JPH0557325B2 - - Google Patents

Info

Publication number
JPH0557325B2
JPH0557325B2 JP8282787A JP8282787A JPH0557325B2 JP H0557325 B2 JPH0557325 B2 JP H0557325B2 JP 8282787 A JP8282787 A JP 8282787A JP 8282787 A JP8282787 A JP 8282787A JP H0557325 B2 JPH0557325 B2 JP H0557325B2
Authority
JP
Japan
Prior art keywords
dephosphorizing agent
hot metal
caf
amount
dephosphorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8282787A
Other languages
Japanese (ja)
Other versions
JPS63250411A (en
Inventor
Hiroshi Takahashi
Kyoshi Yasui
Shuichi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8282787A priority Critical patent/JPS63250411A/en
Publication of JPS63250411A publication Critical patent/JPS63250411A/en
Publication of JPH0557325B2 publication Critical patent/JPH0557325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は溶銑を転炉にて精錬するに先立ち、溶
銑の段階で予め脱燐処理を行うための溶銑脱燐剤
の組成に関するものである。 「従来の技術」 従来、転炉における脱燐負荷の大きい極低燐
鋼、高炭素鋼等を精錬するに際しては、造滓剤の
増量、ダブルスラグ法等が採用されていた。 しかし、近年になつて熱力学的に有利である溶
銑段階での脱燐法、即ち溶銑予備処理方法が注目
されてきている。 この溶銑予備処理に用いる脱燐剤としては通常
粉体のCa0,CaF2及び酸化鉄を主体とした石灰
系のものが用いられ、溶銑中にインジエクシヨン
することにより、脱燐処理が行われている。 「発明が解決しようとする問題点」 前記の石灰系の脱燐剤を用いた場合は、生成す
るスラグの塩基性が低い欠点があることや、脱燐
剤と溶銑界面の酸素ポテンシヤルによつて脱燐反
応が左右されることは一般的に知られていた。 例えば、脱燐剤中の固体酸素量(酸化鉄)が少
ないと脱燐処理剤であるCa0,CaF2の利用効率
が低下し、そのために多量のCa0,CaF2を添加
しなければならず、その結果スラグ量が増加す
る。 一方脱燐剤中の固体酸素量が多いと個体酸素源
分解による溶銑温度低下が顕著になると共に脱炭
素量が増加し、次工程である転炉精練における熱
源不足を惹起するなどの問題があつた。 こり為に適当な酸素ポテンシヤルを有す脱燐剤
を得ることによつて、これらの問題を解消しよう
としていたが、常時安定した効果的な脱燐剤を得
ることは出来なかつた。 「問題点を解決するための手段」 発明者らは常に最小限のCa0,CaF2によつて
脱燐し、且つ過度の脱炭が生じない脱燐剤を得る
には単に酸素ポテンシヤル値を操作するだけでは
なくCa0とCaF2との配合を或る比率の基で酸素
ポテンシヤルをも或る範囲内に調整した脱燐剤が
最も有効であることを知見した。 その要旨は、脱燐剤の組成として脱燐剤の重量
当たり、A:固体酸素量(Nm3/Kg)とB:Ca0
+CaF2(Kg/Kg)との比、即ちA/Bが0.16〜
0.18の範囲で、且つCa0:CaF2=5:1〜3:1
の条件を満たした脱燐剤である。 「実施例」 本発明の実施を第1図に示す装置で第1表に示
す条件を設定して行つた。 脱燐剤の添加は、取鍋1中の溶銑2にインジエ
クシヨン用ランス3を浸漬し、該ランスから粉体
の脱燐剤を窒素ガスを搬送ガスとして吹き込み、
同時に復燐防止用および気体脱燐剤として酸素吹
き付け用ランス4から溶銑面に酸素ガスガスを吹
き付けた。 第1表に示す試験条件の下で、脱燐剤組成比
A/Bを0.12〜0.20にCa0とCaF2との比率を5:
1〜3:1の間で変化させて試験を行い、その脱
Si外Ca0+CaF2原単位(Kg/T)と脱炭(%)と
について第2図に示すような結果が得られた。 脱Si外Ca0+CaF2原単位とは、一般に溶銑脱燐
処理においては、脱Si反応が脱燐反応に先行する
ので、全脱燐原単位から脱Si反応時に消費される
原単位を差し引いた値、即ち脱Si外で消費した脱
燐剤原単位のことをいう。尚、脱Si反応時に消費
される脱燐原単位は溶銑中のSi濃度によつて求め
られる。 次に本脱燐剤の効果につて第2図に基づき説明
する。先ず、脱Si外Ca0+CaF2原単位はA/Bの
比が0.16乃至0.18で低値を示し、それ以下でもそ
れ以上でも高い原単位を示した。一方、脱炭量に
ついても同様な傾向を示すが、0.16以下ではその
傾向は顕著ではない。 これらのことから、脱Si外Ca0+CaF2原単位と
脱炭量について低値を示したA/B比0.16乃至
0.18の範囲の脱燐剤組成が最も好ましいことがわ
かる。 なお、CaとCaF2との比を5:1〜3:1に限
定した理由は、第3図に示す3元系状態図におけ
る(%SiO2)=20の場合のスラグ融点を1450〜
1750℃と下げることにより、脱燐剤の反応性を向
上させ、かつ、除滓性を向上させるためである。 しかし、この3元系状態図は、純粋系であり、
前記の様な高融点温度を示すが、実際操業状態に
おけるスラグは、複雑な混合形態であるために、
その融点温度は1200〜1300℃の低温を示す。
"Industrial Application Field" The present invention relates to the composition of a hot metal dephosphorizing agent for dephosphorizing hot metal in advance, before the hot metal is refined in a converter. "Prior Art" Conventionally, when refining ultra-low phosphorus steel, high carbon steel, etc., which require a large dephosphorization load in a converter, increasing the amount of slag forming agent, double slug method, etc. have been adopted. However, in recent years, attention has been paid to a thermodynamically advantageous dephosphorization method at the hot metal stage, that is, a hot metal pretreatment method. The dephosphorizing agent used in this hot metal pretreatment is usually a lime-based agent mainly consisting of powdered Ca0, CaF2 , and iron oxide, and dephosphorization is performed by injecting it into the hot metal. . ``Problems to be Solved by the Invention'' When using the above-mentioned lime-based dephosphorizing agent, there are drawbacks such as the low basicity of the slag produced and the oxygen potential at the interface between the dephosphorizing agent and the hot metal. It was generally known that the dephosphorization reaction was influenced by For example, if the amount of solid oxygen (iron oxide) in the dephosphorizing agent is small, the utilization efficiency of the dephosphorizing agent Ca0, CaF2 will decrease, and therefore a large amount of Ca0, CaF2 must be added. As a result, the amount of slag increases. On the other hand, if the amount of solid oxygen in the dephosphorizing agent is large, the temperature of the hot metal will drop significantly due to the decomposition of the solid oxygen source, and the amount of decarbonized metal will increase, causing problems such as a lack of heat source in the next process, converter smelting. Ta. Attempts have been made to solve these problems by obtaining a dephosphorizing agent having an appropriate oxygen potential, but it has not been possible to obtain a consistently stable and effective dephosphorizing agent. "Means for Solving the Problem" The inventors simply manipulated the oxygen potential value in order to obtain a dephosphorizing agent that always dephosphorized with the minimum amount of Ca0 and CaF2 and did not cause excessive decarburization. It was found that a dephosphorizing agent that not only does this but also adjusts the oxygen potential within a certain range based on a certain ratio of Ca0 and CaF2 is the most effective. The gist is that the composition of the dephosphorizing agent is A: solid oxygen amount (Nm 3 /Kg) and B: Ca0
+CaF 2 (Kg/Kg) ratio, that is, A/B is 0.16~
in the range of 0.18, and Ca0: CaF2 = 5:1 to 3:1
It is a dephosphorizing agent that satisfies the following conditions. "Example" The present invention was carried out using the apparatus shown in FIG. 1 under the conditions shown in Table 1. To add the dephosphorizing agent, immerse the injection lance 3 into the hot metal 2 in the ladle 1, blow in the powdered dephosphorizing agent from the lance with nitrogen gas as a carrier gas,
At the same time, oxygen gas was blown onto the hot metal surface from an oxygen blowing lance 4 to prevent rephosphorization and as a gaseous dephosphorizing agent. Under the test conditions shown in Table 1, the dephosphorizing agent composition ratio A/B was 0.12 to 0.20, and the ratio of Ca0 and CaF 2 was 5:
Tests were conducted by varying the ratio between 1 and 3:1, and the
The results shown in Figure 2 were obtained regarding the basic unit of Ca0 + CaF 2 outside of Si (Kg/T) and decarburization (%). In general, in the hot metal dephosphorization process, the Si removal reaction precedes the dephosphorization reaction, so the non-Si removal Ca0 + CaF 2 consumption rate is the value obtained by subtracting the consumption rate during the Si removal reaction from the total dephosphorization consumption rate. In other words, it refers to the basic unit of dephosphorizing agent consumed outside of removing Si. Note that the dephosphorization unit consumed during the Si removal reaction is determined by the Si concentration in the hot metal. Next, the effect of this dephosphorizing agent will be explained based on FIG. 2. First, the basic unit of Ca0+ CaF2 outside of Si removal showed a low value when the A/B ratio was 0.16 to 0.18, and the basic unit showed a high value both below and above that. On the other hand, the amount of decarburization shows a similar tendency, but the tendency is not significant below 0.16. From these facts, the A/B ratio of 0.16 to 0.16, which showed low values for Ca0 + CaF 2 basic unit and decarburization amount outside of Si removal.
It can be seen that a dephosphorizing agent composition in the range of 0.18 is most preferred. The reason for limiting the ratio of Ca to CaF 2 to 5:1 to 3:1 is that the slag melting point when (%SiO 2 ) = 20 in the ternary system phase diagram shown in Figure 3 is 1450 to 3:1.
By lowering the temperature to 1750°C, the reactivity of the dephosphorizing agent is improved and the slag removal performance is improved. However, this ternary system phase diagram is a pure system,
Although it exhibits a high melting point temperature as mentioned above, slag in actual operating conditions has a complicated mixed form, so
Its melting point temperature shows a low temperature of 1200-1300℃.

【表】 「発明の効果」 本発明により、最小限のCa0,CaF2によつて
脱燐が可能になり、スラグ量の増加もなく、固体
酸素の使用減によつて溶銑温度の低下や過剰に脱
炭するという問題も解消できるなど顕著な効果を
挙げている。
[Table] "Effects of the Invention" According to the present invention, dephosphorization is possible with minimal Ca0 and CaF2 , there is no increase in the amount of slag, and by reducing the use of solid oxygen, the temperature of hot metal can be lowered and excessive It has had remarkable effects, such as being able to solve the problem of decarbonization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のために用いた装置の概略であ
り、第2図は、脱Si外Ca0+CaF2原単位および脱
炭量と脱燐剤組成(A/B)の関係図である。第
3図はCaF−ca0−Si023元系状態図である。 1……取鍋、2……溶銑、3……インジエクシ
ヨン用ランス、4……酸素吹き付け用ランス。
FIG. 1 is a schematic diagram of the apparatus used for the present invention, and FIG. 2 is a diagram showing the relationship between the Ca0+CaF 2 consumption rate outside of Si removal, the amount of decarburization, and the composition of the dephosphorizing agent (A/B). FIG. 3 is a phase diagram of the CaF-ca0-Si0 2 ternary system. 1...Ladle, 2...Hot metal, 3...Lance for injection injection, 4...Lance for oxygen blowing.

Claims (1)

【特許請求の範囲】 1 溶銑中の燐を脱燐する粉体の組成が下記の条
件を満足していることを特徴とする溶銑脱燐剤。 A/B=0.16〜0.18 但し A:固体酸素量(Nm3/Kg) B:CaO+CaF2(Kg/Kg) Ca0:CaF2=5:1〜3:1
[Scope of Claims] 1. A hot metal dephosphorizing agent characterized in that the composition of powder for dephosphorizing phosphorus in hot metal satisfies the following conditions. A/B=0.16~0.18 However, A: Solid oxygen amount (Nm 3 /Kg) B: CaO + CaF 2 (Kg/Kg) Ca0:CaF 2 = 5:1~3:1
JP8282787A 1987-04-06 1987-04-06 Dephosphorizing agent for molten pig iron Granted JPS63250411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8282787A JPS63250411A (en) 1987-04-06 1987-04-06 Dephosphorizing agent for molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8282787A JPS63250411A (en) 1987-04-06 1987-04-06 Dephosphorizing agent for molten pig iron

Publications (2)

Publication Number Publication Date
JPS63250411A JPS63250411A (en) 1988-10-18
JPH0557325B2 true JPH0557325B2 (en) 1993-08-23

Family

ID=13785230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8282787A Granted JPS63250411A (en) 1987-04-06 1987-04-06 Dephosphorizing agent for molten pig iron

Country Status (1)

Country Link
JP (1) JPS63250411A (en)

Also Published As

Publication number Publication date
JPS63250411A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
US4373949A (en) Method for increasing vessel lining life for basic oxygen furnaces
JP3525766B2 (en) Hot metal dephosphorization method
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
GB2141739A (en) Process for producing low P chromium-containing steel
JP2001115205A (en) Method for dephosphorizing molten iron
JPH0141681B2 (en)
JP2653301B2 (en) Reusing method of low P converter slag
US4525209A (en) Process for producing low P chromium-containing steel
JPH0557325B2 (en)
JP2833736B2 (en) Hot metal pretreatment method
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
EP0015396A1 (en) A method for increasing vessel lining life for basic oxygen furnaces
JP3194212B2 (en) Converter steelmaking method
JPH0211712A (en) Pre-treating agent for dephosphorization in molten iron
JP2856106B2 (en) Hot metal desulfurization method
JPS5910974B2 (en) Method for dephosphorizing hot metal
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPS6121285B2 (en)
JP3508550B2 (en) Hot metal desulfurization method
JPS6247417A (en) Melt refining method for scrap
EP0097971B1 (en) Method for producing low hydrogen content in steels produced by subsurface pneumatic refining
JPS6212301B2 (en)
JP3531480B2 (en) Hot metal dephosphorization method
JPH111714A (en) Steelmaking method
JP2002212615A (en) Method for dephosphorizing molten iron