JPH0557300A - Extra pure water producing apparatus - Google Patents

Extra pure water producing apparatus

Info

Publication number
JPH0557300A
JPH0557300A JP3223944A JP22394491A JPH0557300A JP H0557300 A JPH0557300 A JP H0557300A JP 3223944 A JP3223944 A JP 3223944A JP 22394491 A JP22394491 A JP 22394491A JP H0557300 A JPH0557300 A JP H0557300A
Authority
JP
Japan
Prior art keywords
water
raw water
heat
ultrapure water
ultrapure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3223944A
Other languages
Japanese (ja)
Inventor
Hideaki Kurokawa
秀昭 黒川
Takayuki Matsumoto
隆行 松本
Toshio Sawa
俊雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3223944A priority Critical patent/JPH0557300A/en
Publication of JPH0557300A publication Critical patent/JPH0557300A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an extra pure water producing apparatus for drastically reducing an organic component and being excellent in energy efficiency. CONSTITUTION:In this apparatus, a degassing part 101, a film distillation parts 102 and 103, a condensating part 104, an organic material removing part 105 and a heat exchanger 106 are provided, and an organic material in an original water, before the degassing and the film distillation, is decomposed at the organic material removing part 105. As a heat source, waster heat of a generating set is used. Thus, an extrapure water containing only a minute organic compd. content can be obtained. And, as waste heat from the generating set is able to be utilized for latent heat being necessary in the phase conversion, a highly efficient usage of energy is available and so, an inexpensive production of extrapure water having high purity becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体(LSI),ディ
スクおよびその他の電子部品の洗浄に用いる超純水製造
装置に係り、特に、有機性不純物(TOC成分)が極め
て少ない超純水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrapure water production system used for cleaning semiconductors (LSI), disks and other electronic parts, and more particularly to an ultrapure water production system in which organic impurities (TOC components) are extremely small. Regarding

【0002】[0002]

【従来の技術】従来、半導体等の洗浄に用いる超純水
は、逆浸透膜,イオン交換樹脂,紫外線酸化・殺菌灯,
限外ろ過膜等の機器により製造されてきたが、発明者ら
は、洗浄・乾燥後に不純物が被洗浄物上に残らないとい
うニーズより、特開昭63−305917号公報に開示のよう
に、原水を蒸発させ、発生した水蒸気を疎水性多孔質膜
でろ過することにより、水蒸気の同伴するミストを除去
した後、凝縮させることで、高純度水を得る超純水製造
方法を考案した。図3に、本方法の原理を示す。本装置
は脱気部301と膜蒸留部302とから構成される。原
水303は、まず、脱気部301に送られ、加熱脱気さ
れる。本脱気部301で、原水中に含まれる揮発性成
分、例えば、酸素,二酸化炭素,揮発性有機物が水蒸気
とともに除去される。揮発成分が除去された原水は、次
に、膜蒸留部302に送られ再度、加熱される。ここ
で、気相に存在するのは水蒸気とミストのみとなる。さ
らに、この水蒸気を疎水性多孔質膜304でろ過するこ
とにより、水蒸気に同伴するミストは完全に除去され
る。このようにして、高純度の水蒸気が得られ、この水
蒸気を凝縮面305上で凝縮することにより、超純水3
06が生成できる。図4はさらに、造水コストの低減を
図るために、多重効用化した装置の系統を示す。本装置
も脱気部401と膜蒸留部402とから構成されてお
り、この場合は膜蒸留部で三重効用になっている。原水
403は最終段より発生する水蒸気の凝縮熱を回収した
後、脱気部401に送られる。脱気部401で発生した
水蒸気は膜蒸留部第一段の凝縮部404に送られて凝縮
する。ここで、発生する凝縮熱は膜蒸留部第一段の原水
の蒸発に使用され、第一段から水蒸気が発生する。この
操作を順次繰り返し、最終的には膜蒸留部第三段から発
生した水蒸気を凝縮器405にて凝縮させることで、一
度の熱の入力で、三回生成水が得られる構成になってい
る。各段から生成した超純水はまとめられて超純水出口
406から得られる。
2. Description of the Related Art Conventionally, ultrapure water used for cleaning semiconductors, etc. has been manufactured by using a reverse osmosis membrane, an ion exchange resin, an ultraviolet oxidation / sterilization lamp
Although it has been produced by a device such as an ultrafiltration membrane, the inventors of the present invention, as disclosed in JP-A-63-305917, from the need that impurities do not remain on the object to be cleaned after cleaning and drying, A method for producing ultrapure water was devised in which high-purity water is obtained by evaporating raw water and filtering the generated water vapor with a hydrophobic porous membrane to remove mist accompanied by water vapor and then condensing it. FIG. 3 shows the principle of this method. This apparatus comprises a degassing section 301 and a membrane distillation section 302. The raw water 303 is first sent to the degassing section 301 and is heated and degassed. In the degassing section 301, volatile components contained in the raw water, such as oxygen, carbon dioxide, and volatile organic substances, are removed together with water vapor. The raw water from which the volatile components have been removed is then sent to the membrane distillation unit 302 and heated again. Here, only water vapor and mist are present in the gas phase. Furthermore, by filtering this water vapor with the hydrophobic porous membrane 304, the mist accompanying the water vapor is completely removed. In this way, high-purity steam is obtained, and by condensing this steam on the condensing surface 305, the ultrapure water 3
06 can be generated. FIG. 4 further shows a system of a multi-use device for reducing the cost of water production. This apparatus also comprises a degassing section 401 and a membrane distillation section 402, and in this case, the membrane distillation section has a triple effect. The raw water 403 is sent to the deaerator 401 after recovering the condensation heat of the steam generated from the final stage. The water vapor generated in the degassing section 401 is sent to the condenser section 404 in the first stage of the membrane distillation section and condensed. Here, the generated heat of condensation is used for evaporation of raw water in the first stage of the membrane distillation section, and steam is generated from the first stage. By repeating this operation in sequence and finally condensing the steam generated from the third stage of the membrane distillation section in the condenser 405, the generated water can be obtained three times with one heat input. .. The ultrapure water generated from each stage is collected and obtained from the ultrapure water outlet 406.

【0003】[0003]

【発明が解決しようとする課題】従来より超純水の水質
は、比抵抗,微粒子,生菌,TOC,シリカ,DO等の
項目により評価されているが、各評価項目ともppbか
らpptレベルの濃度まで低減されており、優位差がわ
からない状況にある。そのなかで不純物量として最も多
いのがTOC(全有機炭素)であり、現状最高級レベル
の超純水でもppbレベルの不純物を含んでいる。従来法
では、原水中の有機成分を除去する手段が無いため、原
水中に含まれる揮発性の有機物は生成水中に放散し、再
度溶解することで混入するという問題があった。また、
本方法では、相変化(蒸留操作)を伴うため、エネルギ
として熱を大量に必要とする。従って、従来、図4に示
すように多重効用化を図ることにより、エネルギの低減
を図っている、このように従来技術では、TOCと熱エ
ネルギの低減という二つの課題があった。
Conventionally, the water quality of ultrapure water has been evaluated by items such as resistivity, fine particles, viable bacteria, TOC, silica, DO, etc., but each evaluation item is from ppb to ppt level. It has been reduced to the concentration, and it is in a situation where the superiority difference cannot be seen. Among them, TOC (total organic carbon) has the largest amount of impurities, and even the currently highest grade ultrapure water contains ppb level impurities. In the conventional method, since there is no means for removing the organic components in the raw water, there is a problem that the volatile organic substances contained in the raw water are diffused into the produced water and are dissolved again to be mixed. Also,
Since this method involves a phase change (distillation operation), a large amount of heat is required as energy. Therefore, conventionally, the energy is reduced by achieving the multiple utility as shown in FIG. 4. As described above, the conventional technique has two problems of TOC and reduction of thermal energy.

【0004】[0004]

【課題を解決するための手段】これら課題のうちTOC
に関する課題は、原水中のTOC成分をあらかじめ前段
で除去しておくことで、すなわち、原水供給ラインに紫
外線によるTOCの酸化装置もしくは加熱による酸化装
置を設けることにより解決される。また、熱エネルギの
低減では、廃熱利用が効果的であり、特に、ガスタービ
ンやディーゼルエンジンの排ガスから超純水を作るため
の熱を得られる様にした。
[Means for Solving the Problems] TOC among these problems
The problem relating to the above can be solved by previously removing the TOC component in the raw water in the preceding stage, that is, by providing the raw water supply line with an oxidizing device for TOC by ultraviolet rays or an oxidizing device by heating. Further, in reducing heat energy, waste heat utilization is effective, and in particular, heat for producing ultrapure water from exhaust gas of a gas turbine or a diesel engine can be obtained.

【0005】[0005]

【作用】あらかじめ原水中のTOC成分を分解させ、そ
の後に蒸留操作を行うことにより、TOC成分の少ない
原水を処理するので、TOC成分の少ない生成水を得る
ことができる。また、蒸留に用いる熱として自家発電等
に用いるガスタービンやディーゼルエンジン等の排熱を
利用することにより、超純水を使用する工場等、例え
ば、半導体工場やデイスク工場の電力を供給すると同時
に超純水を供給することが可能となり、高効率にエネル
ギを利用することが可能となる。
The TOC component in the raw water is decomposed in advance, and then the distillation operation is performed to treat the raw water having a small TOC component, so that the produced water having a small TOC component can be obtained. In addition, by using the exhaust heat of the gas turbine or diesel engine used for private power generation as the heat used for distillation, it is possible to supply power to a factory that uses ultrapure water, such as a semiconductor factory or a disk factory, at the same time. Pure water can be supplied, and energy can be used with high efficiency.

【0006】[0006]

【実施例】図1および図2を用いて、本発明を説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIGS.

【0007】図1に本発明の超純水製造装置の系統図を
示す。本装置は脱気部101,膜蒸留部102,10
3,凝縮部104,有機物除去部105,熱交換部10
6を含み、本実施例では膜蒸留部に関して二重効用にな
っている。原水107は最終段より発生する水蒸気の凝
縮熱を凝縮部の冷却水として回収した後、熱交換部106
により加熱され、さらに、有機物除去部105で高温,
高圧の環境下で原水中に含まれる有機物が分解される。
ここで、有機物除去部105では温度200℃以上、圧
力15.9 気圧以上の条件になる。なお、この条件下で
有機物が酸化されやすい様に、あらかじめ原水中に薬液
注入部108より酸化剤、例えば、過酸化水素や過硫酸
カリウム等を混入させておく。有機物除去部105で有
機物が分解された高温の原水は、熱交換部106で有機
物除去部105の原水との間で熱交換して温度が低下し
た後、脱気部101に送られる。脱気部101内の熱交
換部109に供給された原水は、脱気部101内の原水
に熱を与えて水蒸気110を発生させた後、脱気部10
1の原水として供給される。ここで、脱気部101での
熱供給源は熱交換部106からの出口水のみしか記入さ
れていないが、脱気部101内に別の加熱源を設置する
ことも可能である。脱気部101内で発生した水蒸気1
10は膜蒸留部102の熱交換部111に送られ、原水
の加熱源となる。脱気部101内で脱気された原水11
2は、膜蒸留部102の原水側に送られる。膜蒸留部1
02では、再度、蒸留操作が行われる。膜蒸留部102
では、原水中の揮発成分が脱気部101で除去されてい
るため、水蒸気中に含まれる不純物はミスト(細かい水
滴)のみとなる。このミストを疎水性多孔質膜113に
より除去することで、高純度の水蒸気114を製造する
ことが可能になる。この水蒸気は膜蒸留部103の熱交
換部115で凝縮し、超純水として系外に取り出され
る。この水蒸気の凝縮熱を利用して、膜蒸留部103で
は、再度、原水が蒸発し、発生した水蒸気が凝縮部10
4で、供給原水107により凝縮し、超純水116が得
られる。ここで、従来の方法では、膜蒸留部102,1
03で原水中の揮発性有機物を除去することができず、
生成超純水中に有機物が、かなり混入することがあった
が、原水中の有機物成分を前段で分解させることによ
り、生成超純水中の有機物量(TOC)を大幅に低減す
ることができる。本実施例では、有機物分解方法が加熱
方法であり、膜蒸留部が二重効用の際の例を示したが、
紫外線による分解,三重,四重効用でも問題は無い。
FIG. 1 shows a system diagram of the ultrapure water production system of the present invention. This apparatus comprises a degassing section 101, a membrane distillation section 102, 10
3, condensation section 104, organic matter removal section 105, heat exchange section 10
6 is included, and in this embodiment, the membrane distillation section has a double effect. The raw water 107 collects the heat of condensation of the steam generated from the final stage as cooling water for the condenser, and then the heat exchanger 106.
And is heated by the organic matter removing unit 105,
Organic matter contained in raw water is decomposed under high pressure environment.
Here, in the organic substance removing section 105, the temperature is 200 ° C. or higher and the pressure is 15.9 atm or higher. It should be noted that an oxidizing agent such as hydrogen peroxide or potassium persulfate is previously mixed into the raw water from the chemical liquid injecting unit 108 so that the organic matter is easily oxidized under this condition. The high temperature raw water in which the organic matter is decomposed in the organic matter removing unit 105 exchanges heat with the raw water in the organic matter removing unit 105 in the heat exchange unit 106 to lower the temperature, and then is sent to the degassing unit 101. The raw water supplied to the heat exchange unit 109 in the degassing unit 101 heats the raw water in the degassing unit 101 to generate steam 110, and then the degassing unit 10
It is supplied as raw water of 1. Here, only the outlet water from the heat exchange section 106 is entered as the heat supply source in the degassing section 101, but it is also possible to install another heating source in the degassing section 101. Water vapor 1 generated in the deaerator 101
10 is sent to the heat exchange section 111 of the membrane distillation section 102 and serves as a heat source for raw water. Raw water 11 deaerated in the deaeration unit 101
2 is sent to the raw water side of the membrane distillation unit 102. Membrane distillation section 1
In 02, the distillation operation is performed again. Membrane distillation unit 102
Then, since the volatile components in the raw water have been removed by the degassing unit 101, the impurities contained in the water vapor are only mist (fine water droplets). By removing this mist with the hydrophobic porous film 113, it is possible to produce high-purity water vapor 114. This steam is condensed in the heat exchange section 115 of the membrane distillation section 103 and taken out of the system as ultrapure water. Utilizing the heat of condensation of the steam, the raw water is evaporated again in the membrane distillation unit 103, and the generated steam causes the generated steam to condense.
At 4, the raw water 107 is condensed to obtain ultrapure water 116. Here, in the conventional method, the membrane distillation units 102, 1
In 03, it was not possible to remove volatile organic substances in raw water,
Although organic substances were often mixed in the generated ultrapure water, the amount of organic substances (TOC) in the generated ultrapure water can be significantly reduced by decomposing the organic component in the raw water in the previous stage. .. In this example, the organic substance decomposition method is a heating method, and the example in which the membrane distillation section has a double effect was shown.
There is no problem with decomposition by UV, triple or quadruple effects.

【0008】図2は本発明に係る超純水装置の熱供給手
段の一例を示す。本例はガスタービン部201と排熱回
収部202および蒸留法による超純水製造装置203と
から構成される。空気204は圧縮部205により加圧
され、燃焼部206に送られる。燃焼部206では燃料
207が圧縮空気208により燃焼し、その燃焼ガス2
09によりタービン210を回転させる。タービン21
0に発電機211が接続されており、タービン210の
回転エネルギを電気に変換する。タービン210から排出
される排ガス212は排熱回収部202に送られ、原水
213から水蒸気等を発生させることにより、熱エネル
ギを回収する。回収された熱エネルギ214は、蒸留型
超純水製造装置203の熱源として用いられる。本実施
例では、ガスタービンを用いているが、ディーゼルエン
ジン等を使用すること、さらに、排熱回収部を設けず
に、排ガスをそのまま超純水装置へ送ることもできる。
FIG. 2 shows an example of heat supply means of the ultrapure water system according to the present invention. This example comprises a gas turbine section 201, an exhaust heat recovery section 202, and an ultrapure water production system 203 by a distillation method. The air 204 is pressurized by the compression unit 205 and sent to the combustion unit 206. In the combustion unit 206, the fuel 207 is combusted by the compressed air 208, and the combustion gas 2
The turbine 210 is rotated by 09. Turbine 21
The generator 211 is connected to 0, and converts the rotational energy of the turbine 210 into electricity. Exhaust gas 212 discharged from the turbine 210 is sent to the exhaust heat recovery unit 202 and recovers thermal energy by generating steam or the like from the raw water 213. The recovered thermal energy 214 is used as a heat source for the distillation type ultrapure water producing apparatus 203. Although a gas turbine is used in this embodiment, a diesel engine or the like may be used, and the exhaust gas may be sent to the ultrapure water device as it is without providing an exhaust heat recovery unit.

【0009】[0009]

【発明の効果】本発明によれば、有機物量(TOC)の
少ない超純水を得ることができ、相変化に必要な潜熱を
発電機器からの排熱を利用することで、エネルギの高効
率な利用を行うことができ、高純度で安価な超純水の製
造が可能になる。
According to the present invention, ultrapure water with a small amount of organic matter (TOC) can be obtained, and the latent heat required for phase change can be utilized by using the exhaust heat from the power generating equipment to achieve high energy efficiency. Therefore, ultrapure water of high purity and inexpensive can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超純水製造装置の系統図。FIG. 1 is a system diagram of an ultrapure water production system according to the present invention.

【図2】本発明に係る超純水装置の熱供給手段の一例を
示す系統図。
FIG. 2 is a system diagram showing an example of heat supply means of the ultrapure water system according to the present invention.

【図3】従来の超純水製造装置の原理を示すブロック
図。
FIG. 3 is a block diagram showing the principle of a conventional ultrapure water production system.

【図4】従来の超純水製造装置の系統図。FIG. 4 is a system diagram of a conventional ultrapure water production system.

【符号の説明】[Explanation of symbols]

101…脱気部、102,103…膜蒸留部、104…
凝縮部、105…有機物除去部、106…熱交換部、1
13…疎水性多孔質膜。
101 ... Deaeration section, 102, 103 ... Membrane distillation section, 104 ...
Condensing part, 105 ... Organic matter removing part, 106 ... Heat exchange part, 1
13 ... Hydrophobic porous membrane.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/20 A 9262−4D // C02F 1/72 Z 9045−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C02F 1/20 A 9262-4D // C02F 1/72 Z 9045-4D

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】原水を蒸発させ、発生した水蒸気を疎水性
多孔質膜でろ過することにより、水蒸気の同伴するミス
トを除去した後、凝縮させることで、高純度水を得る超
純水製造装置において、蒸発する前の原水系に水中の有
機物を除去する手段を設けたことを特徴とする超純水製
造装置。
1. An ultrapure water production apparatus for obtaining high-purity water by evaporating raw water and filtering generated steam with a hydrophobic porous membrane to remove mist accompanied by steam and then condensing the mist. 2. An ultrapure water production system, characterized in that the raw water system before evaporation is provided with means for removing organic matter in the water.
【請求項2】請求項1において、前記有機物除去手段に
加熱装置を用い、前記加熱装置から出た後の原水と、前
記加熱装置に入る前の原水との間で熱交換する超純水製
造装置。
2. The ultrapure water production according to claim 1, wherein a heating device is used as the organic substance removing means, and heat is exchanged between the raw water that has exited from the heating device and the raw water that has not entered the heating device. apparatus.
【請求項3】請求項1において、前記有機物除去手段
に、加熱装置を用い、前記加熱装置によって加熱された
原水の持つ熱によって原水を蒸発させる超純水製造装
置。
3. The apparatus for producing ultrapure water according to claim 1, wherein a heating device is used as the organic substance removing means, and the raw water is evaporated by the heat of the raw water heated by the heating device.
【請求項4】原水を蒸発させ、発生した水蒸気を疎水性
多孔質膜でろ過することにより、水蒸気の同伴するミス
トを除去した後、凝縮させることで、高純度水を得る超
純水製造装置において、前記原水の蒸発に用いる熱源と
して、発電装置の排ガスの余熱を用いる超純水製造装
置。
4. An ultrapure water producing apparatus for obtaining high-purity water by evaporating raw water and filtering generated steam with a hydrophobic porous membrane to remove mist accompanied by steam and then condensing the mist. 3. An ultrapure water production system using residual heat of exhaust gas from a power generator as a heat source used for evaporation of the raw water.
【請求項5】請求項4において、蒸発する前の前記原水
系に水中の有機物を除去する手段を設けた超純水製造装
置。
5. The apparatus for producing ultrapure water according to claim 4, wherein the raw water system before evaporation is provided with a means for removing organic substances in the water.
JP3223944A 1991-09-04 1991-09-04 Extra pure water producing apparatus Pending JPH0557300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223944A JPH0557300A (en) 1991-09-04 1991-09-04 Extra pure water producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223944A JPH0557300A (en) 1991-09-04 1991-09-04 Extra pure water producing apparatus

Publications (1)

Publication Number Publication Date
JPH0557300A true JPH0557300A (en) 1993-03-09

Family

ID=16806151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223944A Pending JPH0557300A (en) 1991-09-04 1991-09-04 Extra pure water producing apparatus

Country Status (1)

Country Link
JP (1) JPH0557300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018127A1 (en) * 1993-02-03 1994-08-18 Kurita Water Industries Ltd. Pure water manufacturing method
KR101870350B1 (en) * 2017-03-23 2018-06-22 국민대학교산학협력단 Multistage immersion type membrane distillation water treatment apparatus and a resource recovery method using the same
US10239770B2 (en) 2016-04-29 2019-03-26 Kookmin University Industry Academy Cooperation Foundation Multi-stage submerged membrane distillation water treatment apparatus
JP2020192495A (en) * 2019-05-28 2020-12-03 株式会社ササクラ Membrane distillation type distillation apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018127A1 (en) * 1993-02-03 1994-08-18 Kurita Water Industries Ltd. Pure water manufacturing method
US5571419A (en) * 1993-02-03 1996-11-05 Kurita Water Insustries Ltd. Method of producing pure water
US10239770B2 (en) 2016-04-29 2019-03-26 Kookmin University Industry Academy Cooperation Foundation Multi-stage submerged membrane distillation water treatment apparatus
US10766794B2 (en) 2016-04-29 2020-09-08 Kookmin University Industry Academy Cooperation Foundation Resource recovery method using desalination water treatment apparatus
KR101870350B1 (en) * 2017-03-23 2018-06-22 국민대학교산학협력단 Multistage immersion type membrane distillation water treatment apparatus and a resource recovery method using the same
JP2020192495A (en) * 2019-05-28 2020-12-03 株式会社ササクラ Membrane distillation type distillation apparatus

Similar Documents

Publication Publication Date Title
US7531096B2 (en) System and method of reducing organic contaminants in feed water
JP3526582B2 (en) Distillation process with reduced fouling
JP2768732B2 (en) Heat degassing ultrapure water equipment
JP2012525529A (en) Power plant and water treatment plant with CO2 capture
JPH10323664A (en) Wastewater-recovering apparatus
AU2009278708A1 (en) Desalination device and system for re-utilizing oil-contaminated water
JP2014144940A (en) NMP purification system
JP2520317B2 (en) Ultrapure water production apparatus and method
JPH0557300A (en) Extra pure water producing apparatus
KR20150060723A (en) Method for recovering process wastewater from a steam power plant
US20040074850A1 (en) Integrated energy recovery system
JP3194123B2 (en) Ultrapure water production and wastewater treatment method for closed system
JP2005066544A (en) Method for recovering monoethanolamine
KR20020022752A (en) A Wastewater Evaporator Equipment for uni-process using Vapor Compressor with Low Teperature Vaporizing
JPH1047015A (en) Generation and sea water desalting combined device
JP2629576B2 (en) Organic exhaust treatment equipment
JP4074379B2 (en) Recycling apparatus and recycling method
JPH0221571A (en) Water treatment unit of fuel cell
JP2018065098A (en) Processing method and processing device for amine-containing drainage water
JPS6193897A (en) Apparatus for making ultra-pure water
JP3482594B2 (en) Distillation method pure water production equipment
JP4652093B2 (en) Energy recovery system and energy recovery method
JP2952741B2 (en) Pure water production system for fuel cell power plant
JP3262949B2 (en) Low-concentration organic wastewater treatment equipment
JP2000012055A (en) Fuel cell power generating facility