JPH0557541B2 - - Google Patents

Info

Publication number
JPH0557541B2
JPH0557541B2 JP58160717A JP16071783A JPH0557541B2 JP H0557541 B2 JPH0557541 B2 JP H0557541B2 JP 58160717 A JP58160717 A JP 58160717A JP 16071783 A JP16071783 A JP 16071783A JP H0557541 B2 JPH0557541 B2 JP H0557541B2
Authority
JP
Japan
Prior art keywords
oxide
sensor
oxygen
aluminum
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP58160717A
Other languages
Japanese (ja)
Other versions
JPS6052763A (en
Inventor
Koichi Yamada
Mitsutoshi Murase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58160717A priority Critical patent/JPS6052763A/en
Publication of JPS6052763A publication Critical patent/JPS6052763A/en
Publication of JPH0557541B2 publication Critical patent/JPH0557541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/411Cells and probes with solid electrolytes for investigating or analysing of liquid metals
    • G01N27/4112Composition or fabrication of the solid electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶融金属、就中溶鋼中の溶存酸素濃度
の測定を目的とするジルコニア質酸化物固体電解
質よりなる酸素センサーに係り、更に詳細にはア
ルミニウム、シリコン、マンガン等の脱酸剤を含
有する溶鋼中に於いても極めて起電力応答性の優
れた溶融金属中の酸素濃度測定用センサーに関す
るものである。 近年、鉄鋼業分野では転炉での終点測定、RH
法、DH法で脱酸剤投入の事前分析と脱酸剤投入
処理後の溶鋼中の溶存酸素量の確認分析、連続鋳
造時のタンデイシユでの酸素量測定等に金属酸化
物を固体電解質として金属及び/又は該金属の酸
化物を参照電極とする酸素濃炎電池を利用した酸
素センサーが迅速かつ安価な分析用治具として利
用されている。測定に当たつては1600℃前後の高
温浴中に酸素センサーを浸漬し、酸素センサー構
成物質が溶鋼により浸食される前に安定した平衡
起電力を求める必要がある。このため通常は浸漬
後5〜10秒で安定した応答が得られる酸素センサ
ーとして部分安定化ジルコニアの如き金属酸化物
の組成物を固体電解質と、Ni/NiO、Cr/
Cr2O3、Mo/MoO2、Fe/FeO等の混合物又は
焼結体を参照電極として構成した酸素センサーが
使用されている。しかしながら上記構成の酸素セ
ンサーにあつてもある種の溶鋼、例えばアルミ脱
酸鋼浴の場合には上述の酸素センサーの寿命内に
安定した平衡起電力値を観測することができず実
質的に測定不能という致命的欠陥を有する。 かかる事情下において、本発明者らは固体電解
質表面を常温〜1000℃間の平均熱膨張係数が5×
10-6/℃以下でかつ、溶鋼中に使用する脱酸剤に
より生成する金属酸化物、該金属酸化物と化合物
を造る物質、或いは該金属酸化物と親和性の殆ど
ない物質で被覆することにより脱酸剤を添加含有
した溶鋼中においても極めて起電力応答性の優れ
た酸素センサーとすることができることを見い出
し先に時願昭57−117306号として特許出願した。 しかるに該方法は応答性の改良という点に於い
ては著しいものが認められるが、理由は詳らかで
はないがある種の被覆物を用いたのは酸素活量5
〜10PPM以下の領域において無コート品より酸
素活量値が高く検出されるという不都合が見出さ
れた。 本発明者らはかかる不都合がなく、加えて起電
力応答性にも優れた酸素センサーを見い出すべく
更に鋭意検討した結果上記問題のない酸素センサ
ーを得ることに成功し、本発明を完成するに至つ
た。 すなわち本発明は、部分安定化ジルコニア質固
体電解質表面を酸化アルミニウムとの複合酸化物
とアルミニウム、カルシウム、マグネシウムの弗
化物より選ばれた少なくとも1種との混合物質で
被覆したことを特徴とする溶融金属中の酸素濃度
測定用センサーを提供するにある。 以下、本発明の酸素センサーを更に詳細にに説
明する。 本発明の対象とする酸素センサーはジルコニア
質酸化物固体電解質として金属−金属酸化物を参
照電極とする公知汎用のジルコニア質酸素センサ
ー、例えばY2O3、CaO、MgOのうちの少なくと
も1種とジルコニア(ZrO2)とからなる所謂部
分安定化ジルコニア質酸化物を固体電解とし、
Ni/NiO、Mo/MoO2.Cr/Cr2O3、Cu/CuO、
Co/CoO、Fe/FeO等を参照電極として構成さ
れた酸素センサーである。酸素センサーの形状は
例えば、石英管先端に固体電解質キヤツプを接着
したプラグ型、固体電解質自体を成形焼結した管
型及び針状センサーのいずれにも適用可能であ
る。 本発明の酸素センサーはかような公知汎用の部
分安定化ジルコニア質酸化物固体電解質をもつて
構成される酸素センサーの表面に酸化アルミニウ
ムとの複合酸化物と、アルミニウム、カルシウ
ム、マグネシウムの弗化物より選ばれる少なくと
も1種との混合物質を被覆して構成されたもので
あつて、該物質の被覆方法としては該物質をジル
コニア質酸素センサーの表面に被覆が可能である
手段であれば特に制約されず、例えば該被覆物質
の粉末を水や有機溶剤や無機バインダー等の液体
中に分散させ、該分散液中に浸漬、或いは塗布、
スプレイコート等した後乾燥、必要により焼付け
て密着せしめればよい。 被覆に用いる酸化アルミニウウとの混合酸化物
はセンサーを適用する溶鋼中に使用する脱酸剤の
種類により一義的ではないが、脱酸剤がアルミニ
ウム、シリコンの場合には融点が1700℃以上であ
る3Y2O3・5Al2O3、3Al2O3・2SiO2、TiO2
Al2O3、MgO・Al2O3、2Al2O3・CaO等が使用さ
れ、又他の成分であるアルミニウム、カルシウ
ム、マグネシウムの弗化物はAlF3、CaF2
MgF2等が使用される。 酸化アルミニウムの複合酸化物に対する弗化物
の混合割合は酸化アルミニウムの複合酸化物に対
し1〜40重量%、好ましくは5〜30重量%が適当
である。弗化物の混合割合が上記範囲よりも少な
い場合に酸素活量値が実質よりも高く検出される
ので好ましくなく、他方上記範囲より混合量が多
い場合には弗化物によりジルコニア質酸素センサ
ーの表面が損傷されやすいので好ましくない。 これら混合物質の被覆厚は下地露出部がなけれ
ば起電力の応答性の点で薄い方がよく、通常1mm
以下、好ましくは0.1mm以下が適当である。 酸化アルミニウムの複合酸化物と弗化物の混合
方法は均一分散が可能であれば特にその方法は制
限されるものではなく、例えばボールミル混合、
V型混合機による混合、ミキサーによる混合等を
用いればよい。 以上詳述した如く本発明の酸素センサーは従来
使用されている部分ジルコニア質酸化物固体電解
質表面に特定物質を被覆するという極めて簡単な
処理により取得される酸素センサーであつて、普
通鋼はもとより脱酸剤を含む溶鋼中の酸素濃度測
定用センサーとしても使用可能なものであつて、
その工業的価値は頗る大なるものである。 以下実施例により本発明を更に詳細に説明する
が、実施例は本発明の態様例を示すものであつて
本発明はかかる実施例に限定されるものではな
い。 実施例 1 固体電解質として外径5.6mm、内径3.6mm、長さ
35mmのMgO部分安定化ジルコニア質酸化物の一
端閉塞管に参照電極としてMo/MoO2とMoリー
ド線を組み入れ、開端部を無機セメントで封止し
た後、そのまま、MgO部分安定化ジルコニ
ア質酸化物製の管表面に熱膨張係数<1.0×
10-6/℃のチタン酸アルミニウム(Al2O3
TiO2)をケイ酸ソーダ溶液に分散させ、この溶
液中に該管を浸漬、乾燥させて0.02mmの被覆を形
成させたもの、MgO部分安定化ジルコニア質
酸化物製の管表面に熱膨張係数<1.0×10-6/℃
のチタン酸アルミニウム80重量部とフツ化カルシ
ウム20重量部を混合した後と同様に0.02mmの被
覆を形成して試料センサーを取得した。 このようにして得た無コート品、チタン酸
アルミニウムコート品、チタン酸アルミニウム
−フツ化カルシウムコート品酸素センサーをアル
ミナ質坩堝で高周波溶解されたアルミ脱酸鋼浴中
に浸漬し、起電力の測定を試みた。この際浴温は
1600℃、浴表面はアルゴンガス流通により空気か
らシールした。 鋼浴を変え、各種酸素センサーにより観測され
る起力値測定の再現性テスト(試験体本数10本)
を行つた結果を第1表に示す。
The present invention relates to an oxygen sensor made of a zirconia solid oxide solid electrolyte for the purpose of measuring dissolved oxygen concentration in molten metal, especially molten steel, and more specifically, the present invention relates to an oxygen sensor made of a zirconia oxide solid electrolyte containing a deoxidizing agent such as aluminum, silicon, manganese, etc. The present invention relates to a sensor for measuring oxygen concentration in molten metal that has extremely excellent electromotive force response even in molten steel. In recent years, in the steel industry, end point measurement and RH
Metal oxides are used as solid electrolytes for preliminary analysis of deoxidizing agent injection, confirmation analysis of the amount of dissolved oxygen in molten steel after deoxidizing treatment, and measurement of oxygen amount in tundish during continuous casting using the DH method. And/or an oxygen sensor using an oxygen enriched flame battery using an oxide of the metal as a reference electrode is used as a quick and inexpensive analysis jig. For measurements, it is necessary to immerse the oxygen sensor in a high-temperature bath of around 1600°C to determine a stable equilibrium electromotive force before the oxygen sensor components are eroded by molten steel. For this reason, oxygen sensors that provide a stable response within 5 to 10 seconds after immersion are usually made of metal oxide compositions such as partially stabilized zirconia with solid electrolytes such as Ni/NiO, Cr/
Oxygen sensors are used in which a reference electrode is a mixture or sintered body of Cr 2 O 3 , Mo/MoO 2 , Fe/FeO, or the like. However, even with the oxygen sensor with the above configuration, in the case of certain types of molten steel, such as aluminum deoxidized steel baths, it is not possible to observe a stable equilibrium electromotive force value within the life of the oxygen sensor, so it is difficult to actually measure it. It has a fatal flaw of inability. Under these circumstances, the present inventors developed a solid electrolyte surface with an average thermal expansion coefficient of 5× between room temperature and 1000°C.
10 -6 /℃ or less and coated with a metal oxide produced by a deoxidizing agent used in molten steel, a substance that forms a compound with the metal oxide, or a substance that has almost no affinity with the metal oxide. They discovered that an oxygen sensor with extremely excellent electromotive force response could be obtained even in molten steel containing a deoxidizing agent. However, although this method has been found to significantly improve response, although the reason is not clear, the use of a certain type of coating has an oxygen activity of 5.
An inconvenience was found in that the oxygen activity value was detected to be higher than that of the uncoated product in the range of ~10 PPM or less. The present inventors conducted further intensive studies to find an oxygen sensor that does not have such disadvantages and also has excellent electromotive force response, and as a result, they succeeded in obtaining an oxygen sensor that does not have the above problems, and have completed the present invention. Ivy. That is, the present invention provides a molten electrolyte characterized in that the surface of a partially stabilized zirconia solid electrolyte is coated with a mixed material of a composite oxide with aluminum oxide and at least one selected from fluorides of aluminum, calcium, and magnesium. The present invention provides a sensor for measuring oxygen concentration in metal. Hereinafter, the oxygen sensor of the present invention will be explained in more detail. The oxygen sensor that is the object of the present invention is a known general-purpose zirconia oxygen sensor that uses a metal-metal oxide as a reference electrode as a zirconia oxide solid electrolyte, such as at least one of Y 2 O 3 , CaO, and MgO. A so-called partially stabilized zirconia oxide consisting of zirconia (ZrO 2 ) is used as a solid electrolyte.
Ni/NiO, Mo/MoO 2 .Cr/Cr 2 O 3 , Cu/CuO,
This is an oxygen sensor configured with Co/CoO, Fe/FeO, etc. as a reference electrode. The shape of the oxygen sensor may be, for example, a plug type in which a solid electrolyte cap is bonded to the tip of a quartz tube, a tube type in which the solid electrolyte itself is molded and sintered, or a needle type sensor. The oxygen sensor of the present invention is composed of such a well-known general-purpose partially stabilized zirconia oxide solid electrolyte, and the surface of the oxygen sensor is composed of a composite oxide with aluminum oxide and fluorides of aluminum, calcium, and magnesium. It is constructed by coating a mixed substance with at least one selected one, and the method of coating the substance is not particularly limited as long as it is possible to coat the surface of the zirconia oxygen sensor with the substance. First, for example, the powder of the coating substance is dispersed in a liquid such as water, an organic solvent, an inorganic binder, etc., and immersed or coated in the dispersion.
After spray coating, dry, and if necessary, bake to make it adhere. The mixed oxide with aluminum oxide used for the coating is not unique depending on the type of deoxidizer used in the molten steel to which the sensor is applied, but when the deoxidizer is aluminum or silicon, the melting point is 1700℃ or higher. 3Y 2 O 3・5Al 2 O 3 , 3Al 2 O 3・2SiO 2 , TiO 2
Al 2 O 3 , MgO・Al 2 O 3 , 2Al 2 O 3・CaO, etc. are used, and other components such as aluminum, calcium, and magnesium fluorides are AlF 3 , CaF 2 ,
MgF 2 etc. are used. The appropriate mixing ratio of fluoride to the composite oxide of aluminum oxide is 1 to 40% by weight, preferably 5 to 30% by weight, based on the composite oxide of aluminum oxide. If the mixing ratio of fluoride is less than the above range, the oxygen activity value will be detected higher than the actual value, which is undesirable.On the other hand, if the mixing ratio is larger than the above range, the surface of the zirconia oxygen sensor will be damaged by the fluoride. This is not desirable because it is easily damaged. The coating thickness of these mixed materials should be thinner in terms of electromotive force response unless there is an exposed part of the base, and is usually 1 mm.
Below, preferably 0.1 mm or less is appropriate. The method of mixing aluminum oxide composite oxide and fluoride is not particularly limited as long as uniform dispersion is possible; for example, ball mill mixing,
Mixing using a V-type mixer, mixing using a mixer, etc. may be used. As detailed above, the oxygen sensor of the present invention is an oxygen sensor obtained by a very simple process of coating a specific substance on the surface of a conventionally used partial zirconia oxide solid electrolyte, and it can be used with ordinary steel as well as with deoxidized steel. It can also be used as a sensor for measuring oxygen concentration in molten steel containing acid agents,
Its industrial value is enormous. The present invention will be explained in more detail below with reference to Examples, but the Examples are intended to illustrate embodiments of the present invention, and the present invention is not limited to these Examples. Example 1 As a solid electrolyte, the outer diameter is 5.6 mm, the inner diameter is 3.6 mm, and the length is
Incorporate Mo/MoO 2 and a Mo lead wire as a reference electrode into a 35 mm MgO partially stabilized zirconia oxide tube with one end closed, and seal the open end with inorganic cement. Thermal expansion coefficient <1.0× on the tube surface made of
Aluminum titanate (Al 2 O 3
TiO 2 ) was dispersed in a sodium silicate solution, and the tube was immersed in this solution and dried to form a coating of 0.02 mm. <1.0×10 -6 /℃
After mixing 80 parts by weight of aluminum titanate and 20 parts by weight of calcium fluoride, a coating of 0.02 mm was formed in the same manner as before, and a sample sensor was obtained. The thus obtained uncoated, aluminum titanate coated, and aluminum titanate/calcium fluoride coated oxygen sensors were immersed in an aluminum deoxidizing steel bath melted at high frequency in an alumina crucible, and the electromotive force was measured. I tried. At this time, the bath temperature is
The temperature was 1600°C, and the bath surface was sealed from air by flowing argon gas. Reproducibility test of motive force value measurement observed by various oxygen sensors by changing the steel bath (10 specimens)
The results are shown in Table 1.

【表】 第1表から明らかな如く本発明のAl2O3・TiO2
−CaF2コート品は応答時間が短く、5sec起電力
(%)も高く起電力応答性に優れかつ、無コート
品と比較し起電力値はほど同一レベルであり、酸
素活量値が高くなる欠点も解決されていることが
分かる。 実施例 2 実施例1と同様にして取得した第2表に示すコ
ーテイング品及び無コート品酸素センサー(試験
体の本数7本)を用い実施例1と同様の方法で鋼
浴中の酸素濃度を測定した所、結果は第2表のと
おりであつた。
[Table] As is clear from Table 1, Al 2 O 3 ·TiO 2 of the present invention
-CaF 2- coated products have a short response time, a high 5sec electromotive force (%), and excellent electromotive force response, and compared to uncoated products, the electromotive force value is at the same level and the oxygen activity value is higher. It can be seen that the shortcomings have also been resolved. Example 2 The oxygen concentration in the steel bath was measured in the same manner as in Example 1 using coated and uncoated oxygen sensors (7 specimens) shown in Table 2 obtained in the same manner as in Example 1. The results were as shown in Table 2.

【表】 実施例 3 実施例1において参照電極をMo/MoO2に変
えCr/Cr2O3を用い、第3表に示すコーテイング
品及び無コート品酸素センサー(試験体の本数は
6本)を用い実施例1と同様の方法で鋼浴中の酸
素濃度を測定した所結果は第3表のとおりであつ
た。
[Table] Example 3 In Example 1, the reference electrode was replaced with Mo/MoO 2 and Cr/Cr 2 O 3 was used, and coated and uncoated oxygen sensors shown in Table 3 were used (the number of test specimens was 6). The oxygen concentration in the steel bath was measured using the same method as in Example 1, and the results were as shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 部分安定化ジルコニア質固体電解質表面を酸
化アルミニウムとの複合酸化物とアルミニウム、
カルシウム、マグネシウムの弗化物より選ばれた
少なくとも1種との混合物質で被覆したことを特
徴とする溶融金属中の酸素濃度測定用センサー。 2 酸化アルミニウムとの複合酸化物が3Y2O3
5Al2O3、3Al2O3・2SiO2、TiO2・Al2O3
MgO・Al2O3、2Al2O3・CaOである特許請求の
範囲第1項記載の溶融金属中の酸素濃度測定用セ
ンサー。 3 酸化アルミニウムとの複合酸化物に対する弗
化物の混合割合が1〜40重量%である混合物質を
用いる特許請求の範囲第1項記載の溶融金属中の
酸素濃度測定用センサー。
[Claims] 1. The surface of a partially stabilized zirconia solid electrolyte is made of a composite oxide of aluminum oxide, aluminum,
A sensor for measuring oxygen concentration in molten metal, characterized in that it is coated with a mixture of at least one selected from calcium and magnesium fluorides. 2 Composite oxide with aluminum oxide is 3Y 2 O 3 .
5Al2O3 , 3Al2O32SiO2 , TiO2 Al2O3 ,
The sensor for measuring oxygen concentration in molten metal according to claim 1, which is MgO.Al 2 O 3 or 2Al 2 O 3.CaO. 3. The sensor for measuring oxygen concentration in molten metal according to claim 1, which uses a mixed material in which the mixed ratio of fluoride to the composite oxide with aluminum oxide is 1 to 40% by weight.
JP58160717A 1983-09-01 1983-09-01 Sensor for measuring concentration of oxygen in molten metal Granted JPS6052763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58160717A JPS6052763A (en) 1983-09-01 1983-09-01 Sensor for measuring concentration of oxygen in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58160717A JPS6052763A (en) 1983-09-01 1983-09-01 Sensor for measuring concentration of oxygen in molten metal

Publications (2)

Publication Number Publication Date
JPS6052763A JPS6052763A (en) 1985-03-26
JPH0557541B2 true JPH0557541B2 (en) 1993-08-24

Family

ID=15720944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58160717A Granted JPS6052763A (en) 1983-09-01 1983-09-01 Sensor for measuring concentration of oxygen in molten metal

Country Status (1)

Country Link
JP (1) JPS6052763A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526551Y2 (en) * 1989-12-13 1997-02-19 株式会社クボタ Cutting height detector of reaper
DE10310387B3 (en) * 2003-03-07 2004-07-22 Heraeus Electro-Nite International N.V. Measurement sensor determining oxygen activity and other elements in molten metal or slag, includes solid electrolyte tube coated with calcium zirconate and a fluoride
DE102004022763B3 (en) 2004-05-05 2005-09-15 Heraeus Electro-Nite International N.V. Device for determining the oxygen activity in metal or slag melts, useful for measuring the content of silicon and carbon, includes solid electrolyte coated with layer of zirconium silicate and a fluoride
DE102007004147A1 (en) 2007-01-22 2008-07-24 Heraeus Electro-Nite International N.V. Method for influencing the properties of cast iron and oxygen sensor
CN105548308B (en) * 2015-12-10 2018-05-18 湖南镭目科技有限公司 A kind of oxygen cell sensor reference electrode and preparation method thereof and a kind of oxygen cell sensor
CN109100353B (en) * 2018-10-24 2020-04-14 中国矿业大学(北京) Deoxidizing performance measuring device for deoxidizing agent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746155A (en) * 1980-09-05 1982-03-16 Nippon Kokan Kk <Nkk> Measuring sensor for oxygen concentration for molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746155A (en) * 1980-09-05 1982-03-16 Nippon Kokan Kk <Nkk> Measuring sensor for oxygen concentration for molten metal

Also Published As

Publication number Publication date
JPS6052763A (en) 1985-03-26

Similar Documents

Publication Publication Date Title
EP0059222B1 (en) Oxygen level sensor for molten metal
CA2502395C (en) Measurement device for determining oxygen activity in metal or slag melts
TW200417731A (en) Measurement device for determining oxygen activity in molten metal or slag
JPS61260156A (en) Method and apparatus for measuring silicon concentration in molten metal
JPH0557541B2 (en)
Liu The development of high temperature electrochemical sensors for metallurgical processes
JPS63286760A (en) Composite probe for measuring concentration of impurity element in molten iron
JPH0439030B2 (en)
JPS60177259A (en) Sensor for measuring oxygen concentration in molten metal
US4399022A (en) Reference electrode for oxygen probe
JPS5830655A (en) Oxygen concentration measurement sensor for oxygen in molten metal
Romero et al. Oxygen and carbon sensing in Fe—O—C and Fe—O—C—Xn melts at elevated carbon contents
JPH033903B2 (en)
Janke A new immersion sensor for the rapid electrochemical determination of dissolved oxygen in metallic melts
JPS58211649A (en) Reference electrode for oxygen probe
De et al. Zirconia Based Plug Type Oxygen Sensors
JPS62174649A (en) Sensor for measuring phosphorus concentration
JP2868920B2 (en) Element for measuring oxygen concentration in molten metal
JPH06258282A (en) Oxygen probe
JPS58213247A (en) Oxygen probe
JPS5944580B2 (en) Oxygen sensor for molten steel
SU1426962A1 (en) Charge for producing porous layer on solid electrolyte
SU1691027A1 (en) Electrode coat composition
JPH03128453A (en) Component concentration sensor for molten metal by using composite solid electrolyte
JPH0452188B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees