JPH0557816B2 - - Google Patents
Info
- Publication number
- JPH0557816B2 JPH0557816B2 JP11913586A JP11913586A JPH0557816B2 JP H0557816 B2 JPH0557816 B2 JP H0557816B2 JP 11913586 A JP11913586 A JP 11913586A JP 11913586 A JP11913586 A JP 11913586A JP H0557816 B2 JPH0557816 B2 JP H0557816B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- field
- pole
- balancer
- poles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000004907 flux Effects 0.000 claims description 13
- 238000004804 winding Methods 0.000 claims description 13
- 238000010248 power generation Methods 0.000 claims description 9
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 230000000737 periodic effect Effects 0.000 claims description 3
- 230000035699 permeability Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Synchronous Machinery (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
この発明は回転電機に係り、とくに高出力の回
転界磁型同期発電機に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a rotating electric machine, and particularly to a high-output rotating field type synchronous generator.
回転界磁型同期発電機では円筒形の固定子内部
にスロツトをあけて、これらスロツトにコイルを
はめ込み、コイルの内側で界磁が回転する。この
とき、固定子の磁極N,Sは回転子の界磁極の
N,Sよりも回転方向において遅れた位置にあつ
て、界磁が固定子磁極の吸引力による保持トルク
に逆らつて回転することにより動力を吸収して電
力を発生していた。この保持トルクは発電機の容
量に応じて大きくなり、したがつて、この保持ト
ルクに打ち勝つためには大きな駆動トルクを必要
とする。そこで、この保持トルクを軽減すること
を目的として、自転車の磁石発電機において回転
子と同軸に永久磁石を取り付け、この永久磁石に
対向して固定磁石を配置することが提案されてい
る。この構造では、回転子の発電用の永久磁石の
周方向においてN磁極とS磁極とを交互に形成し
ているために、この永久磁石のN,S磁極が反発
用固定磁石のS,N磁極と吸引し合うために効率
的に保持トルクを低下させることができないとい
う欠点があつた。
In a rotating field type synchronous generator, slots are opened inside the cylindrical stator, coils are fitted into these slots, and the field rotates inside the coil. At this time, the magnetic poles N and S of the stator are at positions delayed in the rotational direction from the field poles N and S of the rotor, and the field rotates against the holding torque due to the attractive force of the stator magnetic poles. This absorbs power and generates electricity. This holding torque increases according to the capacity of the generator, and therefore, a large driving torque is required to overcome this holding torque. Therefore, in order to reduce this holding torque, it has been proposed to attach a permanent magnet coaxially with the rotor in a bicycle magnetic generator, and to arrange a fixed magnet opposite to this permanent magnet. In this structure, N magnetic poles and S magnetic poles are formed alternately in the circumferential direction of the permanent magnet for power generation of the rotor, so that the N and S magnetic poles of this permanent magnet correspond to the S and N magnetic poles of the fixed magnet for repulsion. There was a drawback that the holding torque could not be effectively lowered due to mutual attraction.
この発明はとくに高出力用に適した、構造が簡
単で信頼度が高く、しかも保持トルクを効果的に
低下させることができるブラシレス同期発電機を
提供することを目的とする。
An object of the present invention is to provide a brushless synchronous generator that is particularly suitable for high output, has a simple structure, high reliability, and can effectively reduce holding torque.
この発明は、発電機が発電部とトルクバランサ
部とから成り、該発電部が固定子に支持された主
界磁構造と、該主界磁構造に対して空隙を介して
対向して周期的な磁束変化を生じさせる磁極部を
備えた回転子と、磁束変化に応答する出力巻線と
から成ることを特徴としている。トルクバランサ
部はトルクバランサ界磁構造と、該トルクバラン
サ界磁構造に対して空隙を介して対向するバラン
サ磁極とを備え、該バランサ磁極が前記磁極部と
同位相となるように回転子に支持される。主界磁
構造とバランサ界磁構造との間に磁気遮蔽部材を
配置して、相互の磁気影響を少なくさせている。
この構造により回転子には主界磁構造による吸裳
引力と、バランサ界磁構造による反発力とが効率
よく同時に作用することにより、吸引力と反発力
とを互いにバランスさせるため、回転子の保持ト
ルクが著しく少くなる。
In this invention, a generator is composed of a power generation section and a torque balancer section, and the power generation section has a main field structure supported by a stator, and a periodic power generator that opposes the main field structure with an air gap therebetween. It is characterized by consisting of a rotor equipped with magnetic pole parts that produce magnetic flux changes, and an output winding that responds to magnetic flux changes. The torque balancer section includes a torque balancer field structure and balancer magnetic poles facing the torque balancer field structure with an air gap, and is supported on the rotor so that the balancer magnetic poles are in the same phase as the magnetic pole section. be done. A magnetic shielding member is disposed between the main field structure and the balancer field structure to reduce mutual magnetic influence.
With this structure, the attraction and attraction force from the main field structure and the repulsion force from the balancer field structure act on the rotor efficiently at the same time, thereby balancing the attraction and repulsion forces with each other to hold the rotor. Torque will be significantly reduced.
次に、図面に基づいて本発明の一実施例につい
て説明する。
Next, an embodiment of the present invention will be described based on the drawings.
第1図は本発明によるブラシレス同期発電機の
望ましい実施例として4極発電機の具体的構造の
一部断面の斜視図を示すもので、発明の基本的な
理解を助けるために、説明のために不必要な部分
または重複する構造部分は省略してある。 FIG. 1 shows a partial cross-sectional perspective view of the specific structure of a four-pole generator as a preferred embodiment of the brushless synchronous generator according to the present invention. Unnecessary or redundant structural parts have been omitted.
第1図において、ブラシレス同期発電機10の
発電部10aは非磁性材料から成る円筒状ハウジ
ング12内に同心的に支持されたステータ14,
16からなる固定子17を備える。ステータ14
は高透磁率の磁気材料から構成され、ステータ1
6は非磁性材料から構成される。 In FIG. 1, a power generation section 10a of a brushless synchronous generator 10 includes a stator 14, which is concentrically supported within a cylindrical housing 12 made of a non-magnetic material.
A stator 17 consisting of 16 pieces is provided. Stator 14
is made of a magnetic material with high magnetic permeability, and the stator 1
6 is made of a non-magnetic material.
ステータ14には軸方向に間隔をおいて主界磁
構造を構成する、第一及び第二の界磁極18,2
0が固定支持される。第一界磁極は半径方向内側
に延びる複数の界磁磁極18a,18′a,18
b,18′b(第3図参照)を備える。同様に、第
二界磁極20は複数の界磁磁極20a,20′a,
20b,20′bとから成る。第一界磁極18の
界磁磁極と第二界磁極の界磁磁極とは軸方向にお
いて整列するようにステータ14内に固定され、
界磁磁極18a,18bとはそれぞれ対向するよ
うな磁極すなわち、N極とS極となるように配置
される。界磁磁極18bは界磁磁極18aに対し
て電気角で180゜位相がずれた位置に配置され、こ
の界磁磁極と軸方向に対向する界磁磁極20bは
N極に設定される。界磁磁極18′aは半径方向
に対向する界磁磁極18aと同じN極を有し、界
磁磁極18′bは半径方向に対向する界磁磁極1
8bと同じS極を有する。このように界磁磁極1
8a,18b,18′a,18′bはN、S、N、
S極を有し、これら界磁磁極に対して軸方向で対
向する界磁磁極は極性が対向するように、それぞ
れS、N、S、N極を有する。 The stator 14 has first and second field poles 18, 2 that are spaced apart in the axial direction and constitute a main field structure.
0 is fixedly supported. The first field pole includes a plurality of field poles 18a, 18'a, 18 extending radially inward.
b, 18'b (see Figure 3). Similarly, the second field pole 20 includes a plurality of field poles 20a, 20'a,
20b and 20'b. The field magnetic poles of the first field pole 18 and the field magnetic poles of the second field pole are fixed within the stator 14 so as to be aligned in the axial direction,
The field magnetic poles 18a and 18b are arranged so as to be opposite magnetic poles, that is, an N pole and an S pole. The field magnetic pole 18b is arranged at a position 180 degrees out of phase in electrical angle with respect to the field magnetic pole 18a, and the field magnetic pole 20b, which opposes this field magnetic pole in the axial direction, is set to the north pole. The field magnetic pole 18'a has the same north pole as the radially opposing field magnetic pole 18a, and the field magnetic pole 18'b has the same north pole as the radially opposing field magnetic pole 1.
It has the same south pole as 8b. In this way, the field magnetic pole 1
8a, 18b, 18'a, 18'b are N, S, N,
The field magnetic poles which have an S pole and are axially opposed to these field magnetic poles have S, N, S, and N poles, respectively, so that their polarities are opposite to each other.
第1,2,3図から明らかなように、第一界磁
極18の界磁磁極18a,18b,18′a,1
8′bにはそれぞれ励磁用の直流界磁巻線18
aw,18bw,18′aw,18′bwが支持され、
これらは図示しない直流励磁電流により励磁され
る。同様に、第二界磁極20の界磁磁極にも励磁
用の直流界磁巻線20aw,20′aw,20bwが
支持され直流励磁電流により励磁される。 As is clear from FIGS. 1, 2 and 3, field poles 18a, 18b, 18'a, 1 of the first field pole 18
8′b each has a DC field winding 18 for excitation.
aw, 18bw, 18'aw, 18'bw are supported,
These are excited by a DC exciting current (not shown). Similarly, the field magnetic pole of the second field pole 20 also supports DC field windings 20aw, 20'aw, and 20bw for excitation, and is excited by the DC excitation current.
第1,2図において、トロコイダル状の出力巻
線22が回転子24を囲むように第一、第二界磁
極18,20間においてステータ14内に適当な
手段により固定支持される。回転子24は回転軸
26を備え、回転軸26は固定子17の両側に設
けられた図示されないエンド・ハウジング及びベ
アリングを介して回転可能に支持される。回転軸
26は電動モータその他の適当な駆動源に接続さ
れて回転駆動される。 In FIGS. 1 and 2, a trochoidal output winding 22 is fixedly supported within the stator 14 by suitable means between the first and second field poles 18 and 20 so as to surround the rotor 24. The rotor 24 includes a rotating shaft 26, which is rotatably supported via end housings and bearings (not shown) provided on both sides of the stator 17. The rotating shaft 26 is connected to an electric motor or other suitable drive source and is rotationally driven.
トルクバランサ部10bはバランサ界磁極を備
え、バランサ界磁極は第一界磁極18から軸方向
に間隔をおいてステータ16に固定された第三界
磁極28を備える。第1,2,4図において、第
三界磁極28は第一、第二界磁極の4つの界磁磁
極に対応して、4つの界磁磁極28a,28b,
28′a,28′bを有する。界磁磁極28a,2
8b,28′a,28′bはそれぞれ界磁巻線28
aw,28bw,28′aw,28′bwを支持し、こ
れら直流界磁巻線には励磁電流が供給される。 The torque balancer section 10b includes a balancer field pole, and the balancer field pole includes a third field pole 28 fixed to the stator 16 and spaced from the first field pole 18 in the axial direction. In FIGS. 1, 2, and 4, the third field pole 28 has four field poles 28a, 28b,
28'a and 28'b. Field magnetic pole 28a, 2
8b, 28'a, 28'b are field windings 28, respectively.
aw, 28bw, 28'aw, and 28'bw, and an exciting current is supplied to these DC field windings.
第一、第二界磁極18,20の界磁磁極は電気
角で180゜毎にN極とS極とが交互に配置されてい
たのに対し、第三界磁極28の界磁磁極はすべて
N極かS極のいずれか一方の磁極に設定される。
第2,4図ではN極に設定されたものとして図示
されている。 The field magnetic poles of the first and second field poles 18 and 20 have N poles and S poles arranged alternately every 180 degrees in electrical angle, whereas the field magnetic poles of the third field pole 28 are all The magnetic pole is set to either the north pole or the south pole.
In FIGS. 2 and 4, it is shown as being set to the north pole.
再び第1,2,4図に戻つて、回転子24はス
テンレスその他の低透磁材料から成る非磁性セク
シヨン部24aと、該非磁性セクシヨン部24に
固定された軸方向に延びる一対の磁極部30,3
0′を備える。磁極部30,30′は主界磁構造の
第一、第二界磁極に対して空隙A,A′を介して
対向して軸方向に周期的な磁束変化を生じさせ
る。トルクバランサ10bはバランサ界磁構造界
磁極28に対して空隙A″を介して対向するバラ
ンサ磁極32,32′を備える。バランサ磁極3
2,32′は磁極部30,30′と同期する位置で
回転子24に支持される。磁極部30,30′は
たとえば、ケイ素鋼板のような高透磁率の複数の
ラミネート材からなるスタツクより構成し、回転
子24の非磁性セクシヨン部24aに形成された
半径方向に開口する軸方向溝24b,24′bに
設置され、ネジ、ロウ付けその他の適当な手段に
より溝24b,24′b内に固定される。第1,
2図より明らかなように、磁極部材30の両端部
は第一、第二界磁極18,20の界磁磁極18
a,20aの真下に配置され、同様に磁極部材3
0′の両端部は第一、第二界磁極18,20の界
磁磁極18′a,20′aの真下に配置され、磁極
部材30,30′は第一、第二界磁極間の磁束を
軸方向にサイクリツクに変化させる。 Returning again to FIGS. 1, 2, and 4, the rotor 24 includes a non-magnetic section portion 24a made of stainless steel or other low magnetic permeability material, and a pair of magnetic pole portions 30 fixed to the non-magnetic section portion 24 and extending in the axial direction. ,3
0'. The magnetic pole parts 30, 30' face the first and second field poles of the main field structure with air gaps A, A' interposed therebetween, and cause periodic magnetic flux changes in the axial direction. The torque balancer 10b includes balancer magnetic poles 32 and 32' that oppose the balancer field structure field pole 28 with an air gap A'' in between.Balancer magnetic pole 3
2 and 32' are supported by the rotor 24 at positions that are synchronized with the magnetic pole parts 30 and 30'. The magnetic pole parts 30, 30' are constructed of a stack of a plurality of laminate materials with high magnetic permeability, such as silicon steel plates, and are formed by radially opening axial grooves formed in the non-magnetic section 24a of the rotor 24. 24b, 24'b and fixed within the grooves 24b, 24'b by screws, brazing or other suitable means. 1st,
As is clear from FIG. 2, both ends of the magnetic pole member 30 are connected to the field magnetic poles 18 of the first and second field poles 18 and 20.
a, 20a, and similarly the magnetic pole member 3
Both ends of 0' are arranged directly below the field magnetic poles 18'a, 20'a of the first and second field poles 18, 20, and the magnetic pole members 30, 30' are arranged to direct the magnetic flux between the first and second field poles. cyclically changes in the axial direction.
第1,2,4図において、バランサ磁極32は
一例として永久磁石より構成し、回転子24の非
磁性セクシヨン部24aの一端に形成した溝24
c内に接着剤、その他の適当な手段で固定され
る。バランサ磁極32と磁極部材30,30′と
はスペーサ部として作用するシヨルダー部24d
により互いに磁気影響がないように分離される。
バランサ磁極32は次に詳述する目的のために磁
極部材30,30′と同位相となる位置に配置さ
れる。 In FIGS. 1, 2, and 4, the balancer magnetic poles 32 are made of permanent magnets, for example, and are formed in grooves 24 formed at one end of the non-magnetic section 24a of the rotor 24.
c with adhesive or other suitable means. The balancer magnetic pole 32 and the magnetic pole members 30, 30' are a shoulder portion 24d that acts as a spacer portion.
are separated from each other so that there is no magnetic influence.
The balancer pole 32 is positioned in phase with the pole members 30, 30' for purposes described in detail below.
第1,2図より明らかなように、主界磁構造と
バランサ界磁構造との間には磁気遮蔽部材29が
配置され、ネジその他の適当な手段により固定子
内部に固定される。この磁気遮蔽部材29はケイ
素鋼板のスタツクのような高透磁率の材料から構
成し、第5図に示す如く、回転子24を囲む穴部
29aと通風孔29bを有し、主界磁構造の第一
界磁極18により発生する磁気の影響がバランサ
界磁極28の磁気に及ばないようシールドする役
目をもつている。 As is clear from FIGS. 1 and 2, a magnetic shielding member 29 is disposed between the main field structure and the balancer field structure, and is fixed inside the stator by screws or other suitable means. The magnetic shielding member 29 is made of a material with high magnetic permeability, such as a stack of silicon steel plates, and has a hole 29a surrounding the rotor 24 and a ventilation hole 29b, as shown in FIG. It has the role of shielding so that the influence of the magnetism generated by the first field pole 18 does not affect the magnetism of the balancer field pole 28.
第1〜4図に示した位置において、磁極部材3
0は界磁磁極18a,20aの真下に位置し、磁
極部材30′は界磁磁極18′a,20′aの真下
に位置する。このように第1〜3図において、左
側の2個のN極の界磁磁極と右側の2個のS極の
界磁磁極との間に磁束回路ができる。磁束はN極
界磁磁極18a,18′aから磁極部材30,3
0′を介してS極界磁磁極20a,20′aに流
れ、さらにステータ14を介してN極界磁磁極1
8a,18′aに戻る。このとき磁束は出力巻線
22と鎖交するため、出力巻線22に電流が流れ
る。 In the position shown in FIGS. 1 to 4, the magnetic pole member 3
0 is located directly below the field magnetic poles 18a, 20a, and the magnetic pole member 30' is located directly below the field magnetic poles 18'a, 20'a. In this way, in FIGS. 1 to 3, a magnetic flux circuit is formed between the two N-pole field magnetic poles on the left and the two S-pole field magnetic poles on the right. The magnetic flux flows from the N-pole field magnetic poles 18a, 18'a to the magnetic pole members 30, 3.
0' to the S-pole field magnetic poles 20a, 20'a, and further flows to the N-pole field magnetic pole 1 via the stator 14.
Return to 8a, 18'a. At this time, the magnetic flux interlinks with the output winding 22, so a current flows through the output winding 22.
つぎに第1,3図に戻つて、回転子24が第3
図の位置から時計方向に回転すると、磁束が減少
し、第3,4図において回転子24が時計方向に
90゜、すなわち電気角で180゜回転すると、磁束は
出力巻線22に対して反対方向に流れる。このと
き、磁束は第1図の右側のN極の界磁磁極から左
側のS極界磁磁極18b,18′bに流れ、ステ
ータ14を通つて右側のN極界磁磁極に流れる。
このようにして、出力巻線22内には反対方向の
電流が流れる。回転子24を連続して回転させる
と磁束の変化が二方向において交互に繰り返され
て出力巻線22には交流電流が発生する。 Next, returning to FIGS. 1 and 3, the rotor 24 is
When the rotor 24 rotates clockwise from the position shown in the figure, the magnetic flux decreases, and the rotor 24 rotates clockwise in Figures 3 and 4.
When rotated through 90 degrees, or 180 degrees electrically, the magnetic flux flows in the opposite direction relative to the output winding 22. At this time, the magnetic flux flows from the N-pole field magnetic pole on the right side of FIG. 1 to the S-pole field magnetic poles 18b, 18'b on the left side, and flows through the stator 14 to the N-pole field magnetic pole on the right side.
In this way, current flows in the output winding 22 in the opposite direction. When the rotor 24 is rotated continuously, changes in magnetic flux are repeated alternately in two directions, and an alternating current is generated in the output winding 22.
以上、この発明によれば回転子に高透磁材から
なる磁極部材を備えて、この磁極部材を発電部の
界磁極に空隙を介して対向させているために、こ
の磁極部材に対するバランサ界磁極の磁気吸引力
を著しく低下させ、しかも、発電部とトルクバラ
ンサ部との間に磁気遮蔽部材を配置したことによ
り、発電部とトルクバランサ部との相互の磁気干
渉を防止したので高出力用に適した、構造が簡単
で信頼度の高い、しかも保持トルクを効果的に低
減でき、工業的価値が極めて大きなブラシレス同
期発電機を提供することができる。さらに、従来
の形式では高速化が不可能であつたものが、本発
明では回転子は完全なソリツド型で無刷子型であ
るので何等高速化の制約を受けない。しかも、従
来の大型発電機の場合に大電流を通すための集電
子および刷子が非常に大型となり極めて不経済で
あるだけではなく能率も悪く信頼度も低下する結
果となつて実用上長期にわたつて継続的な運転を
期待することができなかつたものが、本発明では
これら問題点がすべて解決される著しい効果があ
る。
As described above, according to the present invention, since the rotor is equipped with a magnetic pole member made of a highly permeable material and this magnetic pole member is opposed to the field pole of the power generation section through an air gap, the balancer field pole relative to this magnetic pole member is In addition, by placing a magnetic shielding member between the power generation section and the torque balancer section, mutual magnetic interference between the power generation section and the torque balancer section is prevented, making it suitable for high output applications. It is possible to provide a brushless synchronous generator that is suitable, has a simple structure, is highly reliable, can effectively reduce holding torque, and has extremely great industrial value. Furthermore, although it was impossible to increase the speed with the conventional type, in the present invention, the rotor is completely solid and brushless, so there is no restriction on increasing the speed. Moreover, in the case of conventional large-scale generators, the collectors and brushes for passing large currents are extremely large, which is not only extremely uneconomical, but also results in poor efficiency and reduced reliability, which makes them difficult to use over a long period of time. However, the present invention has the remarkable effect of solving all of these problems.
第1図は、本発明の一実施例による発電機の一
部断面の斜視図、第2図は第1図の−断面
図、第3図は第2図の−断面図、第4図は第
2図の−断面図、第5図は磁気遮蔽部材をそ
れぞれ示す。
14,16…ステータ、18,20,28…第
一、第二、第三界磁極、24…ロータ、22…出
力巻線、29…磁気遮蔽部材。
FIG. 1 is a partial cross-sectional perspective view of a generator according to an embodiment of the present invention, FIG. 2 is a cross-sectional view from FIG. 1, FIG. 3 is a cross-sectional view from FIG. 2, and FIG. 2 and 5 respectively show the magnetic shielding member. 14, 16... Stator, 18, 20, 28... First, second, third field poles, 24... Rotor, 22... Output winding, 29... Magnetic shielding member.
Claims (1)
と、該主界磁構造に対して空隙を介して対向して
周期的な磁束変化を生じさせる磁極部を備えた回
転子と、前記固定子に支持されて前記磁束変化に
応答する出力巻線とを備えた発電部と、前記発電
部に連結されたトルクバランサ部とから成り、前
記トルクバランサ部がトルクバランサ界磁構造
と、該トルクバランサ界磁構造に対して空隙を介
して対向するバランサ磁極とを備え、前記バラン
サ磁極を前記磁極部に対して同位相となるように
前記回転子に固定し、前記主界磁構造と前記トル
クバランサ界磁構造との間に磁気遮蔽部材を配置
したことを特徴とするブラシレス同期発電機。1. A stator, a main field structure supported by the stator, and a rotor including a magnetic pole part that faces the main field structure across an air gap and causes periodic changes in magnetic flux; The power generation unit includes an output winding supported by the stator and responsive to the magnetic flux change, and a torque balancer unit connected to the power generation unit, the torque balancer unit having a torque balancer field structure; balancer magnetic poles facing the torque balancer field structure through an air gap; the balancer magnetic poles are fixed to the rotor so as to be in phase with the magnetic pole portion; A brushless synchronous generator characterized in that a magnetic shielding member is disposed between the torque balancer field structure and the torque balancer field structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11913586A JPS62277051A (en) | 1986-05-26 | 1986-05-26 | Brushless synchronous generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11913586A JPS62277051A (en) | 1986-05-26 | 1986-05-26 | Brushless synchronous generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62277051A JPS62277051A (en) | 1987-12-01 |
JPH0557816B2 true JPH0557816B2 (en) | 1993-08-25 |
Family
ID=14753800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11913586A Granted JPS62277051A (en) | 1986-05-26 | 1986-05-26 | Brushless synchronous generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62277051A (en) |
-
1986
- 1986-05-26 JP JP11913586A patent/JPS62277051A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62277051A (en) | 1987-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2131336C (en) | Magnetic rotating apparatus | |
US6172438B1 (en) | Two-phase permanent-magnet electric rotating machine | |
JPH10271784A (en) | Axial air gap type permanent magnet excited synchronous machine | |
CN107078617B (en) | Bimorph transducer type rotator | |
CN113489274B (en) | Double-side alternate pole type hybrid excitation brushless motor | |
EP4369570A1 (en) | Harmonic magnetic field driving electric motor | |
US8373328B2 (en) | Pulsed multi-rotor constant air gap switched reluctance motor | |
JP7193422B2 (en) | Rotating electric machine and manufacturing method of rotating electric machine | |
JPS6311863B2 (en) | ||
CN102055294B (en) | Permanent-magnet multiplied-pole switch reluctance motor | |
JP3302283B2 (en) | Rotating electric machine, generator and electric motor using the rotating electric machine | |
WO2003030335A1 (en) | Motor with double rotors structure | |
JP6408766B2 (en) | Axial three-dimensional gap type rotating electric machine | |
JP3410520B2 (en) | Three-phase claw-pole permanent magnet type rotary electric machine with annular coil system | |
CN112910130B (en) | Rotor magnetic pole modulation type variable magnetic flux memory motor | |
CN111446784B (en) | Brushless alternating-current generator | |
JPH04322150A (en) | Motor | |
JPH0557816B2 (en) | ||
JPS64912B2 (en) | ||
JPS62160061A (en) | Generator | |
CN214480207U (en) | Disc type motor | |
JP3312475B2 (en) | Synchronous motor | |
CN117097104A (en) | Output voltage adjustable integrated electric and power generation axial flux permanent magnet motor | |
JPH02237451A (en) | Rotary machine | |
JPS6373854A (en) | Magnetogenerator |