JPH03128453A - Component concentration sensor for molten metal by using composite solid electrolyte - Google Patents

Component concentration sensor for molten metal by using composite solid electrolyte

Info

Publication number
JPH03128453A
JPH03128453A JP2176890A JP17689090A JPH03128453A JP H03128453 A JPH03128453 A JP H03128453A JP 2176890 A JP2176890 A JP 2176890A JP 17689090 A JP17689090 A JP 17689090A JP H03128453 A JPH03128453 A JP H03128453A
Authority
JP
Japan
Prior art keywords
oxide
solid electrolyte
molten metal
mixture
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2176890A
Other languages
Japanese (ja)
Other versions
JPH0786499B2 (en
Inventor
Yasuo Shinya
新矢 靖夫
Takashi Tanaka
敬 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUKEN SANGYO KK
Original Assignee
TOUKEN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUKEN SANGYO KK filed Critical TOUKEN SANGYO KK
Publication of JPH03128453A publication Critical patent/JPH03128453A/en
Publication of JPH0786499B2 publication Critical patent/JPH0786499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To make measurement with high accuracy by using the composite solid electrolyte formed by using partially stabilized zirconia of magnesium oxide as the base body of the solid electrolyte and integrating a mixture composed of an oxygen ion conductor and an oxide contg. components to be measured on the base body. CONSTITUTION:The powder mixture A (metal+metal oxide), such as Mo+MoO2, Cr+Cr2O3, Fe+FeO, or Ni+NiO, is packed as an oxygen reference electrode, into the composite solid electrolyte Tamman tube B and after an Mo lead wire C is inserted therein, the open end of the Tamman tube B is sealed with inorg. cement D, etc., to form the sensor. The Mo lead wire on a molten metal side and this sensor are immersed into the molten metal, by which the electromo tive force corresponding to the concn. of the component to be measured is generated between the two Mo leads. The concn. of this component is known by calculation or by a calibration curve.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、複合固体電解質を用いた酸素濃淡電池型の溶
融金属用成分センサーに関するものである。
The present invention relates to an oxygen concentration battery type sensor for molten metal components using a composite solid electrolyte.

【従来の技術】[Conventional technology]

鉄及び非鉄の薄金属工業において、それらの金属の製錬
や精製、鋳造等の諸工程で溶融状態における各種成分元
素の濃度を測定することは、工程及び製品品質の管理上
から、さらには今後の改良にとっても重要な問題である
。 従来のこれらの測定は、サンプリング試料の化学分析や
機器分析によっていたが、最近は費用と時間の点からそ
の場で測定結果が得られる各種センサーが要望され、一
部で実用されている。 例えば、溶鋼中の酸素濃度測定用の酸素センサ−があり
、また溶融銑鉄中の珪素濃度測定用に酸素センサーを応
用したシリコンセンサーがある。
In the ferrous and non-ferrous thin metal industry, it is important to measure the concentration of various constituent elements in the molten state during various processes such as smelting, refining, and casting of these metals, from the viewpoint of process and product quality control, and also in the future. This is an important issue for the improvement of Conventionally, these measurements were carried out by chemical analysis or instrumental analysis of sampled samples, but recently there has been a demand for various sensors that can obtain measurement results on the spot due to cost and time considerations, and some sensors are now in practical use. For example, there are oxygen sensors for measuring the oxygen concentration in molten steel, and silicon sensors that are applied to oxygen sensors for measuring the silicon concentration in molten pig iron.

【発明が解決しようとする課題】[Problem to be solved by the invention]

現在提案されている溶融金属用成分濃度センサーの1つ
は、シリコンセンサーにみられる酸素センサーの原理を
応用したものである。 即ち、溶融金属中の測定対象の成分元素が溶存酸素と平
衡状態にある吟、温度一定または既知であれば酸素濃度
を測定することにより間接的にその成分元素の濃度を平
衡定数から求めることができるのである。 一般的には測定対象の成分元素は酸素と平衡状態にはな
いので、例えばその成分元素の酸化物を酸素センサー近
傍に存在させて強制的に平衡を作りだせばよい、この時
、その成分元素の濃度が平衡移動による変化が小さくな
いと誤差が大きくなって実用的ではないため、測定状況
に合ったその成分を含む酸化物を選択する必要がある0
例えば、溶融銑鉄用シリコンセンサーでは、通常の溶鋼
用酸素センサーの酸化マグネシウム部分安定化ジルコニ
アの固体電解質管の外側に二酸化珪素を有機バインダー
で接着し、或いは固体電解質自体に珪酸マグネシウムを
分散させたりしている。 しかしながら、前者では接着の工程が余分に必要となる
と共に有機バインダーのため使用に際して二酸化珪素が
剥離する問題点があり、後者では予めシリケートを混合
した原料を用いて一度に製造できるメリットはあるもの
の高温での耐熱衝撃性に問題がある。 このように酸素センサーの原理を応用したものが提案さ
れているが、性能の改良の要請されており、汎用実用化
に適しないものであった。 そこで本発明は、溶融金属中の成分元素の濃度測定を安
価、迅速、高精度にできるセンサーを提供するものであ
る。
One of the component concentration sensors for molten metal currently proposed is one that applies the principle of an oxygen sensor found in silicon sensors. In other words, if the component element to be measured in the molten metal is in equilibrium with dissolved oxygen, and the temperature is constant or known, the concentration of the component element can be indirectly determined from the equilibrium constant by measuring the oxygen concentration. It can be done. Generally, the component element to be measured is not in an equilibrium state with oxygen, so for example, it is necessary to force an equilibrium by placing an oxide of the component element near the oxygen sensor. If the change in the concentration of 0 due to equilibrium movement is not small, the error will be large and it is not practical, so it is necessary to select an oxide containing that component that suits the measurement situation.
For example, in a silicon sensor for molten pig iron, silicon dioxide is adhered to the outside of the magnesium oxide partially stabilized zirconia solid electrolyte tube of a normal oxygen sensor for molten steel with an organic binder, or magnesium silicate is dispersed in the solid electrolyte itself. ing. However, the former requires an extra adhesion process and has the problem that the silicon dioxide peels off during use because it is an organic binder, while the latter has the advantage of being able to be manufactured at once using raw materials pre-mixed with silicate, but cannot be used at high temperatures. There is a problem with thermal shock resistance. Although devices that apply the principle of oxygen sensors have been proposed in this way, improvements in performance have been required, and they are not suitable for general-purpose practical use. Therefore, the present invention provides a sensor that can measure the concentration of component elements in molten metal at low cost, quickly, and with high precision.

【課題を解決するための手段】[Means to solve the problem]

このため本発明は、酸化マグネシウム部分安定化ジルコ
ニアを固体電解質の基体とし、酸素イオン導電体と測定
対象成分元素を含む酸化物との混合物を該基体上に一体
化して成る複合固体電解質を用いること構成とする酸素
a淡電池型の溶融金属用成分濃度センサーである。 なお、複合固体電解質の厚みが0.11−以上3■以下
であり、また混合物は厚みが5pm以上で且つ全体の3
0%以下の厚みに層状に一体化すれば最適である。 また、混合物中の酸素イオン導電体の割合を40%以上
99%以下とすれば良好である。 さらに、混合物中の酸素イオン導電体がアルカリ土類金
属酸化物によって部分安定化されたジルコニアであり、
且つ測定対象成分元素を含む酸化物がその成分元素の酸
化物とアルカリ土類金属酸化物との複合酸化物であれば
一層効果的である。 (イ)ここで、酸化マグネシウム部分安定化ジルコニア
を固体電解質として用いたのは、溶鋼用酸素センサーの
固体電解質として多量に使用されており、優れた耐衝撃
性と迅速、高精度に広い濃度範囲の酸素濃度測定を可能
にする性能を有するためであり、溶鋼やその他の非鉄金
属用にも広く使用されているのである。 (0)酸化マグネシウム部分安定化ジルコニアは。 3〜13モル%の酸化マグネシウムを含有するジルコニ
アをタンマン管、棒状1円板状等の所定形状に成形し、
1400〜1800℃で焼結させるもので、通常の溶鋼
用酸素センサーの固体電解質の製法を応用できるのであ
る。 (ハ)混合物中の酸素イオン導電体は、主として酸化マ
グネシウムや酸化カルシウム等アルカリ土類金属酸化物
により部分安定化されたジルコニアであり、その他、ジ
ルコニアと酸化イツトリウム。 酸化セリウム、その他各種のジルコニアとその安定化剤
との組合わせを用いることができる。その安定化剤は2
種以上を併用してもよい、またジルコニア系以外にもハ
フニア系、トリア系、その他の酸素イオン導電体を用い
ることもできる。 なお、混合物中の酸素イオン導電体の割合が40%以上
99%以下とする理由は、酸素イオン導電性能を保持し
、且つ測定対象成分元素を含む酸化物を必要量保持して
本発明のセンサー性能を発揮させるためである。 (ニ)′JJ?、合物中のJll定対象成分元素を含む
酸化物は例えば、[1画成分元素が珪素の場合は、二酸
化珪素、E1酸マグネシウム、珪酸アルミニウム等であ
る。即ち、その成分元素の酸化物または他の酸化物との
複合酸化物であり、他の酸化物とは、好ましくは酸化マ
グネジウドや酸化カルシウム等アルカリ土類金属酸化物
であるが、これらに限定されない、したかって、目的成
分元素がアルミニウムの場合は、酸化アルミニウム、ア
ルミン酸マグネシウム等であり、リンの場合は酸化リン
、す〉′酸カルシウム、リン酸ナトリウム等であり、ク
ロミウムの場合は酸化クロミウム、クロム酸マグネシウ
ム等がある。 (本)酸化マグネシウム部分安定化ジルコニア基体に、
PM素ビイオン導電体測定対象成分元素を含む酸化物と
の混合物を一体化することは、例えば、基体の焼結後に
該混合物を焼付ける他、基体の生素地成形体に該混合物
を付着させた後で焼結させる等で実施できるのである。 なお、該混合物は基体上に層となり、或いは断続的に施
されて一体化されてもよい。 また該混合物の厚みは、薄すぎると性能が充分に発揮で
きないので5pLm以上は必要であり、また厚すざると
耐衝撃性が劣化するため複合固体電解質全体の30%以
下が妥当である。 (へ)複合固体電解質の厚みは、その電解性能を保持す
るため0.1mm以上とし、且つ#熱衝撃性や応答性能
を損なわないため3■以下がよい。 (ト)これらの複合固体電解質を用いた溶融金属用成分
濃度測定センサーの組立は、通常の酸素センサーと同じ
でよい、即ち、酸素基準電極として、No + MeO
2,Or + Cr2O3、Fe+ Fed。 Xi + NiO等の(金属十金属酸化物)混合粉末A
を複合固体電解質タンマン管Bに詰め1Mo リード&
!aCを挿入後、タンマン管の開放端部を無機セメント
D等で封着してセンサーとすればよい(第1図参照)。 そして、溶融金属調のNo リード線とこのセンサーを
浸漬することにより測定対象の成分濃度に対応した起電
力が両に0リ一ド間に発生し、計算または検量線により
その成分の濃度を知ることができることになる。 以下5本発明の詳細な説明する。
Therefore, the present invention uses partially stabilized magnesium oxide zirconia as a solid electrolyte base, and uses a composite solid electrolyte in which a mixture of an oxygen ion conductor and an oxide containing an element to be measured is integrated on the base. This is an oxygen a battery type component concentration sensor for molten metal. In addition, the thickness of the composite solid electrolyte is 0.11-3 cm or less, and the thickness of the mixture is 5 pm or more and the total
It is optimal if they are integrated in a layered manner with a thickness of 0% or less. Further, it is preferable that the proportion of the oxygen ion conductor in the mixture is 40% or more and 99% or less. Furthermore, the oxygen ion conductor in the mixture is zirconia partially stabilized by an alkaline earth metal oxide,
Moreover, it is more effective if the oxide containing the component element to be measured is a composite oxide of the oxide of the component element and an alkaline earth metal oxide. (b) Magnesium oxide partially stabilized zirconia was used as the solid electrolyte because it is widely used as a solid electrolyte in oxygen sensors for molten steel, and it has excellent impact resistance, quickness, and high accuracy over a wide concentration range. This is because it has the ability to measure the oxygen concentration of molten steel and other non-ferrous metals. (0) Magnesium oxide partially stabilized zirconia. Zirconia containing 3 to 13 mol% of magnesium oxide is molded into a predetermined shape such as a Tammann tube, a rod or a disc,
It is sintered at 1,400 to 1,800°C, and the manufacturing method for solid electrolytes for ordinary oxygen sensors for molten steel can be applied. (c) The oxygen ion conductor in the mixture is mainly zirconia partially stabilized with alkaline earth metal oxides such as magnesium oxide and calcium oxide, and also zirconia and yttrium oxide. Combinations of cerium oxide, various other types of zirconia, and their stabilizers can be used. The stabilizer is 2
In addition to the zirconia type, hafnia type, thoria type, and other oxygen ion conductors can also be used. The reason why the proportion of the oxygen ion conductor in the mixture is set to 40% or more and 99% or less is that the sensor of the present invention can maintain the oxygen ion conductive performance and retain the necessary amount of oxide containing the component element to be measured. This is to demonstrate performance. (d)′JJ? Examples of oxides containing Jll constant target component elements in the compound include silicon dioxide, magnesium E1 acid, aluminum silicate, etc., when the first component element is silicon. That is, it is an oxide of its component element or a composite oxide with other oxides, and other oxides are preferably alkaline earth metal oxides such as magnesium oxide and calcium oxide, but are not limited to these. Therefore, when the target component element is aluminum, it is aluminum oxide, magnesium aluminate, etc., when it is phosphorus, it is phosphorus oxide, calcium sulfate, sodium phosphate, etc., and when it is chromium, it is chromium oxide, Examples include magnesium chromate. (Book) Magnesium oxide partially stabilized zirconia substrate,
Integrating the mixture with the oxide containing the component element to be measured in the PM elementary bioionic conductor can be carried out, for example, by baking the mixture after sintering the substrate, or by attaching the mixture to the green green compact of the substrate. This can be done by sintering it later. The mixture may be applied as a layer on the substrate or may be applied intermittently to be integrated. Further, the thickness of the mixture must be 5 pLm or more, since performance cannot be fully exhibited if it is too thin, and 30% or less of the total composite solid electrolyte is appropriate, since impact resistance deteriorates if it is too thick. (f) The thickness of the composite solid electrolyte is preferably 0.1 mm or more in order to maintain its electrolytic performance, and 3 mm or less in order not to impair thermal shock resistance or response performance. (g) The assembly of a component concentration measurement sensor for molten metal using these composite solid electrolytes may be the same as a normal oxygen sensor, that is, as an oxygen reference electrode, No + MeO
2, Or + Cr2O3, Fe + Fed. Mixed powder A of (metals and metal oxides) such as Xi + NiO
is packed in a composite solid electrolyte Tammann tube B with 1Mo lead &
! After inserting the aC, the open end of the Tammann tube may be sealed with inorganic cement D or the like to form a sensor (see Figure 1). By immersing the molten metal lead wire and this sensor, an electromotive force corresponding to the concentration of the component to be measured is generated between the two leads, and the concentration of that component can be determined by calculation or a calibration curve. You will be able to do that. Hereinafter, five aspects of the present invention will be explained in detail.

【実施例1】 7モル%の酸化マグネシウムを含有するジルコニアのタ
ンマン管形状成形体の外表面に、20%の珪酸マグネシ
ウムと80%の7モル%の酸化マグネシウムで部分安定
化したジルコニアとの混合粉末のスラリーを塗布した。 乾燥後に、1.700℃で焼結して内径3.5mm、外
径5 、7ta瀧、長さ35+smのタンマン管焼結体
を得た。なお、混合粉末スラリーを塗布しなかった部分
の外径が5.51であったので混合物の層の厚みは0.
1mmと求められた。そして、(M(+ + M2O3
) R金粉末を酸素基準極として充填し、常法によりシ
リコンセンサー素子を作成した。 酸化マグネシウムるつぼで高周波溶融した1500℃の
銑鉄に7エロシリコンを加え0.2%珪素濃度とし、対
極としたNo棒と共にシリコンセンサーを浸漬し、レコ
ーダーで起電力を測定した。 同様に夫々0.5,1.0% 珪素含有溶融銑鉄につい
ても行った。 第2図に起電力と珪素濃度の関係を示すが、良好な対応
を示していることが分かる。応答時間は8〜11秒と良
好であり、浸漬後のセンサーに割れは生じなかった。
[Example 1] A mixture of 20% magnesium silicate and 80% of zirconia partially stabilized with 7 mol% magnesium oxide was added to the outer surface of a Tamman tube-shaped zirconia containing 7 mol% magnesium oxide. A slurry of powder was applied. After drying, it was sintered at 1.700° C. to obtain a Tammann tube sintered body having an inner diameter of 3.5 mm, an outer diameter of 5 mm, a diameter of 7 ta, and a length of 35+ sm. In addition, since the outer diameter of the part to which the mixed powder slurry was not applied was 5.51 mm, the thickness of the layer of the mixture was 0.5 mm.
It was found to be 1mm. And (M(+ + M2O3
) R gold powder was filled as an oxygen reference electrode, and a silicon sensor element was prepared by a conventional method. 7Erosilicon was added to pig iron at 1500° C. that had been high-frequency melted in a magnesium oxide crucible to give a silicon concentration of 0.2%, a silicon sensor was immersed together with a No. 2 bar serving as a counter electrode, and the electromotive force was measured with a recorder. Similar tests were conducted on molten pig iron containing 0.5% and 1.0% silicon, respectively. FIG. 2 shows the relationship between electromotive force and silicon concentration, and it can be seen that there is good correspondence. The response time was good at 8 to 11 seconds, and no cracks occurred in the sensor after immersion.

【実施例2】 8モル%の酸化マグネシウム部分安定化ジルコニウムの
焼結タンマン管の外表面に、50%の石英と50%の1
0モル%の酸化カルシウム部分安定化ジルコニウムとの
混合粉を塗布し、乾燥後に、 1,400℃でこれを焼
き付けした。焼付層の厚み4i0.021鵬であった。 実施例1と同様にシリコンセンサーを組んで珪素含有溶
融銑鉄への浸漬実験を行い、第3図の結果を得た。 これによると、起電力と珪素濃度は良好な相関関係を示
しており、応答時間は7〜9秒であり浸漬時の割れも生
じなかったのである。
Example 2 The outer surface of a sintered Tammann tube of 8 mol% magnesium oxide partially stabilized zirconium was coated with 50% quartz and 50% 1
A mixed powder of 0 mol % calcium oxide partially stabilized zirconium was applied, and after drying, it was baked at 1,400°C. The thickness of the baked layer was 4i0.021mm. Similar to Example 1, a silicon sensor was assembled and an immersion experiment in silicon-containing molten pig iron was conducted, and the results shown in FIG. 3 were obtained. According to this, the electromotive force and silicon concentration showed a good correlation, the response time was 7 to 9 seconds, and no cracking occurred during immersion.

【実施例3】 9モル%の酸化マグネシウム部分安定化ジルコニアのタ
ンマン管成形体の外表面に、10%のクロム酸マグネシ
ウムと90%の7モル%相当の酸化マグネシウムを含む
ジルコニアとの混合粉末のスラリーを塗布し、乾燥後に
、1,850℃で焼結させた。得られた焼結タンマン管
の混合物層の厚みは0.05 amであったe  (N
o + M(+02 )混合粉末を詰めたクロムセンサ
ーを作製し、実施例1と同要領でフェロクロムを用いた
夫々1,5,10゜20%クロミウムを含む1600℃
の溶鋼に浸漬した結果の第4図によると、起電力とクロ
ム濃度は良好な相関を示している。応答速度は8〜10
秒であり、センサーに割れは生じなかった。
[Example 3] A mixed powder of 10% magnesium chromate and zirconia containing magnesium oxide equivalent to 7 mol% of 90% was placed on the outer surface of a Tammann tube molded body of partially stabilized zirconia containing 9 mol% of magnesium oxide. The slurry was applied and, after drying, sintered at 1,850°C. The thickness of the mixture layer of the obtained sintered Tammann tube was 0.05 am e (N
A chromium sensor filled with o + M (+02) mixed powder was prepared, and ferrochrome was used in the same manner as in Example 1.
According to FIG. 4, which shows the results of immersion in molten steel, there is a good correlation between the electromotive force and the chromium concentration. Response speed is 8-10
seconds, and no cracks occurred in the sensor.

【実施例4】 7モル%の酸化マグネシウム含有ジルコニアのタンマン
管成形体の外表面に、8%のリン酸カルシウムと92%
の10モル%酸化力ルシウム部分安定化ジルコニアとの
混合粉スラリーを塗布し、乾燥後に、 1,700℃で
焼結させた。得られた混合粉層の厚みは0.13諺膳で
あった*  (No + No02)混合粉末を詰めた
リンセンサーを作製し、実施例1と同要領で燐鉄を用い
て夫々0.01.0.05 、 O。 1%リンを含むの1450℃の溶融銑鉄に浸漬した。 結果の第5図によると、起電力とリン濃度は良好な相関
を示している。応答速度は7〜12秒であり、センサー
に割れは生じなかった。
[Example 4] 8% calcium phosphate and 92% calcium phosphate were added to the outer surface of a Tamman tube molded body of zirconia containing 7 mol% magnesium oxide.
A mixed powder slurry of 10 mol % oxidizing power of partially stabilized zirconia with lucium was applied, and after drying, it was sintered at 1,700°C. The thickness of the obtained mixed powder layer was 0.13 mm.* A phosphorus sensor filled with (No + No. 02) mixed powder was prepared, and the thickness of each layer was 0.01 mm using phosphorous iron in the same manner as in Example 1. .0.05, O. It was immersed in 1450°C molten pig iron containing 1% phosphorus. According to the results in FIG. 5, there is a good correlation between the electromotive force and the phosphorus concentration. The response speed was 7 to 12 seconds, and no cracks occurred in the sensor.

【発明の効果】【Effect of the invention】

このように本発明によると、溶融金属中の成分元素の濃
度測定を安価、迅速、高精度にできる効果がある。 また請求項第2項のものでは、クラックも生じることが
なく安定した測定ができるのである。 請求項第3項のものでは、性能が安定する効果がある。 さらに請求項第4項のものでは、より一層性能が安定す
るものである。
As described above, according to the present invention, the concentration of component elements in molten metal can be measured at low cost, quickly, and with high precision. Further, according to the second aspect of the present invention, stable measurements can be performed without causing cracks. The third aspect of the present invention has the effect of stabilizing the performance. Furthermore, according to the fourth aspect of the present invention, the performance is even more stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のタンマン管型センサーの縦
断面図、 第2図は実施例1の実験データ図。 第3図は実施例2の実験データ図、 第4図は実施例3の実験データ図、 第5図は実施例4の実験データ図である。
FIG. 1 is a longitudinal sectional view of a Tammann tube type sensor according to an embodiment of the present invention, and FIG. 2 is a diagram of experimental data of the first embodiment. 3 is an experimental data diagram of Example 2, FIG. 4 is an experimental data diagram of Example 3, and FIG. 5 is an experimental data diagram of Example 4.

Claims (4)

【特許請求の範囲】[Claims] (1)酸化マグネシウム部分安定化ジルコニアを固体電
解質の基体とし、酸素イオン導電体と測定対象成分元素
を含む酸化物との混合物を該基体上に一体化して成る複
合固体電解質を用いることを特徴とする酸素濃淡電池型
の溶融金属用成分濃度センサー。
(1) A composite solid electrolyte is used, in which partially stabilized magnesium oxide zirconia is used as a solid electrolyte base, and a mixture of an oxygen ion conductor and an oxide containing an element to be measured is integrated on the base. Oxygen concentration battery type component concentration sensor for molten metal.
(2)複合固体電解質の厚みが0.1mm以上3mm以
下であり、また混合物は5μm以上で且つ全体の30%
以下の厚みに層状に一体化された請求項第1項記載の溶
融金属用成分濃度センサー。
(2) The thickness of the composite solid electrolyte is 0.1 mm or more and 3 mm or less, and the thickness of the mixture is 5 μm or more and 30% of the total
The component concentration sensor for molten metal according to claim 1, which is integrated in a layered manner with a thickness of:
(3)混合物中の酸素イオン導電体の割合が40%以上
99%以下である請求項第1項又は第2項記載の溶融金
属用成分濃度センサー。
(3) The component concentration sensor for molten metal according to claim 1 or 2, wherein the proportion of the oxygen ion conductor in the mixture is 40% or more and 99% or less.
(4)混合物中の酸素イオン導電体がアルカリ土類金属
酸化物によって部分安定化されたジルコニアであり、且
つ測定対象成分元素を含む酸化物がその成分元素の酸化
物とアルカリ土類金属酸化物との複合酸化物である請求
項第1項又は第2項又は第3項記載の溶融金属用成分濃
度センサー。
(4) The oxygen ion conductor in the mixture is zirconia partially stabilized by an alkaline earth metal oxide, and the oxide containing the component element to be measured is a mixture of the oxide of the component element and the alkaline earth metal oxide. The component concentration sensor for molten metal according to claim 1, 2 or 3, which is a composite oxide of .
JP2176890A 1989-07-10 1990-07-04 Component concentration sensor for molten metal using composite solid electrolyte Expired - Fee Related JPH0786499B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-177478 1989-07-10
JP17747889 1989-07-10

Publications (2)

Publication Number Publication Date
JPH03128453A true JPH03128453A (en) 1991-05-31
JPH0786499B2 JPH0786499B2 (en) 1995-09-20

Family

ID=16031617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176890A Expired - Fee Related JPH0786499B2 (en) 1989-07-10 1990-07-04 Component concentration sensor for molten metal using composite solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0786499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132959A (en) * 2004-11-02 2006-05-25 Tokyo Yogyo Co Ltd Magnesium sensor probe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102150A (en) * 1985-10-29 1987-05-12 Sumitomo Chem Co Ltd Sensor for measuring concentration of silicon
JPS62174649A (en) * 1985-10-29 1987-07-31 Sumitomo Chem Co Ltd Sensor for measuring phosphorus concentration
JPS63151846A (en) * 1986-12-16 1988-06-24 Touken Sangyo:Kk Sensor for measuring concentration of silicon in molten metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102150A (en) * 1985-10-29 1987-05-12 Sumitomo Chem Co Ltd Sensor for measuring concentration of silicon
JPS62174649A (en) * 1985-10-29 1987-07-31 Sumitomo Chem Co Ltd Sensor for measuring phosphorus concentration
JPS63151846A (en) * 1986-12-16 1988-06-24 Touken Sangyo:Kk Sensor for measuring concentration of silicon in molten metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132959A (en) * 2004-11-02 2006-05-25 Tokyo Yogyo Co Ltd Magnesium sensor probe
JP4596886B2 (en) * 2004-11-02 2010-12-15 東京窯業株式会社 Magnesium sensor probe

Also Published As

Publication number Publication date
JPH0786499B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US3773641A (en) Means for determining the oxygen content of liquid metals
JPS61260156A (en) Method and apparatus for measuring silicon concentration in molten metal
JPH07167823A (en) Collating electrode for electrochemical measurement of partial pressure of oxygen in ionic melt
Jacob et al. Phase relations and gibbs energies in the system Mn-Rh-O
JPH03128453A (en) Component concentration sensor for molten metal by using composite solid electrolyte
JPS63286760A (en) Composite probe for measuring concentration of impurity element in molten iron
US5656143A (en) Sensors for the analysis of molten metals
JPH0246103B2 (en)
JPH0472183B2 (en)
JPS59109852A (en) Reference oxygen electrode of oxygen sensor for molten metal
JPH0650296B2 (en) Method for measuring phosphorus concentration in hot metal
KR910008652B1 (en) Method apparatus and prove for measuring the activity of a solute element in molton met
JPH06258282A (en) Oxygen probe
JP2642440B2 (en) Method and method for measuring activity of solute element in molten metal
Janke A new immersion sensor for the rapid electrochemical determination of dissolved oxygen in metallic melts
US5294313A (en) Sensors for monitoring waste glass quality and method of using the same
JPH0829379A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
JPS5935805Y2 (en) Oxygen concentration detection element in molten metal
JPH0648257B2 (en) Sensor for measuring silicon concentration in molten metal
JPH0222901B2 (en)
JP3000692B2 (en) Sensor for measuring oxygen and metal concentration in molten metal
JP2521509B2 (en) Probe for measuring Si concentration in molten metal
JPH0810792Y2 (en) Consumable crucible used for oxygen activity measuring device in slag
WO2001061333A1 (en) Sensors
JPS6281560A (en) Hydrogen sensor for molten metal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees