JPH0558015B2 - - Google Patents

Info

Publication number
JPH0558015B2
JPH0558015B2 JP9612385A JP9612385A JPH0558015B2 JP H0558015 B2 JPH0558015 B2 JP H0558015B2 JP 9612385 A JP9612385 A JP 9612385A JP 9612385 A JP9612385 A JP 9612385A JP H0558015 B2 JPH0558015 B2 JP H0558015B2
Authority
JP
Japan
Prior art keywords
thin film
organic thin
water
substrate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9612385A
Other languages
Japanese (ja)
Other versions
JPS61254634A (en
Inventor
Toyoki Kunitake
Masatsugu Shimomura
Nobuyuki Azuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP9612385A priority Critical patent/JPS61254634A/en
Publication of JPS61254634A publication Critical patent/JPS61254634A/en
Publication of JPH0558015B2 publication Critical patent/JPH0558015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は新芏な分子配向性を有する有機薄膜の
補造方法に関する。曎に詳しくは、 (i) 個たたは個の盎鎖疎氎基あるいは剛盎性
郚分を連鎖䞭に含む個の盎鎖疎氎基を有し、
か぀むオン性基を有する有機化合物ず (ii) 䞊蚘の有機化合物が有するむオン性基
ずは反察荷電のむオン性基を有する重合䜓を含
む氎溶液ずを界面を圢成しお存圚させ、該界面
に察しお垂盎方向たたは角床をも぀お基板を該
氎溶液䞭に浞挬及び匕䞊げ、基板䞊に有機薄膜
を圢成させるこずを特城ずする有機薄膜の補造
方法に関する。 埓来の技術 近幎、有機薄膜は分離膜、センサヌ、衚瀺材
料、゚レクトロニクス玠子など広範な立堎からの
応甚が詊みられおいるものである。特に分子配向
性をも぀有機薄膜は分子を組織しお機胜性分子集
団を構築する䞊で極めお重芁なものず考えられお
いる。今日たで、分子配向性をも぀有機薄膜を䜜
成する最も有効な方法ずしおは、むオン性基の劂
き芪氎基及び盎鎖アルキル基の劂き疎氎性基を䜵
せも぀有機化合物を氎盞衚面に展開し、基板を該
氎盞䞭に浞挬及び匕䞊げ、基板䞊に有機薄膜を圢
成させる方法がずられおおり、この方法により圢
成させた有機薄膜はラングミナアヌブロゞ゚ツト
膜ず称されおいる。しかしながら、埓来のラング
ミナアヌブロゞ゚ツト膜においおは、倚くの堎合
䜿甚される有機化合物が分子内にむオン基の劂き
芪氎性基を含むこず、及び䞀般に分子量が1000以
䞋の比范的䜎分子量のものが倚いため、氎䞭での
䜿甚あるいは加熱条件䞋での䜿甚等により容易に
厩壊ないし構造倉化する等の問題があり、その応
甚分野は極めお限られたものにならざるを埗なか
぀た。 問題点を解決するための手段 本発明者等は、これらの欠点を克服した分子配
向性を有する有機薄膜を埗るべく皮々怜蚎を重ね
た結果、 (i) 個たたは個の盎鎖疎氎基、たたは剛盎性
郚分を連鎖䞭に含む個の盎鎖疎氎基を有し、
か぀むオン性基を有する有機化合物ず (ii) 䞊蚘の有機化合物が有するむオン性基
ずは反察荷電のむオン性基を有する重合䜓を含
む氎溶液ずを界面を圢成しお存圚させ、該界面
に察しお垂盎方向たたは角床をも぀お基板を該
氎溶液䞭に浞挬及び匕䞊げ、基板䞊に有機薄膜
を圢成させるこずにより、基板䞊に耐氎性及び
耐熱性に優れた有機薄膜を圢成させるこずが可
胜であるこずを芋い出し、本発明を完成させる
に至぀た。 本発明においお甚いる䞻成分の぀は、個た
たは個の盎鎖疎氎基、たたは剛盎性郚分を連鎖
䞭に含む個の盎鎖疎氎基を有し、か぀むオン性
基を有する有機化合物以䞋、盎鎖有機化合物ず
略称するである。 本発明においおむオン性基ずは酞性基たたは塩
基性基の総称ずしお定矩される。ここで酞性たた
は塩基性ずはブレンステツド酞たたはブレンステ
ツド塩基を意味し、酞性基ずしおは䞀般にスルホ
ン基、カルボキシル基、リン酞基、プノヌル性
氎酞基、及びこれらが塩ずな぀たもの、塩基性基
ずしおは䞀般にアミノ基、眮換アミノ基、第四ア
ンモニりム基及びこれらが塩ずな぀たものが奜適
に䜿甚される。 本発明においお盎鎖疎氎基は埗られる有機薄膜
の安定性及び原料の入手の容易さから炭玠数〜
30の盎鎖アルキル基たたはそのハロゲン眮換䜓で
あるこずが奜たしい。なお、本発明でいう盎鎖疎
氎基ずは、完党に盎鎖状のものの他に、炭酞数
個迄の分枝を有する分枝状のものをも含んだ意味
で䜿甚される。 本発明の盎鎖有機化合物の䞀぀は、個たたは
個の盎鎖疎氎基を有するものである。該盎鎖疎
氎基が個であるず埗られる有機薄膜の耐氎性が
十分でなく、たた個以䞊になるず原料入手に及
び合成䞊に難がある。 たた、本発明の盎鎖有機化合物の他の䞀぀は、
剛盎性郚分を連鎖䞭に含む個の盎鎖疎氎基を有
するものである。 本発明においお剛盎性郚分ずは、次の及
びに瀺す基をいう。 盎結あるいは、炭玠−炭玠倚重結合、炭玠−
窒玠倚重結合、窒玠−窒玠倚重結合、゚ステル
結合、アミド結合等を介しお連結された少なく
ずも個の芳銙環で構成される䟡の基、この
ような基を具䜓的に瀺せば、䟋えば、 等の䟡の基が挙げられる。 個の芳銙環の結合が耇数であるか、耇数原
子間の単結合であ぀お、その回転が゚ネルギヌ
的に束瞛を受けおいる䟡の基、このような基
を具䜓的に瀺せば、䟋えば、 等の䟡の基が挙げられる。 芳銙環が瞮合環を圢成しおいるもので、この
瞮合環が倚分子間で積局した堎合に、その回転
が互いに立䜓的に束瞛を受けおいる䟡の基、
このような基を具䜓的に䟋瀺するず、 等の䟡の基が挙げられる。 剛盎性郚分を連鎖䞭に含む個の盎鎖疎氎基を
有する盎鎖有機化合物の盎鎖疎氎基の炭玠数は、
剛盎性郚分及び剛盎性郚分ず該盎鎖疎氎基ずの結
合郚分を陀いた郚分の炭玠数を意味する。䞊蚘剛
盎性郚分ず盎鎖疎氎基ずの結合郚分は、䞀般に炭
玠−炭玠単結合、゚ステル結合、゚ヌテル結合が
奜適である。剛盎性郚分を連鎖䞭に含む盎鎖疎氎
基を個に限定するのは、もし該盎鎖疎氎基が
個以䞊になるず合成が著しく困難になるこず、及
び薄膜を圢成する際に氎界面に安定に展開するこ
ずが困難になるためである。 本発明の盎鎖有機化合物は、䞊蚘をみたすもの
であれば特に限定されず公知のものが甚いられ
る。䞀般に奜適に䜿甚される代衚的なものを以䞋
に具䜓的に瀺す。 ただし、R1R2は同皮たたは異皮の炭玠数
〜30の盎鎖アルキル基たたはそのハロゲン眮
換䜓であり、R3R4は同皮たたは異皮の炭玠
数〜のアルキル基、たたはそのハロゲン原
子及びたたは氎酞基による眮換䜓である。 ただし、R1R2は䞊蚘ず同じであり、は
−CH2−ただし、は
(Industrial Application Field) The present invention relates to a method for producing an organic thin film having a novel molecular orientation. More specifically, (i) having one straight chain hydrophobic group containing two or three straight chain hydrophobic groups or a rigid part in the chain;
and an organic compound having an ionic group and (ii) an aqueous solution containing a polymer having an ionic group having an opposite charge to the ionic group possessed by the organic compound in () above to form an interface. The present invention relates to a method for producing an organic thin film, which comprises immersing a substrate in the aqueous solution and pulling it up in a direction perpendicular to or at an angle to the substrate, thereby forming an organic thin film on the substrate. (Prior Art) In recent years, attempts have been made to apply organic thin films to a wide range of applications such as separation membranes, sensors, display materials, and electronic devices. In particular, organic thin films with molecular orientation are considered to be extremely important for organizing molecules and constructing functional molecular groups. To date, the most effective method for creating organic thin films with molecular orientation is to develop organic compounds having both hydrophilic groups such as ionic groups and hydrophobic groups such as linear alkyl groups on the surface of the aqueous phase. A method is used in which a substrate is immersed in the aqueous phase and pulled up to form an organic thin film on the substrate, and the organic thin film formed by this method is called a Langmuir-Blodget film. However, in conventional Langmiur Blossom membranes, the organic compounds used in many cases contain hydrophilic groups such as ionic groups in their molecules, and they generally have relatively low molecular weights of 1000 or less. Because of the large amount of carbon dioxide, there is a problem that it easily disintegrates or changes its structure when used in water or under heated conditions, and its field of application has been extremely limited. (Means for Solving the Problems) As a result of various studies in order to obtain an organic thin film with molecular orientation that overcomes these drawbacks, the present inventors found that (i) two or three linear chains having one straight chain hydrophobic group containing a hydrophobic group or a rigid part in the chain,
and an organic compound having an ionic group and (ii) an aqueous solution containing a polymer having an ionic group having an opposite charge to the ionic group possessed by the organic compound in () above to form an interface. It is possible to form an organic thin film with excellent water resistance and heat resistance on the substrate by immersing the substrate in the aqueous solution in a direction perpendicular to or at an angle to and pulling it up to form an organic thin film on the substrate. We have discovered that this is the case, and have completed the present invention. One of the main components used in the present invention is an organic compound that has two or three straight-chain hydrophobic groups, or one straight-chain hydrophobic group that includes a rigid part in the chain, and also has an ionic group. (hereinafter abbreviated as linear organic compound). In the present invention, the ionic group is defined as a general term for acidic groups or basic groups. Here, acidic or basic means BrÞnsted acid or BrÞnsted base; acidic groups generally include sulfone groups, carboxyl groups, phosphoric acid groups, phenolic hydroxyl groups, and salts thereof; basic groups include Generally, amino groups, substituted amino groups, quaternary ammonium groups, and salts thereof are preferably used. In the present invention, the linear hydrophobic group has a carbon number of 4 to
30 straight chain alkyl groups or halogen-substituted derivatives thereof. In addition, the linear hydrophobic group referred to in the present invention refers to a completely linear hydrophobic group, as well as one with a carbon number of 2.
It is also used in the sense of including branched things with up to 100 branches. One of the linear organic compounds of the present invention has two or three linear hydrophobic groups. If the number of linear hydrophobic groups is one, the resulting organic thin film will not have sufficient water resistance, and if it has four or more, there will be difficulties in obtaining raw materials and in synthesis. Moreover, another one of the linear organic compounds of the present invention is
It has one straight chain hydrophobic group that includes a rigid part in the chain. In the present invention, the rigid moiety refers to the following groups. Direct bond or carbon-carbon multiple bond, carbon-
A divalent group composed of at least two aromatic rings connected via a nitrogen multiple bond, a nitrogen-nitrogen multiple bond, an ester bond, an amide bond, etc. Specific examples of such groups include, for example, Examples include divalent groups such as. A divalent group in which two aromatic rings have multiple bonds or a single bond between multiple atoms, and the rotation of which is energetically constrained; specific examples of such groups include: for example, Examples include divalent groups such as. A divalent group in which aromatic rings form a condensed ring, and when this condensed ring is stacked between multiple molecules, the rotation thereof is sterically constrained to each other,
Specific examples of such groups are: Examples include divalent groups such as. The number of carbon atoms in the straight chain hydrophobic group of a straight chain organic compound having one straight chain hydrophobic group containing a rigid part in the chain is:
It means the number of carbon atoms in the portion excluding the rigid portion and the bonding portion between the rigid portion and the linear hydrophobic group. The bond between the rigid portion and the linear hydrophobic group is generally preferably a carbon-carbon single bond, an ester bond, or an ether bond. The reason for limiting the number of straight chain hydrophobic groups that contain a rigid part in the chain is that if the straight chain hydrophobic group contains two
This is because if the number is more than 1, it becomes extremely difficult to synthesize, and it becomes difficult to stably develop on the water interface when forming a thin film. The linear organic compound of the present invention is not particularly limited as long as it satisfies the above requirements, and known compounds can be used. Representative ones that are generally suitably used are specifically shown below. However, R 1 and R 2 are the same or different straight chain alkyl groups having 6 to 30 carbon atoms or halogen-substituted products thereof, and R 3 and R 4 are the same or different alkyl groups having 1 to 4 carbon atoms, or It is a substituted product with a halogen atom and/or a hydroxyl group. However, R 1 and R 2 are the same as above, and A is (-B)l(CH 2 (-k (however, B is

【匏】【formula】

【匏】【formula】

【匏】たたは[expression] or

【匏】であり、はたたは であり、は正の敎数である。であり、
は正の敎数である。R3R4R5は䞊蚘のR3
及びR4の説明ず同じである。 ただし、R1R2R3R4R5及びは䞊蚘
ず同じであり、はたたははたたは
である。 ただし、R1R2R3R4及びR5は䞊蚘ず同
じであり、は正の敎数である。 ただし、R3R4及びR5は䞊蚘ず同じであり、
R6は炭玠数〜30のアルキル基、アルキルオ
キシ基、若しくはアルキルオキシカルボニル基
たたはこれらのハロゲン眮換䜓であり、は
[Formula], is 0 or 1, and k is a positive integer. ) and h,
i is a positive integer. R 3 , R 4 , R 5 are the above R 3
and R 4 . However, R 1 , R 2 , R 3 , R 4 , R 5 and A are the same as above, i is 1 or 2, and m is 0 or 1. However, R 1 , R 2 , R 3 , R 4 and R 5 are the same as above, and n is a positive integer. However, R 3 , R 4 and R 5 are the same as above,
R 6 is an alkyl group, alkyloxy group, or alkyloxycarbonyl group having 4 to 30 carbon atoms, or a halogen-substituted product thereof, and D is

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 ただし、は−CH−、−−、−
CHCH−、
[Formula] (However, F is -N=CH-, -N=N-, -
CH=CH−,

【匏】【formula】

【匏】【formula】

【匏】【formula】 【匏】【formula】

【匏】−NHCH2 −、[Formula] −NHCH 2 −,

【匏】【formula】

【匏】【formula】

【匏】たたは[expression] or

【匏】 はたたはである。は−CH2−qたたは−
−CH2−rである。ただし、は正
の敎数である。 䞊蚘䞀般匏〔〕〔〕及び〔〕䞭、
及びは正の敎数であれば良いが、䞀般に
は原料の入手の容易さから〜16であるこずが奜
たしい。たた、䞊蚘䞀般匏〔〕䞭、及び
は、正の敎数を䜕ら制限なく取り埗るが、䞀般に
は原料の入手の容易さから〜であるこずが奜
たしい。さらに、䞊蚘䞀般匏〔〕〔〕〔〕
〔〕及び〔〕䞭、R1R2R3R4R5及び
R6で瀺されるハロゲン眮換アルキル基のハロゲ
ン原子ずしおは、フツ玠、塩玠、臭玠、ペり玠の
各原子が挙げられる。 本発明においお甚いる他の成分は、前蚘有機化
合物が有するむオン性基ずは反察荷電のむオン性
基を有する氎溶性の重合䜓以䞋、単にむオン性
重合䜓ずもいう。である。該重合䜓は䞊蚘特定
を有する限り特に限定されず公知のものを甚いる
こずができる。䞀般に埗られる有機薄膜の安定性
を勘案すれば、分子量が5000〜1000䞇の範囲のも
のが奜適である。 たた䞊蚘重合䜓を埗るために䜿甚される単量䜓
モノマヌは埗られる重合䜓が前蚘性状のもの
である限り特に限定されない。䞀般に奜適に䜿甚
されるモノマヌを䟋瀺すれば次のずおりである。
すなわち、アクリル酞、メタクリル酞、マレむン
酞、フマル酞、むタコン酞、クロトン酞、グルタ
ミン酞、アスパラギン酞等のカルボキシル基を有
するモノマヌスチレンスルホン酞、ビニルスル
ホン酞、アルケンスルホン酞、−ブチルアクリ
ルアミドスルホン酞等のスルホン酞基を有するモ
ノマヌビニルホスホン酞、アクリロむルオキシ
アルキルホスホン酞、メタクリロむルオキシアル
キルホスホン酞等のリン酞基を有するモノマヌ
ビニルプノヌル等のプノヌル系モノマヌリ
ゞン、゚チレンむミン、ビニルピリゞン、ゞメチ
ルアミノプロピルメタクリルアミド等のカチオン
系モノマヌあるいはこれらモノマヌに眮換基を眮
換した眮換誘導䜓等が奜適に䜿甚される。 たた、前蚘むオン性基を有するモノマヌず共重
合可胜なビニルモノマヌも埗られる共重合䜓が前
蚘性状を付䞎するものである範囲内においお特に
限定されず公知のものが䜿甚できる。䞀般に奜適
に䜿甚される代衚的なものを具䜓的に瀺せば、䟋
えば、゚チレン、プロピレン、ブテン等のオレフ
むン化合物塩化ビニル、ヘキサフルオロプロピ
レン等のオレフむン化合物のハロゲン誘導䜓ブ
タゞ゚ン、ベンタゞ゚ン等のゞオレフむン化合物
及びそのハロゲン誘導䜓スチレン、クロルスチ
レン、ビニルナフタレン等の芳銙族ビニル化合
物酢酞ビニル等のビニル゚ステル化合物アク
リル酞メチル、メタクリル酞゚チル、−ヒドロ
キシ゚チルメタクリレヌト、アクリルアミド、メ
タクリルアミド等のアクリル酞及びメタクリル酞
誘導䜓アクリロニトリル等の䞍飜和ニトリル化
合物メチルビニル゚ヌテル等のビニル゚ヌテル
化合物等が挙げられる。 本発明においお䞀般に奜適に䜿甚されるむオン
性重合䜓を䞀般匏で瀺せば次のずおりである。 カルボキシル基を有する重合䜓 ただし、は氎玠原子、アルキル基たたはカ
ルボキシメチル基であり、は−CH2−基、
[Formula] p is 0 or 1. ) E is (−CH 2 −) q or −
O-( CH2 )-) r . (However, q and r are positive integers.) In the above general formulas [B], [D] and [E], k,
Although n, q and r may be any positive integer, they are generally preferably 1 to 16 from the viewpoint of easy availability of raw materials. In addition, in the above general formula [B], h and i
may take any positive integer without any restriction, but is generally preferably from 1 to 4 from the viewpoint of easy availability of raw materials. Furthermore, the above general formulas [A], [B], [C],
[D] and [E], R 1 , R 2 , R 3 , R 4 , R 5 and
Examples of the halogen atom in the halogen-substituted alkyl group represented by R 6 include fluorine, chlorine, bromine, and iodine atoms. Another component used in the present invention is a water-soluble polymer (hereinafter also simply referred to as an ionic polymer) having an ionic group with an opposite charge to the ionic group possessed by the organic compound. The polymer is not particularly limited as long as it has the above specifications, and any known polymer can be used. Considering the stability of generally obtained organic thin films, those having a molecular weight in the range of 5,000 to 10,000,000 are preferable. Further, the monomer used to obtain the above polymer is not particularly limited as long as the obtained polymer has the above properties. Examples of monomers that are generally suitably used are as follows.
Namely, monomers having a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, glutamic acid, and aspartic acid; styrene sulfonic acid, vinyl sulfonic acid, alkenesulfonic acid, and t-butylacrylamide sulfonic acid. Monomers having a sulfonic acid group such as; monomers having a phosphoric acid group such as vinylphosphonic acid, acryloyloxyalkylphosphonic acid, methacryloyloxyalkylphosphonic acid;
Phenol monomers such as vinylphenol; cationic monomers such as lysine, ethyleneimine, vinylpyridine, dimethylaminopropylmethacrylamide, and substituted derivatives obtained by substituting these monomers with substituents are preferably used. Moreover, the vinyl monomer copolymerizable with the monomer having an ionic group is not particularly limited, and any known vinyl monomer can be used as long as the resulting copolymer imparts the properties described above. Typical examples that are generally preferably used include, for example, olefin compounds such as ethylene, propylene, and butene; halogen derivatives of olefin compounds such as vinyl chloride and hexafluoropropylene; diolefin compounds such as butadiene and bentadiene. and its halogen derivatives; aromatic vinyl compounds such as styrene, chlorostyrene, and vinylnaphthalene; vinyl ester compounds such as vinyl acetate; acrylic acids such as methyl acrylate, ethyl methacrylate, 2-hydroxyethyl methacrylate, acrylamide, and methacrylamide; Examples include methacrylic acid derivatives; unsaturated nitrile compounds such as acrylonitrile; and vinyl ether compounds such as methyl vinyl ether. The general formula of the ionic polymer generally suitably used in the present invention is as follows. Polymer with carboxyl group However, R is a hydrogen atom, an alkyl group or a carboxymethyl group, and X is a -CH2- group,

【匏】基たたは[Formula] Group or

【匏】基ただし、R1は アルキル基たたはアリヌル基でありは氎玠
原子、金属原子たたは䜎玚アンモニりムであ
る。は〜の敎数であり、はたた
はである。ここで、がのずきは、
、は氎玠原子であり、がのずきは
、〜、は氎玠原子、アルキル
基たたはカルボキシメチル基である。 スルホン酞基を有する重合䜓 ただし、R″は氎玠原子たたはアルキル基で
あり、は
[Formula] group (wherein R 1 is an alkyl group or an aryl group), and M is a hydrogen atom, a metal atom, or a lower ammonium. c is an integer from 0 to 2, and a and b are 0 or 1. Here, when a is 0, b=1,
c=0, R is a hydrogen atom, and when a is 1, b=0, c=0-2, R is a hydrogen atom, an alkyl group or a carboxymethyl group. Polymers with sulfonic acid groups However, R'' is a hydrogen atom or an alkyl group, and Y is

【匏】【formula】

【匏】−−たたは−CH2−e ただし、は正の敎数であり、は氎玠原
子、金属原子たたは䜎玚アンモニりムであり、
はたたはである。 リン酞基を有する重合䜓 ただし、はアルキル基であり、は
[Formula] -0- or (-CH 2 -) e (where e is a positive integer), M is a hydrogen atom, a metal atom or a lower ammonium,
d is 0 or 1. Polymers with phosphate groups However, R is an alkyl group, and Z is

【匏】ただし、は正の敎 数であり、は氎玠原子、金属原子たたは䜎
玚アンモニりムであり、はたたはであ
る。 䞊蚘䞀般匏〔〕〔〕及び〔〕䞭、
R′R″及びで瀺されるアルキル基ずしおは、
その炭玠数に限定されず、いかなるものでも䜿甚
できるが、䞀般には炭玠数が〜のものが奜適
である。たた、䞊蚘䞀般匏〔〕及び〔〕䞭、
及びは正の敎数であれば良いが就䞭、原料の
入手の容易さから〜の敎数であるこずが奜た
しい。 以䞊に説明したむオン性重合䜓の補造方法ずし
おは、前蚘したむオン性基を有するモノマヌを単
独重合させるかたたは二皮以䞊を共重合させる方
法が採甚される。たた、前蚘したむオン性基を有
するモノマヌず共重合可胜なビニルモノマヌずを
共重合させるこずにより、むオン性基を有する重
合䜓を埗るこずもできる。たた、むオン性基を導
入するこずのできる重合䜓に、化孊反応させるこ
ずによ぀お、むオン性基を導入させる方法もしば
しば奜適に採甚される。䟋えば、無氎マレむン
酞、無氎むタコン酞等の無氎カルボン酞の単独あ
るいは共重合䜓を加氎分解するこずにより、カル
ボキシル基を有する重合䜓を埗る方法、たたは、
ポリビニルアルコヌルを硫酞゚ステル化反応させ
るこずにより、スルホン酞基を有する重合䜓を埗
る方法等が挙げられる。 本発明におけるむオン性重合䜓ずしおは、前蚘
した重合䜓の他に、むオン性基を有する倩然高分
子も奜適に䜿甚される。䞀般に本発明においお奜
適に䜿甚されるむオン性基を有する倩然高分子を
䟋瀺するず、アルギン酞、アルギン酞ナトリり
ム、カルボキシメチルセルロヌス、ヘパリン、コ
ンドロむチン硫酞及びこれらの誘導䜓等が挙げら
れる。 本発明においお甚いる基板は埗られる薄膜の甚
途に応じお公知の材質から遞べばよい。埌述する
有機薄膜を基板から分離しお䜿甚する甚途に察し
おは劂䜕なる基板を䜿甚しおもよいが、䞀般には
基板の衚面に有機薄膜を圢成した状態で、そのた
た䜿甚されるケヌスが倚い。この堎合は䜿甚圢態
あるいは芁求される機胜に応じお基板を遞ぶ必芁
がある。䞀般に奜適に䜿甚される基板の材質は、
䟋えば、高分子材料、ガラス、金属セラミツク等
で基板の衚面は必らずしも平滑である必芁はな
い。䟋えば分離膜ずしお䜿甚する堎合には、倚孔
性の膜を基板ずしお䜿甚し、該倚孔性膜の衚面に
圢成した有機薄膜を剥離するこずなく、そのたた
分離膜の甚途に䜿甚すればよい。 本発明においお、䞊蚘基板䞊に有機薄膜を圢成
させるには、前蚘むオン性重合䜓を溶解した氎溶
液の衚面䞊に、該重合䜓のむオン性基ず反察荷電
を有する盎鎖有機化合物を展開し、䞡者の界面を
圢成し、該界面に察しお垂盎方向たたは角床をも
぀お基板を浞挬及び匕䞊げを行い、基板䞊に前蚘
有機薄膜を圢成させるものである。この操䜜を実
斜するに圓぀おは、盎鎖有機化合物を氎溶液衚面
䞊に展開し、基板を浞挬、匕䞊げを行う際に、該
界面に氎平方向に圧力をかけながら該氎溶液䞭に
該基板を浞挬及び匕䞊げるず奜適である。䞊蚘氎
平方向ぞの圧力は特に限定されず、必芁に応じお
予め決定しお採甚すればよい。䞀般には該界面の
衚面圧を10dyncm以䞊望たしくは20dyncm以
䞊か぀50dyncm以䞋に維持するず奜適である。
衚面圧を䞀定範囲に保぀ための手段は特に限定さ
れるものではないが、䟋えば、衚面22262〜
1984に述べられた方法、特にその第図に瀺
されたものず類䌌の装眮を甚いるこずが奜適であ
る。この皮の装眮は既に垂販されおおり容易に入
手可胜である。 むオン性重合䜓を含む氎溶液衚面に盎鎖有機化
合物を展開するに圓぀おは、これらの盎鎖有機化
合物が䞀般に固䜓状である堎合が倚く、この堎合
は有機溶媒に溶解したのち該溶液を氎溶液衚面䞊
に展開した埌、溶媒を蒞発せしめる方法が奜適に
採甚される。ここにおいお甚いる有機溶媒は盎鎖
有機化合物を溶解しうるものであれば特に制限さ
れず甚い埗る。盎鎖有機化合物を溶解する溶媒は
盎鎖有機化合物の皮類によ぀お異なるが、ヘキサ
ン、ヘプタン、メチレンゞクロリド、クロロホル
ム、トリクロル゚タン、テトラクロル゚タン、ベ
ンれン、トル゚ン、キシレン、クロルベンれン、
ゞクロルベンれン、トリクロルベンれン、酢酞゚
チル等の氎ず実質的に混和しない溶媒が単独ある
いは混和しお奜適に甚いるこずができる。曎にメ
タノヌル、゚タノヌル、アセトン、テトラヒドロ
フラン等の氎ず混和しうる溶媒を氎ず混和しない
溶媒に察しお50容量以䞋の量で混和しお甚いる
こずも可胜である。 本発明においお、氎溶液盞に溶解されるむオン
性重合䜓の量は氎衚面に展開される盎鎖有機化合
物に察しおむオン性基単䜍で圓量以䞊甚いるこず
が望たしい。むオン性重合䜓の量がこの倀以䞋で
ある堎合、埗られる有機薄膜の耐氎性、耐熱性が
充分でないこずがある堎合もある。たた有機化合
物を氎衚面䞊に展開するに圓぀おは、該盎鎖有機
化合物分子圓りの氎衚面積が200Å2以䞊になる
ような量をも぀お展開したのち、偎方界面の氎
平方向より圧力をかけ、該盎鎖有機化合物が展
開された氎衚面積を枛じ぀぀所定の衚面圧に達せ
しめる方法が最も奜適に採甚される。本発明で甚
いる盎鎖有機化合物分子圓りの氎衚面積ず衚面
圧ずの関係は、盎鎖有機化合物の皮類、枩床、及
び他の成分であるむオン性重合䜓の皮類により若
干盞違するため、予め、その関係を求めおおくこ
ずが望たしい。䞀般には本発明で甚いる盎鎖有機
化合物分子圓りの氎衚面積が100Å2〜50Å2に
なるたで圧力をかけた状態で本発明に奜適に採甚
される10dyncm〜50dyncmの衚面圧が埗られ
るこずが倚い。 本発明の実斜に際しお採甚される枩床は皮々の
条件に応じお予め適宜決定するのが奜たしい。䞀
般には該氎盞が凝固する枩床すなわち℃より該
有機化合物が氎盞衚面においお安定に存圚するこ
ずが困難になるたでの枩床䟋えば50℃皋床の範囲
から遞べば十分である。 たた本発明においお基板を前蚘氎溶液䞭に浞挬
及び匕䞊げる角床は、氎平方向に察しお垂盎方向
が最も奜適であるが、該匕䞊げが可胜である限り
該氎平方向に察しお角床をもたせるこずもでき
る。該角床をもたせる堎合は䞀般に氎平方向に察
しお最倧数床合䟋えば〜3°の角床たで採甚でき
るが、該角床は基板衚面ぞの有機薄膜の圢成ある
いは工業的な実斜の容易さで、予め決定しお採甚
すればよい。 本発明はこれたで述べたような条件のもずで、
基板を氎盎鎖有機化合物界面に察しお基板を䞊
方より垂盎ないし角床をも぀お浞挬及び匕䞊げを
行うこずにより、基板䞊に有機薄膜を圢成せしめ
るものであるが、基板を浞挬及び匕䞊げを行うに
圓぀おは、その速床が線速床で10mm秒以䞋、奜
たしくはmm秒以䞋であるこずが望たしい。浞
挬及び匕䞊げ速床が著しく倧きい堎合、基板䞊に
有機薄膜を再珟性よく圢成させるこずが困難な堎
合があるので泚意を芁する。 効果 本発明の方法により基板䞊に圢成させた有機薄
膜は良奜な耐氎性、耐熱性を有する。本発明にお
いお甚いるような盎鎖有機化合物のみをも぀お氎
面䞊に展開し、基板䞊に分子配向性をも぀た薄膜
を圢成させるこずも可胜ではあるがChemistry
Letters9151984、それらはその埌の氎䞭凊
理によ぀お容易に脱萜厩壊及び熱凊理によ぀お構
造倉化するずいう欠点をも぀おいたが、本発明者
等は本発明のように、氎䞭に該盎鎖有機化合物ず
むオン性重合䜓を予め溶解しおおくこずにより、
基板䞊に圢成された有機薄膜が極めお安定化され
るこずを芋い出したのである。曎に本発明の方法
によ぀お埗られた有機薄膜は特定の分子配向性を
有する。このこずは埗られる有機薄膜の線回折
により盎接的に蚌明され埗る。たたもし埗られる
有機薄膜が線回折を行うに充分な量でない堎
合、その有機薄膜に察する氎、及び有機溶媒に察
する接觊角を枬定し、この倀を該盎鎖有機化合
物のみを甚いお氎衚面に展開させ基板䞊圢成した
有機薄膜に察する接觊角この方法により埗られ
る有機薄膜が特定の分子配向性を有するこずは
Chemistry Letters9151984においお公知で
ある。、及び他の方法䟋えば通垞の溶媒蒞発法
により補造された本発明ず実質的に同じ化孊組成
をもちか぀配向性を有さない膜状物に察する接觊
角を比范するこずにより、より簡䟿に蚌明され埗
る。䞀般に本発明の方法により埗られる有機薄膜
は、䞊蚘で埗られる有機薄膜ず同皋床の接觊角
を有し、䞊蚘で埗られる膜状物ずは化孊組成が
ほが同䞀であ぀おもより氎に察する接觊角が倧き
く疎氎的であるずいう性質を有しおいる。 䜜甚 本発明の方法により埗られる有機薄膜は良奜な
耐氎性、耐熱性を有するものであるが、その理由
は、本発明においおは補造時に甚いる盎鎖有機化
合物ず反察電荷を持぀むオン性重合䜓が氎䞭に存
圚するため、該盎鎖有機化合物ずむオン性重合䜓
がむオン察を圢成するこずにより埗られる有機薄
膜䞭にむオン性重合䜓が導入されあたかも該盎鎖
有機化合物を盎接重合したかの劂き耐氎性、耐熱
性が付䞎されるものず考えられる。本発明の方法
により埗られる有機薄膜䞭に、該盎鎖有機化合物
ず共に、補造時に甚いたむオン性重合䜓が含たれ
おいるこずは、埗られた有機薄膜をフヌリ゚倉換
赀倖吞収スペクトル、あるいはElectron
Spectroscopy for Chemical Analysis以䞋、単
にESCAず略蚘する等の分析手段により明らか
にされる。特にESCAは本発明で埗られるような
薄膜を分析するのに有効な手段である。 本発明を曎に具䜓的に説明するために以䞋に実
斜䟋を挙げるが、本発明はこれらの実斜䟋に限定
されるものではない。たた、以䞋の実斜䟋は協和
科孊補LUD型ラングミナア膜補造装眮を甚いお
行぀たものである。本装眮の氎槜郚は、開孔郚面
積15cm×70cm、深さcmであり、可動匏浮子によ
り氎衚面郚に偎方より圧力がかけられるように蚭
蚈されたものである。たた、甚いた氎はすべおむ
オン亀換及び逆浞透法により粟補したものであ
る。 実斜䟋 〜 ポリスチレンスルホン酞カリりムを100ml
の氎に溶解し、そのうちmlをラングミナア膜補
造装眮の氎槜郚氎枩25°に添加した。第衚
に瀺す盎鎖有機化合物10.0mgを第衚に瀺す有機
溶媒10mlに溶解し、そのうち50Όを䞊蚘氎面に
展開し、分間攟眮しお有機溶媒を蒞発せしめ
た。その埌、可動匏浮子により偎方より圧力をか
け衚面圧を30dyncmに保぀た状態で倚孔膜ニ
ナヌクレポアNP300、孔埄0.3ÎŒmを0.5mm秒
の速床で垂盎方向から浞挬及び匕䞊げを10回行
い、倚孔膜衚面に有機薄膜を圢成させた。埗られ
た有機薄膜をESCAにより分析した。分析結果は
第衚に瀺したずおりであ぀た。 たた、埗られた有機薄膜の性質及び耐氎性、耐
熱性を調べるために、有機薄膜に察する氎の接觊
角を20℃で枬定した。氎接觊角は補造盎埌のも
の、耐氎性を調べるために60℃の氎䞭で時間攟
眮したもの、及び耐熱性を調べるために空気䞭
100℃で時間熱凊理したものに぀いおも枬定し
た。結果を第衚に瀺す。なお、第衚には比范
䟋ずしお、ポリスチレンスルホン酞カリりムを甚
いないこずを陀いおは実斜䟋〜ず党く同様の
方法で、倚孔膜䞊に圢成させた盎鎖有機化合物か
らなる有機薄膜に぀いおの接觊角の倀も䜵蚘し
た。実斜䟋ず比范䟋における氎接觊角の倀を比范
するこずにより、実斜䟋で埗られた有機薄膜の耐
氎性、耐熱性が優れおいるこずが明らかである。
[Formula] (where g is a positive integer), M is a hydrogen atom, a metal atom or a lower ammonium, and f is 0 or 1. In the above general formulas [], [] and [], R,
The alkyl groups represented by R′, R″ and R are:
Although any carbon number can be used without being limited to the number of carbon atoms, those having 1 to 4 carbon atoms are generally preferred. In addition, in the above general formulas [] and [],
e and g may be positive integers, but are preferably integers of 1 to 4 from the viewpoint of easy availability of raw materials. As a method for producing the ionic polymer described above, a method of homopolymerizing the above-described monomers having an ionic group or copolymerizing two or more thereof is adopted. Moreover, a polymer having an ionic group can also be obtained by copolymerizing the above-mentioned monomer having an ionic group and a copolymerizable vinyl monomer. Moreover, a method of introducing ionic groups into a polymer capable of introducing ionic groups by chemically reacting the same is often suitably employed. For example, a method of obtaining a polymer having a carboxyl group by hydrolyzing a single or copolymer of carboxylic anhydride such as maleic anhydride or itaconic anhydride, or
Examples include a method of obtaining a polymer having a sulfonic acid group by subjecting polyvinyl alcohol to a sulfuric acid esterification reaction. In addition to the above-mentioned polymers, natural polymers having ionic groups are also suitably used as the ionic polymer in the present invention. Examples of natural polymers having ionic groups that are generally preferably used in the present invention include alginic acid, sodium alginate, carboxymethyl cellulose, heparin, chondroitin sulfate, and derivatives thereof. The substrate used in the present invention may be selected from known materials depending on the intended use of the resulting thin film. Although any substrate may be used for applications in which an organic thin film is used separately from a substrate, which will be described later, in many cases the organic thin film is generally used as is with the organic thin film formed on the surface of the substrate. In this case, it is necessary to select a substrate depending on the usage type or required function. The substrate materials that are generally suitable for use are:
For example, the surface of the substrate does not necessarily have to be smooth when it is made of a polymeric material, glass, metal ceramic, or the like. For example, when used as a separation membrane, a porous membrane may be used as a substrate, and the organic thin film formed on the surface of the porous membrane may be used as it is without peeling. In the present invention, in order to form an organic thin film on the substrate, a linear organic compound having an opposite charge to the ionic group of the polymer is developed on the surface of the aqueous solution in which the ionic polymer is dissolved, An interface between the two is formed, and the substrate is immersed and pulled up in a direction perpendicular to or at an angle to the interface, thereby forming the organic thin film on the substrate. To carry out this operation, a linear organic compound is spread on the surface of an aqueous solution, and when the substrate is immersed and pulled up, the substrate is immersed in the aqueous solution while applying horizontal pressure to the interface. And it is suitable to pull it up. The pressure in the horizontal direction is not particularly limited, and may be determined in advance and employed as necessary. Generally, it is preferable to maintain the surface pressure at the interface at 10 dyn/cm or more, preferably 20 dyn/cm or more and 50 dyn/cm or less.
The means for keeping the surface pressure within a certain range is not particularly limited, but for example, the means for keeping the surface pressure within a certain range
(1984), in particular using an apparatus similar to that shown in FIG. 3 thereof. This type of device is already commercially available and readily available. When developing a linear organic compound on the surface of an aqueous solution containing an ionic polymer, these linear organic compounds are generally solid, and in this case, the solution is dissolved in an organic solvent and then dissolved in an aqueous solution. A method in which the solvent is evaporated after being developed on the surface is preferably employed. The organic solvent used here is not particularly limited as long as it can dissolve the linear organic compound. Solvents that dissolve linear organic compounds vary depending on the type of linear organic compound, but include hexane, heptane, methylene dichloride, chloroform, trichloroethane, tetrachloroethane, benzene, toluene, xylene, chlorobenzene,
Solvents that are substantially immiscible with water, such as dichlorobenzene, trichlorobenzene, and ethyl acetate, can be suitably used alone or in combination. Furthermore, it is also possible to use a water-miscible solvent such as methanol, ethanol, acetone, and tetrahydrofuran in an amount of 50% by volume or less based on the water-immiscible solvent. In the present invention, it is desirable that the amount of the ionic polymer dissolved in the aqueous solution phase be equal to or more than the equivalent amount of the ionic group based on the linear organic compound developed on the water surface. If the amount of the ionic polymer is less than this value, the resulting organic thin film may not have sufficient water resistance or heat resistance. In addition, when deploying an organic compound on the water surface, after deploying it in an amount such that the water surface area per molecule of the linear organic compound is 200 Å 2 or more, Most preferably, a method is employed in which a predetermined surface pressure is reached while applying more pressure and reducing the surface area of water on which the linear organic compound is developed. The relationship between the water surface area and surface pressure per molecule of the linear organic compound used in the present invention differs slightly depending on the type of linear organic compound, temperature, and type of ionic polymer that is another component, so , it is desirable to find that relationship. In general, pressure is applied until the water surface area per molecule of the linear organic compound used in the present invention is 100 Å 2 to 50 Å 2 , and a surface pressure of 10 dyn/cm to 50 dyn/cm, which is suitably employed in the present invention, is applied. There are many things you can get. It is preferable that the temperature employed in carrying out the present invention is appropriately determined in advance according to various conditions. Generally, it is sufficient to select the temperature from the temperature at which the aqueous phase solidifies, that is, 0°C, to the temperature at which it becomes difficult for the organic compound to stably exist on the surface of the aqueous phase, for example, about 50°C. Further, in the present invention, the angle at which the substrate is immersed in the aqueous solution and pulled up is most preferably perpendicular to the horizontal direction, but it may also be at an angle to the horizontal direction as long as the pulling is possible. . In general, the angle can be up to a maximum of several degrees, for example 2 to 3 degrees, with respect to the horizontal direction, but the angle may be determined in advance depending on the ease of forming an organic thin film on the substrate surface or industrial implementation. Then, you can adopt it. The present invention is carried out under the conditions as described above.
An organic thin film is formed on the substrate by dipping the substrate from above perpendicularly or at an angle to the water/linear organic compound interface and pulling it up. In this case, it is desirable that the linear velocity is 10 mm/sec or less, preferably 3 mm/sec or less. If the dipping and pulling speeds are extremely high, it may be difficult to form an organic thin film on the substrate with good reproducibility, so care must be taken. (Effects) The organic thin film formed on a substrate by the method of the present invention has good water resistance and heat resistance. Although it is possible to develop a linear organic compound such as the one used in the present invention on the water surface and form a thin film with molecular orientation on the substrate (Chemistry
Letters. By dissolving the linear organic compound and ionic polymer in advance,
They discovered that the organic thin film formed on the substrate is extremely stable. Furthermore, the organic thin film obtained by the method of the present invention has a specific molecular orientation. This can be directly verified by X-ray diffraction of the resulting organic thin film. In addition, if the amount of the obtained organic thin film is not sufficient for X-ray diffraction, the contact angle of water and organic solvent to the organic thin film is measured, and this value is applied to the water surface using only the linear organic compound. The contact angle to the organic thin film developed and formed on the substrate (the organic thin film obtained by this method has a specific molecular orientation)
Chemistry Letters, 915 (1984). ), and by comparing the contact angle with a film-like material having substantially the same chemical composition as the present invention and having no orientation, which was produced by other methods, such as a normal solvent evaporation method, to prove the proof more easily. can be done. In general, the organic thin film obtained by the method of the present invention has a contact angle comparable to that of the organic thin film obtained above, and has a higher contact angle with water than the film-like material obtained above, even though the chemical composition is almost the same. It has large corners and is hydrophobic. (Function) The organic thin film obtained by the method of the present invention has good water resistance and heat resistance. Since the polymer is present in water, the ionic polymer is introduced into the organic thin film obtained by forming ion pairs between the linear organic compound and the ionic polymer, making it appear as if the linear organic compound was directly polymerized. It is thought that water resistance and heat resistance such as these are imparted. The fact that the organic thin film obtained by the method of the present invention contains the ionic polymer used during production together with the linear organic compound means that the obtained organic thin film can be measured by Fourier transform infrared absorption spectrum or electron
It is revealed by analytical means such as Spectroscopy for Chemical Analysis (hereinafter simply abbreviated as ESCA). In particular, ESCA is an effective means for analyzing thin films such as those obtained by the present invention. EXAMPLES Examples are given below to explain the present invention more specifically, but the present invention is not limited to these Examples. Further, the following examples were carried out using a LUD type Langmiur membrane manufacturing apparatus manufactured by Kyowa Kagaku. The water tank of this device has an opening area of 15 cm x 70 cm and a depth of 6 cm, and is designed so that pressure can be applied from the side to the water surface by a movable float. All the water used was purified by ion exchange and reverse osmosis. Examples 1 to 6 1 g of potassium polystyrene sulfonate to 100 ml
of water, and 5 ml of it was added to the water tank section (water temperature 25°) of Langmiur membrane manufacturing equipment. 10.0 mg of the linear organic compound shown in Table 1 was dissolved in 10 ml of the organic solvent shown in Table 1, and 50 Όm of the solution was spread on the water surface and allowed to stand for 5 minutes to evaporate the organic solvent. After that, the porous membrane (Nucrepore NP300, pore diameter 0.3 Όm) was immersed and pulled up from the vertical direction 10 times at a speed of 0.5 mm/sec while applying pressure from the side with a movable float and keeping the surface pressure at 30 dyn/cm. An organic thin film was formed on the surface of the porous membrane. The obtained organic thin film was analyzed by ESCA. The analysis results were as shown in Table 1. Furthermore, in order to investigate the properties, water resistance, and heat resistance of the obtained organic thin film, the contact angle of water with respect to the organic thin film was measured at 20°C. The water contact angle was measured immediately after manufacture, after being left in water at 60°C for 1 hour to check water resistance, and in air to check heat resistance.
Measurements were also made for those heat-treated at 100°C for 1 hour. The results are shown in Table 1. Table 1 shows, as comparative examples, organic thin films made of linear organic compounds formed on porous membranes in exactly the same manner as in Examples 1 to 6, except that potassium polystyrene sulfonate was not used. The contact angle values for are also listed. By comparing the water contact angle values in Examples and Comparative Examples, it is clear that the organic thin films obtained in Examples have excellent water resistance and heat resistance.

【衚】【table】

【衚】 比范䟋 〜 実斜䟋〜においお各々甚いた盎鎖有機化合
物ミリモルを50mlの氎に70℃においお超音波分
散させた。この溶液にポリスチレンスルホン酞カ
リりムを単量䜓単䜍でミリモル含む氎溶液20ml
を添加し、宀枩で䞀倜攪拌した。生じた沈柱を口
取し、繰り返しメタノヌルで掗浄した埌真空也燥
した。埗られた沈柱の組成を元玠分析により求め
た。結果を第衚に瀺す。第衚の結果ず第衚
の実斜䟋〜の分析結果から、実斜䟋〜ず
比范䟋〜に埗たものは各々ほが同䞀組成を持
぀こずが明らかである。比范䟋においお埗られた
沈柱物0.5をクロロホルム10mlに溶解した埌、
ガラス板䞊に流延し、クロロホルムを蒞発せしめ
お皮の膜状物を埗た。これらの膜状物が無配向
であるこずを膜状物の衚面方向、及び断面方向か
らの線回折を行うこずにより確認した。これら
の膜状物に぀いおの氎接觊角の倀も第衚に䜵蚘
した。これらの結果を第衚の実斜䟋〜の氎
接觊角の倀ず比范するず、䞡者は各々、ほが同䞀
の化孊組成を有するにもかかわらず氎接觊角の倀
は著しく異な぀おいる。このこずは実斜䟋〜
で埗られた有機薄膜が特有の分子配向性を有する
こずを裏付けるものである。
[Table] Comparative Examples 1 to 6 5 mmol of each of the linear organic compounds used in Examples 1 to 6 was ultrasonically dispersed in 50 ml of water at 70°C. 20 ml of an aqueous solution containing 5 mmol of potassium polystyrene sulfonate in monomer units.
was added and stirred at room temperature overnight. The resulting precipitate was collected, washed repeatedly with methanol, and then dried under vacuum. The composition of the obtained precipitate was determined by elemental analysis. The results are shown in Table 2. From the results in Table 2 and the analytical results of Examples 1 to 6 in Table 1, it is clear that Examples 1 to 6 and Comparative Examples 1 to 6 each have substantially the same composition. After dissolving 0.5 g of the precipitate obtained in the comparative example in 10 ml of chloroform,
The mixture was cast onto a glass plate, and chloroform was evaporated to obtain six types of film-like products. It was confirmed that these film-like materials were non-oriented by performing X-ray diffraction from the surface direction and the cross-sectional direction of the film-like materials. The water contact angle values for these film-like materials are also listed in Table 2. When these results are compared with the water contact angle values of Examples 1 to 6 in Table 1, the water contact angle values are significantly different even though both have almost the same chemical composition. This is true for Examples 1 to 6.
This confirms that the organic thin film obtained in the above has a unique molecular orientation.

【衚】【table】

【衚】 実斜䟋  ポリスチレンスルホン酞カリりムを100ml
の氎に溶解し、そのうちmlをラングミナア膜補
造装眮の氎槜郚氎枩10℃に添加した。盎鎖有
機化合物 mgを゚タノヌルベンれン容量比混
合溶媒mlに溶解し、そのうち40Όを䞊蚘氎面
に展開し、10分間攟眮しお゚タノヌルベンれン
を蒞発せしめた。その埌、可動匏浮子により偎方
より圧力をかけ衚面圧を30dyncmに保぀た状態
で、氎界面に察し垂盎方向から0.5mm厚の癜金板
を0.3mm秒の速床で回、浞挬、匕䞊げを行い、
倚孔膜䞊に有機薄膜を圢成させた。埗られた有機
薄膜をESCAにより分析した結果、原子
数比は2.02であ぀た。たた、氎接觊角は117.0°
であ぀た。曎に埗られた有機薄膜を60℃においお
時間攟眮した埌、曎に氎接觊角を枬定したずこ
ろ116.8°であり、殆んど倉化は認められなか぀
た。 実斜䟋  ポリビニルスルホン酞カリりムを100mlの
氎に溶解し、そのうちmlをラングミナア膜補造
装眮の氎槜郚氎枩20℃に添加した。盎鎖有機
化合物 10mgを゚タノヌルベンれン容量比混
合溶媒10mlに溶解し、そのうち60Όを䞊蚘氎面
に展開し、10分間攟眮しお゚タノヌルベンれン
を蒞発せしめた。その埌、可動匏浮子により偎方
より圧力をかけ衚面圧を35dyncmに保぀た状態
で、氎界面に察しお垂盎方向からmm厚のスラむ
ドガラスを0.5mm秒の速床で10回浞挬、匕䞊げ
を行い、スラむドガラス䞊に有機薄膜を圢成させ
た。埗られた有機薄膜をESCAにより分析した結
果、原子原子数比は0.98であ぀た。埗
られた有機薄膜に察する氎接觊角は105.1°であ぀
た。曎に埗られた有機薄膜を空気䞭100℃で時
間熱凊理した埌枬定した氎接觊角は103.6°であ
り、殆んど倉化は認められなか぀た。 実斜䟋  カルボキシメチルセルロヌス1.0を100mlの氎
に溶解し、そのうちmlをラングミナア膜補造装
眮の氎槜郚氎枩31.5℃に添加した。盎鎖有機
化合物 10mgを゚タノヌルベンれン容量比10
mlに溶解し、そのうち40Όを䞊蚘氎面䞊に展開
し、分間攟眮しお゚タノヌルベンれンを蒞発
せしめた。その埌、可動匏浮子により偎方より圧
力をかけ32dyncmの衚面圧を保぀た状態で、氎
面に察し20°の角床から100ÎŒm厚のポリスチレン
フむルムをmm分の速床で20回、浞挬、匕䞊げ
を行う、ポリスチレンフむルム䞊に有機薄膜を圢
成せしめた。埗られた有機薄膜に察する氎接觊角
は100.1°、曎に60℃氎䞭に時間攟眮した埌枬定
した氎接觊角は100.6°であり、殆んど倉化は認め
られなか぀た。 実斜䟋 10 ポリアクリル酞ナトリりム0.8を氎100mlに溶
解し、そのうちmlをラングミナア膜補造装眮の
氎槜郚氎枩20℃に添加した。盎鎖有機化合物 mgを゚タノヌルベンれン容量比10
mlに溶解しそのうち50Όを䞊蚘氎面に展開した
埌分間攟眮しお゚タノヌルベンれンを蒞発せ
しめた。その埌、氎面に察し垂盎方向より0.5mm
厚の金属シリコン基板を0.5mm秒の速床で30回、
浞挬、匕䞊げを行぀た。金属シリコン基板䞊に圢
成された有機薄膜に察する氎接觊角は97.0°であ
぀た。曎に該有機薄膜を100℃にお時間熱凊理
した埌枬定した氎接觊角は96.3°であり、殆んど
倉化は認められなか぀た。 実斜䟋 11 ポリ−−ビニルピリゞン塩酞塩0.8を50ml
の氎に溶解し、そのうちmlをラングミナア膜補
造装眮の氎槜郚氎枩15℃に添加した。盎鎖有
機化合物 mgを゚タノヌルベンれン容量比
mlに溶解し、そのうち50Όを䞊蚘氎面䞊に展開
し、分間攟眮しお゚タノヌルベンれンを蒞発
せしめた埌、氎面に察し垂盎方向から0.5mm厚の
癜金板を0.3mm秒の速床で10回、浞挬及び匕䞊
げを行぀た。癜金板䞊に圢成された有機薄膜に察
する氎の接觊角は99.6°であ぀た。曎に該有機薄
膜を60℃の氎に時間浞挬した埌、再床氎接觊角
を枬定したずころ99.6°であり、党く倉化は認め
られなか぀た。
[Table] Example 7 1 g of potassium polystyrene sulfonate in 100 ml
of water, and 5 ml of it was added to the water tank section (water temperature: 10°C) of Langmiur membrane manufacturing equipment. linear organic compound 8 mg was dissolved in 5 ml of a mixed solvent of ethanol/benzene (1/9 volume ratio), and 40 µ of the solution was spread on the water surface and left for 10 minutes to evaporate the ethanol/benzene. After that, while applying pressure from the side with a movable float and keeping the surface pressure at 30 dyn/cm, a 0.5 mm thick platinum plate was immersed 5 times at a speed of 0.3 mm/sec from a direction perpendicular to the water interface. perform the raising,
An organic thin film was formed on the porous membrane. As a result of analyzing the obtained organic thin film by ESCA, the N/S (atomic ratio) was 2.02. Also, the water contact angle is 117.0°
It was hot. Furthermore, after the obtained organic thin film was left at 60° C. for 1 hour, the water contact angle was further measured and found to be 116.8°, with almost no change observed. Example 8 1 g of potassium polyvinyl sulfonate was dissolved in 100 ml of water, and 5 ml of the solution was added to the water tank (water temperature: 20° C.) of a Langmiur membrane manufacturing apparatus. linear organic compound 10 mg was dissolved in 10 ml of a mixed solvent of ethanol/benzene (1/9 volume ratio), and 60 µ of the solution was spread on the water surface and left for 10 minutes to evaporate the ethanol/benzene. Then, while applying pressure from the side with a movable float and keeping the surface pressure at 35 dyn/cm, a 1 mm thick slide glass was immersed and pulled up from the direction perpendicular to the water interface at a speed of 0.5 mm/sec 10 times. An organic thin film was formed on a glass slide. As a result of analyzing the obtained organic thin film by ESCA, the N atoms/S atoms (atomic ratio) was 0.98. The water contact angle with respect to the obtained organic thin film was 105.1°. Further, the obtained organic thin film was heat-treated in air at 100°C for 1 hour, and the water contact angle measured was 103.6°, with almost no change observed. Example 9 1.0 g of carboxymethyl cellulose was dissolved in 100 ml of water, and 5 ml of the solution was added to the water tank (water temperature: 31.5° C.) of a Langmiur membrane manufacturing apparatus. linear organic compound 10mg of ethanol/benzene (1/9 volume ratio)10
ml, and 40Ό of it was spread on the water surface and left for 5 minutes to evaporate the ethanol/benzene. Then, while applying pressure from the side with a movable float and maintaining a surface pressure of 32 dyn/cm, a 100 Όm thick polystyrene film was immersed and pulled out at a speed of 1 mm/min 20 times from an angle of 20 degrees to the water surface. An organic thin film was formed on a polystyrene film. The water contact angle of the obtained organic thin film was 100.1°, and the water contact angle measured after standing in water at 60°C for 1 hour was 100.6°, with almost no change observed. Example 10 0.8 g of sodium polyacrylate was dissolved in 100 ml of water, and 5 ml of the solution was added to the water tank (water temperature: 20° C.) of a Langmiur membrane manufacturing apparatus. linear organic compound 8mg of ethanol/benzene (1/9 volume ratio)10
ml, and 50Ό of the solution was spread on the water surface and left for 5 minutes to evaporate the ethanol/benzene. After that, 0.5mm from the perpendicular direction to the water surface.
Thick metal silicon substrate 30 times at a speed of 0.5 mm/sec.
It was immersed and pulled up. The water contact angle for the organic thin film formed on the metal silicon substrate was 97.0°. Furthermore, the water contact angle measured after heat-treating the organic thin film at 100° C. for 1 hour was 96.3°, with almost no change observed. Example 11 50 ml of 0.8 g of poly-4-vinylpyridine hydrochloride
of water, and 5 ml of it was added to the water tank section (water temperature: 15°C) of Langmiur membrane manufacturing equipment. linear organic compound 5mg of ethanol/benzene (2/8 volume ratio)5
ml, spread 50Ό of it on the water surface, leave it for 5 minutes to evaporate the ethanol/benzene, and then apply a 0.5mm thick platinum plate from the direction perpendicular to the water surface at a speed of 0.3mm/sec for 10 minutes. It was immersed and pulled up twice. The contact angle of water to the organic thin film formed on the platinum plate was 99.6°. Furthermore, after immersing the organic thin film in water at 60° C. for 1 hour, the water contact angle was measured again and found to be 99.6°, with no change observed at all.

Claims (1)

【特蚱請求の範囲】  個たたは個の盎鎖疎氎基あるいは
剛盎性郚分を連鎖䞭に含む個の盎鎖疎氎基を有
し、か぀むオン性基を有する有機化合物ず、
䞊蚘の有機化合物が有するむオン性基ずは
反察荷電のむオン性基を有する重合䜓を含む氎溶
液ずを界面を圢成しお存圚させ、該界面に察しお
垂盎方向たたは角床をも぀お基板を該氎溶液䞭に
浞挬及び匕䞊げ、基板䞊に有機薄膜を圢成させる
こずを特城ずする有機薄膜の補造方法。  界面に氎平方向に圧力をかけながら基板を浞
挬及び匕䞊げる特蚱請求の範囲蚘茉の有機薄膜
の補造方法。  界面の衚面圧が10dyncm〜50dyncmであ
る特蚱請求の範囲蚘茉の有機薄膜の補造方法。
[Scope of Claims] 1 () an organic compound having one straight chain hydrophobic group containing two or three straight chain hydrophobic groups or a rigid moiety in the chain, and having an ionic group; )
An aqueous solution containing a polymer having an ionic group having an opposite charge to the ionic group of the organic compound in () above is present to form an interface, and the substrate is placed in a direction perpendicular to or at an angle to the interface. A method for producing an organic thin film, which comprises immersing it in the aqueous solution and pulling it up to form an organic thin film on a substrate. 2. The method for producing an organic thin film according to claim 1, wherein the substrate is immersed and pulled up while applying horizontal pressure to the interface. 3. The method for producing an organic thin film according to claim 2, wherein the surface pressure at the interface is 10 dyn/cm to 50 dyn/cm.
JP9612385A 1985-05-08 1985-05-08 Production of organic thin film Granted JPS61254634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9612385A JPS61254634A (en) 1985-05-08 1985-05-08 Production of organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9612385A JPS61254634A (en) 1985-05-08 1985-05-08 Production of organic thin film

Publications (2)

Publication Number Publication Date
JPS61254634A JPS61254634A (en) 1986-11-12
JPH0558015B2 true JPH0558015B2 (en) 1993-08-25

Family

ID=14156602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9612385A Granted JPS61254634A (en) 1985-05-08 1985-05-08 Production of organic thin film

Country Status (1)

Country Link
JP (1) JPS61254634A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122553A (en) * 1989-10-04 1991-05-24 Olympus Optical Co Ltd Photosensor
US5583198A (en) * 1989-12-22 1996-12-10 Commonwealth Scientific And Industrial Research Organization Amino acids, peptides or derivatives thereof coupled to fats
DE4437869B4 (en) * 1994-10-22 2005-01-27 Gkss-Forschungszentrum Geesthacht Gmbh Surfactant-containing membranes for pervaporation, process for their preparation and use of a surfactant-containing membrane
US9393315B2 (en) 2011-06-08 2016-07-19 Nitto Denko Corporation Compounds for targeting drug delivery and enhancing siRNA activity
US10196637B2 (en) 2011-06-08 2019-02-05 Nitto Denko Corporation Retinoid-lipid drug carrier

Also Published As

Publication number Publication date
JPS61254634A (en) 1986-11-12

Similar Documents

Publication Publication Date Title
JP6496318B2 (en) Block copolymer
JP6483694B2 (en) Monomers and block copolymers
Ohno et al. Living radical polymerization by polyhedral oligomeric silsesquioxane-holding initiators: precision synthesis of tadpole-shaped organic/inorganic hybrid polymers
JP6521975B2 (en) Block copolymer
TWI596125B (en) Block copolymer
JP6483695B2 (en) Block copolymer
JP6521974B2 (en) Block copolymer
US8653211B2 (en) Random copolymer for forming neutral surface and methods of manufacturing and using the same
Zhai et al. Functionalization of hydrogen-terminated silicon with polybetaine brushes via surface-initiated reversible addition− fragmentation chain-transfer (RAFT) polymerization
US7807852B2 (en) Polymerizable sulfonate ionic liquids and liquid polymers therefrom
JP2016540084A (en) Block copolymer
KR20150123269A (en) Lithographically produced features
Hong et al. Synthesis of organic/inorganic polyhedral oligomeric Silsesquioxane-containing block copolymers via reversible addition–fragmentation chain transfer polymerization and their self-assembly in aqueous solution
Guo et al. Superhydrophobic Films Fabricated by Electrospraying Poly (methyl methacrylate)-b-poly (dodecafluoroheptyl methacrylate) Diblock Copolymers
JPH0558015B2 (en)
JP4969166B2 (en) Amphiphilic triblock copolymer composed of poly (2-vinylpyridine) block and poly (alkylisocyanate) block and polymerization method thereof
CN112961278A (en) Functionalized vinyl pyrrolidone copolymer and preparation method thereof
JPH0238136B2 (en)
US9815947B2 (en) Substantially symmetrical 3-arm star block copolymers
JP2017043646A (en) Block copolymer, method for producing micro phase separation structure film, and micro phase separation structure film obtained by production method
Tajikawa et al. Phenyl-Substituted Cage Silsesquioxane-Based Star-Shaped Giant Molecular Clusters: Synthesis, Properties, and Surface Segregation Behavior
JP2003261636A (en) Block copolymer for composing hierarchical ordered structure
JPS63280086A (en) Dinuclear complex of salt thereof and langmuir-blodgett membrane
Haldorai et al. Fabrication of [60] Fullerene Grafted Polymer: Self-Assembly Behavior in Polar Solvents
Jiang et al. Synthesis and Micellization Properties of Poly (tbutyl acrylate) bPoly (ε caprolactone) bPoly (tbutyl acrylate) Triblock Copolymers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees