JPH0648257B2 - Sensor for measuring silicon concentration in molten metal - Google Patents

Sensor for measuring silicon concentration in molten metal

Info

Publication number
JPH0648257B2
JPH0648257B2 JP61299709A JP29970986A JPH0648257B2 JP H0648257 B2 JPH0648257 B2 JP H0648257B2 JP 61299709 A JP61299709 A JP 61299709A JP 29970986 A JP29970986 A JP 29970986A JP H0648257 B2 JPH0648257 B2 JP H0648257B2
Authority
JP
Japan
Prior art keywords
sensor
silicon
solid electrolyte
silicon concentration
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61299709A
Other languages
Japanese (ja)
Other versions
JPS63151846A (en
Inventor
正則 岩瀬
興一 山田
一彌 田中
Original Assignee
株式会社陶研産業
正則 岩瀬
住友化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社陶研産業, 正則 岩瀬, 住友化学工業株式会社 filed Critical 株式会社陶研産業
Priority to JP61299709A priority Critical patent/JPH0648257B2/en
Publication of JPS63151846A publication Critical patent/JPS63151846A/en
Publication of JPH0648257B2 publication Critical patent/JPH0648257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融金属中の珪素,特に鉄鋼業における溶融
銑鉄(以下,溶銑という)中の珪素濃度を迅速的確に測
定する珪素濃度の測定用センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention provides a method for quickly and accurately measuring the silicon concentration in silicon in molten metal, particularly in molten pig iron (hereinafter referred to as molten pig iron) in the steel industry. It relates to a sensor for use.

(発明が解決しようとする問題点) 溶融金属,特に鉄鋼業において高炉から送られて製鋼処
理される前の溶銑中の珪素濃度を迅速的確に測定するこ
とが要求されている。これは、鋼の需要の高級化に伴っ
て珪素,マンガン,リン,硫黄等の不純物の低減が必要
とされ、特にその中で珪素の測定は重要である。即ち、
珪素除去(脱珪)は、酸化珪素(シリカ)またはその複
合酸化物の形で溶銑中金属珪素を酸化して行なわれ、そ
の際に添加する酸化剤等の脱珪剤の投入量を珪素濃度に
応じて適量に変化させなければならないためである。
(Problems to be Solved by the Invention) It is required that the concentration of silicon in molten metal, particularly in the iron and steel industry before being sent from a blast furnace and before being subjected to steelmaking treatment, be promptly and accurately measured. This is because it is necessary to reduce impurities such as silicon, manganese, phosphorus, and sulfur as the demand for steel becomes higher, and in particular, the measurement of silicon is important. That is,
Silicon removal (desiliconization) is performed by oxidizing metallic silicon in the hot metal in the form of silicon oxide (silica) or its composite oxide, and the amount of the silicon removal agent such as an oxidizing agent added at that time is adjusted to the silicon concentration. This is because it must be changed in an appropriate amount according to.

珪素の測定方法として、現在は溶鋼を一部採取して化学
分析または機器分析を行なっているが、カントバック等
でも5〜10分の時間を要している。一方、脱珪工程は
従来は転炉で行なわれていたが、近年省エネルギーと低
コスト化を図るためから高炉から出た鋳床や鍋で予備処
理が行なわれだした。しかしながら、そこでは転炉処理
時以上に洗鉄中の珪素濃度が変動するためにより迅速,
的確な分析方法が求められている。
As a method for measuring silicon, at present, a part of molten steel is sampled for chemical analysis or instrumental analysis, but it takes 5 to 10 minutes for cant bag or the like. On the other hand, the desiliconization process was conventionally performed in a converter, but in recent years, in order to save energy and reduce costs, pretreatment has been carried out with a cast floor or a pot coming out of the blast furnace. However, there is a more rapid change in the concentration of silicon in the iron wash than during converter processing.
An accurate analysis method is required.

そこで、最近センサタイプの珪素分析法の開発が試みら
れ、ガルバニ電池型のセンサが提案されている。
Therefore, recently, development of a sensor type silicon analysis method has been attempted, and a galvanic cell type sensor has been proposed.

その一つとして酸化珪素を含むシリケート系スラグを電
解質とし,金属珪素を基準極にしたものがある。しかし
ながら、シリケートスラグが溶銑温度において液体であ
ることからセンサ成形構成が難しい欠点がある。
One of them is a silicate slag containing silicon oxide as an electrolyte and metallic silicon as a reference electrode. However, since the silicate slag is a liquid at the hot metal temperature, there is a drawback that the sensor molding configuration is difficult.

またその他として、副電極型と称されているものがあ
り、通常の酸素センサーのジルコニア固体電解質の表面
に副電極を付着させ、これらを溶銑との3相界面でのS
i+O=SiO,K=a sio2/a si×Poの平衡
関係を利用してa siを Po2に変換し、酸素量をこの酸
素センサで測って間接的に珪素を求めようとするもので
ある。なお、a sio2はSiO,a siはSiの各々の
活量、Poは酸素分圧,Kは本反応の平衡定数である。
この時、副電極はa sio2を一定とするために用いられ
(Zro+ZrSiO)等が開発されつつある。し
かしながら、副電極と電解質の性能を変えることなくジ
ルコニア固体電解質に固着成形する技術が難しく、また
それが可能であっても再加熱高温付着のため副電極と電
解質の符号性に問題が生じコスト高と成る欠点がある。
In addition, there is another type called a sub-electrode type, in which a sub-electrode is attached to the surface of a zirconia solid electrolyte of an ordinary oxygen sensor, and these are added at the S-phase at the three-phase interface with the hot metal.
i + O 2 = SiO 2 , K = a sio 2 / a si × Po 2 is used to convert as i to Po 2 , and the oxygen amount is measured with this oxygen sensor to indirectly obtain silicon. To do. In addition, a sio 2 is each activity of SiO 2 , asi is each activity of Si, Po 2 is oxygen partial pressure, K is an equilibrium constant of this reaction.
At this time, the sub-electrode is used to keep a sio 2 constant (Zro 2 + ZrSiO 4 ) and the like is being developed. However, it is difficult to fix and mold the zirconia solid electrolyte without changing the performance of the sub-electrode and the electrolyte, and even if it is possible, reheating high temperature adhesion causes a problem in the codeability of the sub-electrode and the electrolyte, resulting in high cost. There is a drawback that

また、これらガルバニ電池型センサは共に測定精度が機
器分析に比べてやや悪く、且つ応答時間が1分近くかか
る等さらに改良を要する問題点がある。この応答時間が
長くなるとセンサを保持するホルダーの高耐火度化が必
要となり製品が大幅なコスト高となる。その他、熱起電
力型センサによる測定も試みられているが実用上におい
て未解決の問題が多い。
Further, both of these galvanic battery type sensors have the problems that the measurement accuracy is slightly worse than that of the device analysis and that the response time is close to 1 minute, requiring further improvement. If the response time becomes long, the holder for holding the sensor needs to have a high degree of fire resistance, resulting in a significant increase in cost of the product. In addition, measurement by a thermoelectromotive force type sensor has been attempted, but there are many unsolved problems in practical use.

そこで本発明は溶融金属,特に溶銑中の珪素濃度を極め
て迅速的確に測定でき、脱珪剤投入量の決定の迅速化お
よび珪素濃度変化への迅速対応,さらに脱珪剤投入の適
正化による反応効率と脱珪率の向上を図ると共にセンサ
およびホルダーの構成簡易化による安価なセンサを提供
するものである。
Therefore, the present invention can measure the silicon concentration in the molten metal, especially in the hot metal very quickly and accurately, and can speed up the determination of the amount of the silicon removal agent and the rapid response to changes in the silicon concentration. It is an object of the present invention to provide an inexpensive sensor by improving the efficiency and desiliconization rate and simplifying the configuration of the sensor and the holder.

(問題点を解決するための手段) このため本発明は、酸素濃淡電池型の珪素濃度測定用セ
ンサであって、安定化または部分安定化ジルコニアをマ
トリックスとし,これにシリケート化合物を第2相とし
て含有させて成る焼結体の固体電解質を用いたことを構
成の要旨としている。
(Means for Solving the Problems) Therefore, the present invention is an oxygen concentration battery type sensor for measuring silicon concentration, in which stabilized or partially stabilized zirconia is used as a matrix, and a silicate compound is used as a second phase. The main point of the constitution is to use a solid electrolyte of a sintered body that is contained.

(イ) ここで固体電解質となる焼結体のマトリックスを構
成する安定化または部分安定化ジルコニア(以下,ジル
コニア等という)の安定化剤としてはカルシアやマグネ
シア等があり、これらの単独または複合して用いること
ができる。もちろん、カルシア,マグネシアに他のジル
コニアの安定化剤,例えばイットリア,セリア等を本発
明の効果を損なわない範囲で併用することを妨げない。
さらに通常含まれる程度の少量の焼結助剤や不純物も同
様である。
(B) Here, there are calcia, magnesia, and the like as stabilizers for the stabilized or partially stabilized zirconia (hereinafter referred to as zirconia, etc.) that constitutes the matrix of the sintered body that becomes the solid electrolyte. Can be used. Of course, it does not prevent the use of other stabilizers of zirconia, such as yttria and ceria, in combination with calcia and magnesia as long as the effects of the present invention are not impaired.
The same applies to small amounts of sintering aids and impurities that are usually contained.

シリケート化合物はジルコニア等の安定化剤とのシリケ
ートをいい,即ちカルシアの場合はダイカルシウムシリ
ケート(2CaO・SiO),マグネシアの場合はホ
ルステライト(2MgO・SiO)等をいう。
Silicate compound refers to a silicate and stabilizer such as zirconia, that is, when calcia Dicalcium silicate (2CaO · SiO 2), in the case of magnesia refers to forsterite (2MgO · SiO 2) or the like.

(ロ) これらジルコニア等をマトリックスとしシリケート
化合物を第2相として含有する焼結体の固体電解質は、
ジルコニア,安定化剤,酸化珪素の各原料または焼成等
によりこれら酸化物を生成する原料を混合した後,適宜
形に成形し焼成することで製造できる。
(B) The solid electrolyte of the sintered body containing these zirconia and the like as a matrix and the silicate compound as the second phase is
It can be produced by mixing each material of zirconia, a stabilizer, silicon oxide, or a material for forming these oxides by firing, molding the material into an appropriate shape and firing.

この際、安定化剤はシリケート化合物の生成及びジルコ
ニアの安定化または部分安定化に必要な量の合量を用い
る。
At this time, the stabilizer is used in the total amount necessary for forming the silicate compound and stabilizing or partially stabilizing the zirconia.

なお、これら原料の一部または一部の組合せ乃至全部を
予め反応させて用いることもできる。例えば、部分安定
化ジルコニアとシリケート化合物の各々を予め反応させ
て用いてもよい。
It is also possible to use a part or a part or a combination of all of these raw materials by pre-reacting them. For example, each of the partially stabilized zirconia and the silicate compound may be reacted in advance and used.

(ハ) 固体電解質におけるマトリックスのジルコニア等と
シリケート化合物との混合割合は、実験によると,シリ
ケート化合物の焼結体中の含有量が1.5 〜25重量%が
良好で、5〜20重量%が最良であった。
(C) According to the experiment, the mixing ratio of the zirconia or the like of the matrix and the silicate compound in the solid electrolyte is good when the content of the silicate compound in the sintered body is 1.5 to 25% by weight, and 5 to 20% by weight is the best. Met.

これはジルコニア等の酸素イオン伝導性を利用して固体
電解質に用いるため、第2相として含有される酸素イオ
ン伝導体でないシリケート化合物は固体電解質として用
いられる焼結体の酸素イオン伝導姓を実用阻害できない
程低下させてはならないことからその含有量は25重量
%以内がよいのである。また、シリケート化合物の電子
伝導性がジルコニア等の酸素イオン伝導性に対して充分
小さくないと本発明の酸素濃淡電池の起電力が正しく示
されないが、これらシリケートであれば問題がない。
Since this is used for the solid electrolyte by utilizing the oxygen ion conductivity of zirconia etc., the silicate compound that is not the oxygen ion conductor contained as the second phase impairs the oxygen ion conductivity of the sintered body used as the solid electrolyte for practical use. The content should be 25% by weight or less because it should not be lowered to the extent impossible. If the electron conductivity of the silicate compound is not sufficiently low with respect to the oxygen ion conductivity of zirconia or the like, the electromotive force of the oxygen concentration battery of the present invention will not be shown correctly, but there is no problem with these silicates.

このように、ジルコニア等のマトリックス中のこれらシ
リケートは必要を満たせば少ない方がよいが、あまりに
少量すぎるとシリケートを第2相として含有させる本発
明の効果が認められないことから少なくとも1.5 重量%
以上必要となる。
Thus, it is preferable that the amount of these silicates in the matrix such as zirconia is as small as possible. However, if the amount is too small, the effect of the present invention of incorporating the silicate as the second phase is not recognized, so at least 1.5% by weight.
More is required.

(ニ) このようにして得られる焼結体を固体電解質として
用いて酸素濃淡電池を構成するのである。
(D) An oxygen concentration battery is constructed by using the thus obtained sintered body as a solid electrolyte.

焼結体の形状は、棒状,円盤形,一端閉管等の従来の固
体電解質として用いられている形状でよい。
The shape of the sintered body may be a shape used as a conventional solid electrolyte such as a rod shape, a disk shape, or a closed end tube.

そして該固体電解質と、従来から酸素センサーに用いら
れている金属とその金属の酸化物との混合物,例えばM
o+MoO,Cr+Cr,Ni+NiO,Fe
+FeO等の基準電極を用いて電池を構成するのであ
る。
A mixture of the solid electrolyte, a metal conventionally used in an oxygen sensor and an oxide of the metal, such as M
o + MoO 2 , Cr + Cr 2 O 3 , Ni + NiO, Fe
The battery is constructed using a reference electrode such as + FeO.

以下、実施例により本発明を更に詳細に説明するが、こ
れによって本発明が限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

(実施例−1) マグネシア粉末とジルコニア粉末を各々7モル%,93
モル%の割合で混合し、これを1600℃で24時間加
熱して部分安定化ジルコニアを得た。この部分安定化ジ
ルコニアを粉砕し、これに別途合成したホルステライト
粉末を10重量%を加え混合した。この混合粉末を棒状
に圧縮成形し,1750℃で焼成して直径6mm,長さ1
0mmの固体電解質を得た。この固体電解質1を第1図の
ようにアルミナ管2(内径7mm,外形10mm,長さ60
0mm)の先端に耐火セメント3を用いて固定し、アルミ
ナ管2の内側には金属モリブデンと酸化モリブデンを混
合した基準極4を充填した後、耐火セメント5で詰める
と共に基準極側のリード線6としてモリブデン棒(直径
3mm)を用いて本例センサを構成した。
(Example-1) Magnesia powder and zirconia powder were added at 7 mol% and 93, respectively.
The mixture was mixed at a ratio of mol%, and this was heated at 1600 ° C. for 24 hours to obtain partially stabilized zirconia. This partially stabilized zirconia was crushed, and 10 wt% of separately synthesized forsterite powder was added and mixed. This mixed powder is compression molded into a rod shape and fired at 1750 ° C. to have a diameter of 6 mm and a length of 1
A 0 mm solid electrolyte was obtained. As shown in FIG. 1, this solid electrolyte 1 was replaced with an alumina tube 2 (inner diameter 7 mm, outer diameter 10 mm, length 60).
(0 mm) is fixed with refractory cement 3 and the inside of the alumina tube 2 is filled with a reference electrode 4 in which metallic molybdenum and molybdenum oxide are mixed, and then filled with refractory cement 5 and a lead wire 6 on the reference electrode side. The sensor of this example was constructed by using a molybdenum rod (diameter 3 mm) as the above.

実験では本例センサを、炭素4.5重量%を含む溶銑中
へ浸漬した。なお、溶銑側のリード線には鉄を用い、こ
の鉄線とセンサ側モリブデンリード線6との間の起電力
をレコーダで測定した。そして溶銑中の珪素濃度を変え
て測定したもので、測定結果は第3図に示すように珪素
濃度との起電力の相関が高く、測定精度も極めて良好で
あった。また応答時間は多少バラツキはあったが10〜
20秒と良好で、起電力も安定した波形を示した。
In the experiment, the sensor of this example was immersed in hot metal containing 4.5% by weight of carbon. Iron was used for the lead wire on the hot metal side, and the electromotive force between this iron wire and the sensor-side molybdenum lead wire 6 was measured with a recorder. The measurement was carried out by changing the silicon concentration in the hot metal, and the measurement results showed a high correlation between the silicon concentration and the electromotive force as shown in FIG. 3, and the measurement accuracy was also very good. In addition, the response time varied somewhat, but was 10
The waveform was as good as 20 seconds, and the electromotive force also showed a stable waveform.

(実施例−2) 炭酸カルシウム,ジルコニア及びシリカの粉末を混合
後、1550℃に加熱し、安定化ジルコニアに6重量%
のカルシウムシリケートを含有する反応物を得た。この
反応物を粉砕し、一端閉管状に成形して1700℃で焼
結し、内径3.5mm,外形5.5mm,長さ35mmの焼結
体を得た。この焼結体の固体電解質7内に実施例1の構
成の基準極8を充填し、リード線9を突出させて開口部
を耐火セメント10で密閉したセンサを形成した(第2
図参照)。これを溶銑中へ浸漬し起電力を測定した。第
3図にその結果を示す。これによると実施例−1と同様
に珪素濃度と起電力の相関が高く、かつ精度および応答
時間,起電力波形も良好であった。
(Example-2) After mixing powders of calcium carbonate, zirconia and silica, the mixture was heated to 1550 ° C to obtain 6% by weight of stabilized zirconia.
A reaction product containing calcium silicate was obtained. The reaction product was crushed, molded into a tube with one end closed, and sintered at 1700 ° C. to obtain a sintered body having an inner diameter of 3.5 mm, an outer diameter of 5.5 mm and a length of 35 mm. The solid electrolyte 7 of this sintered body was filled with the reference electrode 8 having the configuration of Example 1, the lead wire 9 was projected, and the opening was sealed with the refractory cement 10 to form a sensor (second).
See figure). This was immersed in hot metal and the electromotive force was measured. The results are shown in FIG. According to this, as in Example-1, the correlation between the silicon concentration and the electromotive force was high, and the accuracy, response time, and electromotive force waveform were good.

(その他の実施例) 実施例−1の要領でシリケート量を変えて実験を行なっ
た。結果を次の表1にまとめて示す。
(Other Examples) Experiments were conducted in the same manner as in Example 1 except that the amount of silicate was changed. The results are summarized in Table 1 below.

また、基準極をMo−MoOに変え,Cr−Cr
にして実験を行なったが、若干応答時間が遅くなった
が前記実施例のように一連の相関性は認められた。
In addition, the reference electrode is changed to Mo-MoO 2 and Cr-Cr 2 O
The experiment was conducted with No. 3 , but the response time was slightly delayed, but a series of correlations were observed as in the above-mentioned Examples.

シリケート量1%では波形は良好であるが珪素濃度と起
電力との相関性が得られず、またシリケート量40%で
は波形不良で起電力、応答時間が読みとれない場合が多
く、読みとりができた場合も珪素濃度と起電力の相関性
は認められなかった。
When the silicate amount was 1%, the waveform was good, but the correlation between the silicon concentration and the electromotive force was not obtained, and when the silicate amount was 40%, the electromotive force and response time were often unreadable due to poor waveform, and the reading was possible. Also in this case, no correlation was observed between the silicon concentration and the electromotive force.

(発明の効果) してがって本発明によると、溶融金属,特に溶銑中の珪
素濃度を迅速に且つ精度よく測定できることの効果が大
きく、安価に製造できるものでその工業的価値は多大で
ある。
(Effect of the invention) Therefore, according to the present invention, the effect of being able to measure the concentration of molten metal, particularly silicon in the hot metal, quickly and accurately is great, and it can be manufactured at low cost, and its industrial value is great. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す縦断面図、 第2図は別例の縦断面図、 第3図は実施例による珪素濃度と起電力の相関図であ
る。 1,7:固体電解質、4,8:基準極、 6,9:リード線、 3,5.10:耐火セメント。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of another example, and FIG. 3 is a correlation diagram of silicon concentration and electromotive force according to the embodiment. 1, 7: solid electrolyte, 4, 8: reference electrode, 6, 9: lead wire, 3, 5.10: refractory cement.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 興一 愛媛県新居浜市菊本町1−10−1 住友化 学工業株式会社愛媛研究所内 (72)発明者 田中 一彌 愛知県瀬戸市川端町3丁目30番地 株式会 社陶研産業内 (56)参考文献 特開 昭62−102150(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Yamada 1-10-1 Kikumoto-cho, Niihama-shi, Ehime Sumitomo Kagaku Kogyo Co., Ltd. Ehime Laboratory (72) Inventor, Kazumoto Tanaka 3 Kawabata-cho, Seto-shi, Aichi 30-chome Co., Ltd., Token Sangyo Co., Ltd. (56) References JP-A-62-102150 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸素濃淡電池型の珪素濃度測定用センサで
あって、安定化または部分安定化ジルコニアをマトリッ
クスとし,これにシリケート化合物を第2相として含有
させて成る焼結体の固体電解質を用いたことを特徴とす
る溶融金属中の珪素濃度測定用センサ。
1. A sensor for measuring silicon concentration of an oxygen concentration battery type, comprising a solid electrolyte of a sintered body, comprising stabilized or partially stabilized zirconia as a matrix, and containing a silicate compound as a second phase. A sensor for measuring silicon concentration in molten metal, which is used.
【請求項2】シリケート化合物の焼結体中における含有
率を1.5 〜25重量%とした固体電解質に成形した特許
請求の範囲第1項記載のセンサ。
2. The sensor according to claim 1, which is molded into a solid electrolyte in which the content of the silicate compound in the sintered body is 1.5 to 25% by weight.
JP61299709A 1986-12-16 1986-12-16 Sensor for measuring silicon concentration in molten metal Expired - Fee Related JPH0648257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299709A JPH0648257B2 (en) 1986-12-16 1986-12-16 Sensor for measuring silicon concentration in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299709A JPH0648257B2 (en) 1986-12-16 1986-12-16 Sensor for measuring silicon concentration in molten metal

Publications (2)

Publication Number Publication Date
JPS63151846A JPS63151846A (en) 1988-06-24
JPH0648257B2 true JPH0648257B2 (en) 1994-06-22

Family

ID=17876017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299709A Expired - Fee Related JPH0648257B2 (en) 1986-12-16 1986-12-16 Sensor for measuring silicon concentration in molten metal

Country Status (1)

Country Link
JP (1) JPH0648257B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786499B2 (en) * 1989-07-10 1995-09-20 株式会社陶研産業 Component concentration sensor for molten metal using composite solid electrolyte

Also Published As

Publication number Publication date
JPS63151846A (en) 1988-06-24

Similar Documents

Publication Publication Date Title
Xiao et al. Determination of activities in slags containing chromium oxides
Liu et al. Measurement of FeO activity and solubility of MgO in smelting slags
JPH0648257B2 (en) Sensor for measuring silicon concentration in molten metal
Yamanaka et al. A thermodynamic study of the system Fe x O+ AI 2 O 3+ SiO 2 at 1673 K
Turkdogan Theoretical concept on slag–oxygen sensors to measure oxide activities related to FeO, SiO2, and CaO contents of steelmaking slags
Swetnam et al. Sensing of sulfur in molten metal using strontium β-alumina
JPS6052763A (en) Sensor for measuring concentration of oxygen in molten metal
US5656143A (en) Sensors for the analysis of molten metals
JPS59109852A (en) Reference oxygen electrode of oxygen sensor for molten metal
Iwase et al. Tri‐phasic zirconia electrolyte for the in‐situ determinations of silicon activities in hot metal
JPH06258282A (en) Oxygen probe
Lü et al. Activities of FeO in CaO-SiO 2-Al 2 O 3-MgO-FeO slags
Matsushita et al. The Application of Oxygen Concentration Cells with the Solid Electrolyte, ZrO2· CaO to Basic Research Works in Iron and Steel Making
JP3000692B2 (en) Sensor for measuring oxygen and metal concentration in molten metal
JPH0222901B2 (en)
JPH0246103B2 (en)
Nakamura et al. Study on solid electrolyte for oxygen activity measurement in steelmaking process
JPH0650296B2 (en) Method for measuring phosphorus concentration in hot metal
Fitterer et al. Oxygen in Steel Refining as Determined by Solid Electrolyte Techniques
JPH037264B2 (en)
JPH10213563A (en) Solid electrolyte element and oxygen concentration measuring device
JPH03128453A (en) Component concentration sensor for molten metal by using composite solid electrolyte
Iwase et al. Recent developments in electrochemical oxygen sensors used for iron and steelmaking
Nagata et al. Recent development and future of chemical sensors for high temperature use
Gomyo et al. Solid state sensor for silicon in molten metals by zirconia-based electrolyte

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees