低下程度
から前記試料中のアミノ酸濃度を求めることを特
徴とするもので、下記の特徴を有する。 (1) 連続的に流れるPH緩衝液をベースにするので
ベースラインは極めて安定で、酸−塩基反応に
基づく微小なPH変化のピーク高さの再現性は極
めて良い。 (2) 滴定曲線を書く必要がなく、ピーク高さを測
定すれば良いので定量に際しての迅速性が大き
い。 (3) 全アミノ酸とピーク高さの関係は、電極法特
有の対数特性ではなく、比例的なので濃度の算
出が容易である。 (4) システムの構成はポンプ、注入器、検出器、
受信器、レコーダー等があれば良く、簡単なの
で自動化が容易である。 (5) PH変化の検出には流れ分析用PH測定用電極を
用いているので選択性が高く、試料の汚れ、着
色等は定量に際し殆んど影響しない。 (6) 分析に用いる試料は100μ程度で良く、極
めて少量である。 (7) 分析能力は1時間当り120試料と迅速である。 (8) 全アミノ酸を定量するには試料を注入するだ
けで良く、特別な専門知識を必要としないので
省力化に寄与できる。
[Table] From the results in Table 1, this method has a correlation coefficient with that of the conventional method.
0.939, showing good agreement, indicating that it is possible to quantify all amino acids in sake using this method. Furthermore, FIG. 6 shows the peak reproducibility and response time when samples from manufacturers B and C were analyzed three times each. Peak reproducibility is 2.6 and CV, respectively.
2.8%, and the reaction time for one measurement was 30 seconds in both cases B and C. Furthermore, Figure 7 shows that when glycine was used as a sample in the titration of amino acids according to the analysis method prescribed by the National Tax Agency (2 × 10 -2 M/
(using 10ml of glycine and 10ml of 6M formaldehyde)
The titration curve was shown. By comparing the chromatogram in FIG. 6 with the titration curve in FIG. 7, it is clear that the method of the present invention is highly practical. Next, from the above results, it was found that the concentration of total amino acids in sake is about 1.50 × 10 -2 to 2.15 × 10 -2 M/, but it is difficult to follow the concentration of total amino acids in this method outside of this concentration range. The properties were investigated using sake from Manufacturer B. That is, the amino acid concentration is 2.05×
To prepare a solution more concentrated than 10 -2 M, add L-valine to adjust the amount of amino acids in the sake.
When preparing a solution with an amino acid concentration of 2.05×10 −2 M/more diluted, it was diluted with pure water. Six samples were prepared using this method, and the total amino acid content was determined using this method and the analysis method prescribed by the National Tax Agency in the same manner as described above. The results are shown in FIG. In the results of this study, the regression equation of this method and the analysis method specified by the National Tax Agency shows a good correlation with y=0.997x−0.019 and a correlation coefficient of 0.997, and this method follows the changes in the concentration of all amino acids in sake. I found out that there is a sex. Above, we have described examples of applying this method to quantify all amino acids in Japanese sake, but we have also described other examples in which this method is applied to quantify all amino acids in synthetic sake, mirin, beer, and wine, and process control of all amino acids in fermentation production processes. This law was valid until then. In addition, in the example, the sample was introduced into the measurement system using a sample injector, but instead of the injector, a metering pump was used to continuously feed a fixed amount of the sample. A similar result was obtained. Effects of the Invention In the amino acid analysis method according to the present invention, a sample containing amino acids is injected into a flow system in which formalin-alkaline phosphate buffer solution flows continuously, and a mixed solution of formalin-buffer solution-sample is generated. The method is characterized in that the degree of PH reduction in the sample is detected with a PH measurement electrode, and the amino acid concentration in the sample is determined from the degree of PH reduction, and has the following characteristics. (1) Since it is based on a continuously flowing PH buffer, the baseline is extremely stable, and the reproducibility of the peak height of minute PH changes caused by acid-base reactions is extremely good. (2) There is no need to draw a titration curve; all you need to do is measure the peak height, so quantitative determination is very quick. (3) The relationship between total amino acids and peak height is not logarithmic, which is unique to the electrode method, but is proportional, making it easy to calculate the concentration. (4) The system consists of a pump, injector, detector,
All you need is a receiver, recorder, etc., and since it is simple, it is easy to automate. (5) Since PH measurement electrodes for flow analysis are used to detect PH changes, selectivity is high, and sample stains, coloring, etc. have almost no effect on quantitative determination. (6) The sample used for analysis only needs to be about 100μ, which is an extremely small amount. (7) Analytical capacity is fast, 120 samples per hour. (8) To quantify all amino acids, it is enough to simply inject the sample, and no special expertise is required, contributing to labor savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明する概略図、第2
図はPH電極による酸−塩基滴定の電位変化の理論
曲線、第3図はグリシン添加時のりん酸緩衝液の
PH変化を示すグラフ、第4図は本発明の実施に用
いる装置の一例を示す概略図、第5図はL−バリ
ンを用いた場合の検量線の一例を示すグラフ、第
6図は本発明法を日本酒中の全アミノ酸分析に適
用した場合のピーク高さの再現性を示すクロマト
グラム、第7図は従来の国税庁所定分析法に準じ
たホルマリン中でのアミノ酸の滴定曲線、第8図
は本発明法と従来の国税庁所定分析法との相関を
示すグラフである。 1……りん酸緩衝液槽、2……ホルムアルデヒ
ド槽、3……純水槽、4……ポンプ、5……試料
導入器、6……フローセル、7……PH測定用電
極、8……比較電極、9……イオンメータ。
Figure 1 is a schematic diagram explaining the principle of the present invention, Figure 2 is a schematic diagram explaining the principle of the invention.
The figure shows the theoretical curve of potential change in acid-base titration using a PH electrode. Figure 3 shows the potential change of phosphate buffer when glycine is added.
A graph showing PH changes, Fig. 4 is a schematic diagram showing an example of an apparatus used for implementing the present invention, Fig. 5 is a graph showing an example of a calibration curve when L-valine is used, and Fig. 6 is a schematic diagram showing an example of a calibration curve using L-valine. Chromatogram showing the reproducibility of peak height when the method is applied to the analysis of total amino acids in sake. Figure 7 is a titration curve of amino acids in formalin based on the conventional analysis method specified by the National Tax Agency. Figure 8 is a titration curve of amino acids in formalin. It is a graph showing the correlation between the method of the present invention and the conventional analysis method prescribed by the National Tax Agency. 1... Phosphate buffer tank, 2... Formaldehyde tank, 3... Pure water tank, 4... Pump, 5... Sample introducer, 6... Flow cell, 7... Electrode for PH measurement, 8... Comparison Electrode, 9...Ion meter.

Claims (1)

【特許請求の範囲】[Claims] 1 ホルマリンとアルカリ性りん酸緩衝液とが混
合されて連続的に流れる流れ系の中にアミノ酸を
含む試料を導入し、この時生ずるホルマリン、ア
ルカリ性りん酸緩衝液及び試料の混合溶液のPH低
下程度をPH測定用電極で検出し、このPH低下程度
から試料中のアミノ酸濃度を求めることを特徴と
する全アミノ酸の分析法。
1. A sample containing amino acids is introduced into a continuous flow system in which formalin and alkaline phosphate buffer are mixed, and the degree of PH drop in the mixed solution of formalin, alkaline phosphate buffer, and sample that occurs at this time is measured. A total amino acid analysis method that detects with a PH measurement electrode and determines the amino acid concentration in a sample from the degree of PH decrease.
JP59222391A 1984-10-23 1984-10-23 Analysis of total amino acid Granted JPS61100652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59222391A JPS61100652A (en) 1984-10-23 1984-10-23 Analysis of total amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222391A JPS61100652A (en) 1984-10-23 1984-10-23 Analysis of total amino acid

Publications (2)

Publication Number Publication Date
JPS61100652A JPS61100652A (en) 1986-05-19
JPH0558137B2 true JPH0558137B2 (en) 1993-08-25

Family

ID=16781627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222391A Granted JPS61100652A (en) 1984-10-23 1984-10-23 Analysis of total amino acid

Country Status (1)

Country Link
JP (1) JPS61100652A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221020A (en) * 2019-07-04 2019-09-10 施国栋 A kind of COD detection device and method

Also Published As

Publication number Publication date
JPS61100652A (en) 1986-05-19

Similar Documents

Publication Publication Date Title
Baykov et al. A simple and sensitive apparatus for continuous monitoring of orthophosphate in the presence of acid-labile compounds
CA1191898A (en) Method for measuring ionic concentration utilizing an ion-sensing electrode
Toth et al. Potentiometric detection in flow analysis
Trushina et al. Determination of nitrite and nitrate reduction by capillary ion electrophoresis
Dvořák et al. Determination of total sulphur dioxide in beer samples by flow‐through chronopotentiometry
Carlsen et al. On-line monitoring of penicillin V during penicillin fermentations: a comparison of two different methods based on flow-injection analysis
JPH0558137B2 (en)
Kamson Spectrophotometric determination of iodate, iodide and acids by flow injection analysis
Matuszewski et al. Flow‐injection potentiometric determination of creatinine in urine using sub‐Nernstian linear response range
Watson et al. A dedicated instrument for the analysis of blood urea nitrogen using an immobilized enzyme reagent
JPS5861459A (en) Analyzing device for creatine and creatinine
JPS6325301B2 (en)
JPS61170649A (en) Analyzing method of total organic acid
Qu et al. Simultaneous determination of maltose and glucose using a dual-electrode flow injection system
CN113702445B (en) PH value detection method and water quality analysis method
de Castro Continuous monitoring by unsegmented flow techniques State of the art and perspectives
SU701252A1 (en) Method of potentiometric determination of gold and silver in cyanide solutions
Orsonneau et al. Sensitisation and visualisation of biochemical measurements using the NAD/NADH system by means of Meldola blue: II. Application to the continuous flow determination of plasma glucose and urea
JPS6319819B2 (en)
CN107064483A (en) A kind of double item rapid assay methods of serum urea nitrogen creatinine
AU2005238593A1 (en) Test kit and method for the determination of nitrogen components in wine
CN110511976A (en) The measuring method of L-arginine in serum
Kawasaki et al. Determination of iron (III) ion using ion chromatography with electrochemical detection and its application to the assay of the ferroxidase activity of cerulplasmin
JPS63285459A (en) Measurement of concentration of organic substance and apparatus used therefor
Jemmali et al. A polarographic method for the rapid determination of glucose with glucose oxidase