JPH055722A - Method for detecting air/fuel ratio - Google Patents

Method for detecting air/fuel ratio

Info

Publication number
JPH055722A
JPH055722A JP3158905A JP15890591A JPH055722A JP H055722 A JPH055722 A JP H055722A JP 3158905 A JP3158905 A JP 3158905A JP 15890591 A JP15890591 A JP 15890591A JP H055722 A JPH055722 A JP H055722A
Authority
JP
Japan
Prior art keywords
oxygen
fuel ratio
air
current
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3158905A
Other languages
Japanese (ja)
Other versions
JP3048256B2 (en
Inventor
Tetsumasa Yamada
哲正 山田
Toshiaki Kondo
稔明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP3158905A priority Critical patent/JP3048256B2/en
Publication of JPH055722A publication Critical patent/JPH055722A/en
Application granted granted Critical
Publication of JP3048256B2 publication Critical patent/JP3048256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable a detection accuracy and a responsiveness to be improved simultaneously in a method for detecting an air/fuel ratio using an air/fuel ratio sensor which is equipped with an oxygen pump element and an oxygen light an darkness battery element. CONSTITUTION:An air/fuel ratio sensor which is provided with an oxygen pump element which supplies oxygen to a measurement gas chamber and unloads oxygen from it and an oxygen light and darkness battery element which generates a voltage corresponding to oxygen concentration of the measurement gas chamber is used and a rectangular current with two types of alternate currents, namely a current of 200muA in positive direction for unloading oxygen from the measurement gas chamber and a current which has a larger absolute value than it which is 300muA in negative direction for supplying oxygen to the measurement gas chamber, is supplied to the above oxygen pump element. A duty ratio of the rectangular current is adjusted so that a generation voltage of an oxygen light and darkness battery element reaches a specified value and the air/fuel ratio is detected based on the duty ratio after adjustment. A veneration voltage of the oxygen light and darkness battery becomes a waveform which is symmetrical left and right and response can be improved by increasing frequency of the rectangular current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関等の各種燃焼
機器において、排気中の酸素濃度に対応した信号を発生
する酸素センサを用いて空燃比を検出する空燃比検出方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio detecting method for detecting the air-fuel ratio in various combustion equipment such as an internal combustion engine by using an oxygen sensor which generates a signal corresponding to the oxygen concentration in exhaust gas.

【0002】[0002]

【従来の技術】従来より内燃機関等の空燃比を検出する
方法として、通電される電気量に対応した量の酸素を測
定ガス室に給排する酸素ポンプ素子と、測定ガス室の酸
素濃度と基準となる酸素濃度(例えば大気中の酸素濃
度)との比に対応した電圧を発生する酸素濃淡電池素子
と、を備えた空燃比センサを用いる方法が知られてい
る。この方法は酸素濃淡電池素子の発生電圧が所定値と
なるように酸素ポンプ素子への通電電流を調節し、調節
後の電流値に基づいて空燃比を検出するものである。
2. Description of the Related Art Conventionally, as a method of detecting an air-fuel ratio of an internal combustion engine, etc., an oxygen pump element for supplying / discharging an amount of oxygen corresponding to the amount of electricity supplied to the measuring gas chamber, A method using an air-fuel ratio sensor including an oxygen concentration battery element that generates a voltage corresponding to a ratio with a reference oxygen concentration (for example, oxygen concentration in the atmosphere) is known. In this method, the current supplied to the oxygen pump element is adjusted so that the generated voltage of the oxygen concentration cell element becomes a predetermined value, and the air-fuel ratio is detected based on the adjusted current value.

【0003】例えばガソリンエンジンの排気管内に設置
されるジルコニアを主体とした固体電解質を用いた酸素
濃淡電池素子には、エンジンが理論空燃比で駆動されて
いるとき所定値の電圧を発生するものがある。この種の
酸素濃淡電池素子を備えた空燃比センサでは、酸素濃淡
電池素子の発生電圧がその所定値となるように酸素ポン
プ素子への通電電流を調節し、このときの通電電流が測
定ガス室へ酸素を供給する負方向であるか、測定ガス室
から酸素を排出する正方向であるかによって空燃比がリ
ッチであるかリーンであるかを、その通電電流の大きさ
によってリッチ若しくはリーンである度合を知ることが
できる。
For example, an oxygen concentration battery element using a solid electrolyte mainly composed of zirconia installed in an exhaust pipe of a gasoline engine is one that generates a voltage of a predetermined value when the engine is driven at a stoichiometric air-fuel ratio. is there. In an air-fuel ratio sensor equipped with this type of oxygen concentration battery element, the current supplied to the oxygen pump element is adjusted so that the generated voltage of the oxygen concentration battery element reaches its predetermined value. Whether the air-fuel ratio is rich or lean, depending on whether it is the negative direction for supplying oxygen to the negative direction or the positive direction for discharging oxygen from the measurement gas chamber, is rich or lean depending on the magnitude of the energizing current. You can know the degree.

【0004】[0004]

【発明が解決しようとする課題】ところがこのように酸
素ポンプ素子に通電する電流の電流値に基づいて空燃比
を検出する場合、電流値として得られた値に複雑な変換
を施して空燃比を算出する必要があり、装置の構成が複
雑になると共に検出精度の向上に限界があった。
However, when the air-fuel ratio is detected based on the current value of the current flowing through the oxygen pump element in this way, the value obtained as the current value is subjected to complicated conversion to obtain the air-fuel ratio. It is necessary to calculate, the structure of the device becomes complicated, and there is a limit to improvement of detection accuracy.

【0005】そこで酸素ポンプ素子への通電電流を、負
方向と正方向との、予め設定された二種類の電流値が交
番する矩形電流とし、酸素濃淡電池素子の発生電圧が所
定値となるようにその矩形電流のデューティ比を調節
し、そのデューティ比に基づいて空燃比を検出する方法
が考えられる。この場合、矩形電流のデューティ比から
空燃比を算出する処理はワンチップマイクロコンピュー
タを用いてソフトウェアで行うことができ、検出装置の
構成を簡単にすると共に検出精度を向上させることがで
きる。
Therefore, the current supplied to the oxygen pump element is set to a rectangular current in which two kinds of preset current values in the negative direction and the positive direction alternate, so that the generated voltage of the oxygen concentration battery element becomes a predetermined value. Another possible method is to adjust the duty ratio of the rectangular current and detect the air-fuel ratio based on the duty ratio. In this case, the process of calculating the air-fuel ratio from the duty ratio of the rectangular current can be performed by software using a one-chip microcomputer, and the configuration of the detection device can be simplified and the detection accuracy can be improved.

【0006】図4は、理論空燃比で駆動されているガソ
リンエンジンの排気管に空燃比センサを設置し、+20
0μAおよび−200μAの電流値が、周波数1Hz,
デューティ比0.5で交番する矩形電流を、酸素ポンプ
素子に通電した場合の、矩形電流の波形および酸素濃淡
電池素子の発生電圧をそれぞれ表している。尚、図にお
いて矩形電流の電流値は正方向を+として描いている。
また酸素濃淡電池素子はガソリンエンジンが理論空燃比
で駆動されているとき、その排気管内の酸素濃度に対し
て450mVの電圧を発生するものである。
In FIG. 4, an air-fuel ratio sensor is installed in the exhaust pipe of a gasoline engine driven at the stoichiometric air-fuel ratio,
Current values of 0 μA and −200 μA are
The waveform of the rectangular current and the generated voltage of the oxygen concentration battery element when a rectangular current alternating with a duty ratio of 0.5 is applied to the oxygen pump element are shown. In the figure, the current value of the rectangular current is drawn as + in the positive direction.
Further, the oxygen concentration cell element generates a voltage of 450 mV with respect to the oxygen concentration in the exhaust pipe when the gasoline engine is driven at the stoichiometric air-fuel ratio.

【0007】図に示すように矩形電流が−200μAと
なり酸素が測定ガス室へ供給されると、測定ガス室内の
酸素濃度が上昇して基準酸素濃度との差が少なくなるた
め、酸素濃淡電池素子の発生電圧が低下する。続いて矩
形電流が+200μAとなり酸素が測定ガス室から排出
されると、測定ガス室内の酸素濃度が低下して基準酸素
濃度との差が拡大するため、酸素濃淡電池素子の発生電
圧が上昇する。そして再び矩形電流が−200μAとな
って酸素濃淡電池素子の発生電圧が低下するといった挙
動が周期的に繰り返され、酸素濃淡電池素子の発生電圧
は理論空燃比近傍における起電力を発生し、数百mVの
幅で振動するようになる。
As shown in the figure, when the rectangular current becomes -200 μA and oxygen is supplied to the measurement gas chamber, the oxygen concentration in the measurement gas chamber rises and the difference from the reference oxygen concentration decreases, so that the oxygen concentration cell element is reduced. Generated voltage decreases. Then, when the rectangular current becomes +200 μA and oxygen is discharged from the measurement gas chamber, the oxygen concentration in the measurement gas chamber decreases and the difference from the reference oxygen concentration increases, so that the generated voltage of the oxygen concentration battery element increases. Then, the rectangular current again becomes −200 μA, and the behavior that the generated voltage of the oxygen concentration battery element decreases is periodically repeated, and the generated voltage of the oxygen concentration battery element generates an electromotive force in the vicinity of the stoichiometric air-fuel ratio, It comes to vibrate in the width of mV.

【0008】ところがこの場合、以下に述べる理由によ
り酸素濃淡電池素子の発生電圧の変化は下降するときよ
りも上昇するときの方が急峻となる。即ち、炭化水素,
水素,CO等の未燃ガスは分子量が小さくガス拡散制限
部を介して測定ガス室内に侵入し易い。このため負方向
の電流によって測定ガス室内に供給された酸素は、一部
がこれら未燃ガスとの酸化反応によって消費されるの
で、酸素濃淡電池による発生電圧の降下が鈍化するので
ある。
In this case, however, the change in the generated voltage of the oxygen concentration battery element becomes steeper when it rises than when it falls, for the reasons described below. That is, hydrocarbons,
An unburned gas such as hydrogen or CO has a small molecular weight and easily enters the measurement gas chamber through the gas diffusion limiting section. Therefore, the oxygen supplied to the measurement gas chamber by the negative current is partially consumed by the oxidation reaction with these unburned gases, so that the drop in the voltage generated by the oxygen concentration cell is slowed down.

【0009】一方デューティ比に基づいて空燃比を検出
する場合、検出結果は矩形電流の一周期毎にしか得られ
ないので、検出の応答性を向上させるためには周波数を
高くする必要がある。ところが、このように酸素濃淡電
池素子の電圧波形が非対称である場合、周波数を所定値
以上に高くすると酸素濃淡電池素子の発生電圧は電圧が
高い方向へ大きくずれてしまうことがあった。
On the other hand, when the air-fuel ratio is detected on the basis of the duty ratio, the detection result can be obtained only for each cycle of the rectangular current. Therefore, it is necessary to increase the frequency in order to improve the detection response. However, when the voltage waveform of the oxygen concentration battery element is asymmetric as described above, the generated voltage of the oxygen concentration battery element sometimes deviates greatly in the direction of higher voltage when the frequency is increased above a predetermined value.

【0010】図5に、矩形電流の周波数を40Hzとし
た点を除いてはすべて図4と同様の条件で測定した矩形
電流の波形および酸素濃淡電池素子の発生電圧を例示す
る。この場合、酸素濃淡電池素子の発生電圧は600m
V近傍を小刻みに振動する。これは矩形電流の周波数が
あまり高いと正方向の電流によって測定ガス室から排出
されるだけの酸素量を負方向電流によって供給しきれ
ず、測定ガス室内の酸素濃度が排気管内の酸素濃度より
も低くなってしまうためと考えられ、この結果ガソリン
エンジンの空燃比があたかもリッチであるかのような検
出結果が得られるのである。このため、酸素ポンプ素子
の通電電流のデューティ比に基づいて空燃比を検出する
方法では検出の応答性を向上させることが困難であっ
た。
FIG. 5 exemplifies the waveform of the rectangular current and the generated voltage of the oxygen concentration cell device, which were measured under the same conditions as in FIG. 4 except that the frequency of the rectangular current was 40 Hz. In this case, the generated voltage of the oxygen concentration battery element is 600 m
It vibrates in the vicinity of V in small steps. If the frequency of the rectangular current is too high, the amount of oxygen exhausted from the measurement gas chamber cannot be supplied by the negative direction current due to the positive direction current, and the oxygen concentration in the measurement gas chamber is lower than the oxygen concentration in the exhaust pipe. It is considered that the air-fuel ratio of the gasoline engine is rich as a result of detection. Therefore, it is difficult to improve the detection responsiveness by the method of detecting the air-fuel ratio based on the duty ratio of the current supplied to the oxygen pump element.

【0011】そこで本発明は、酸素ポンプ素子および酸
素濃淡電池素子を備えた空燃比センサを用いて空燃比を
検出する方法において、検出精度および応答性を共に向
上させることを目的としてなされた。
Therefore, the present invention has been made for the purpose of improving both detection accuracy and responsiveness in a method of detecting an air-fuel ratio using an air-fuel ratio sensor equipped with an oxygen pump element and an oxygen concentration cell element.

【0012】[0012]

【課題を解決するための手段】上記目的を達するために
なされた本発明は、ガス拡散制限部を介して測定ガス雰
囲気と連通する測定ガス室と、通電される電気量に対応
した量の酸素を該測定ガス室に給排する酸素ポンプ素子
と、該測定ガス室の酸素濃度と基準となる酸素濃度との
比に対応した電圧を発生する酸素濃淡電池素子と、を備
えた空燃比センサを用いて空燃比を検出する空燃比検出
方法において、上記測定ガス室から酸素を排出する正方
向の電流値と、該電流値より大きな絶対値を有しかつ上
記測定ガス室へ酸素を供給する負方向の電流値との、二
種類の電流値が交番する矩形電流を上記酸素ポンプ素子
に通電し、上記酸素濃淡電池素子の発生電圧が所定値と
なるように該矩形電流のデューティ比を調節し、上記矩
形電流の調節後のデューティ比に基づいて空燃比を検出
することを特徴とする空燃比検出方法、を要旨としてい
る。
SUMMARY OF THE INVENTION The present invention, which has been made to achieve the above object, comprises a measuring gas chamber communicating with a measuring gas atmosphere through a gas diffusion limiting section, and oxygen in an amount corresponding to the amount of electricity supplied. An air-fuel ratio sensor including an oxygen pump element for supplying and exhausting to and from the measurement gas chamber, and an oxygen concentration cell element for generating a voltage corresponding to the ratio of the oxygen concentration in the measurement gas chamber to a reference oxygen concentration. In an air-fuel ratio detecting method for detecting an air-fuel ratio using, a current value in the positive direction for discharging oxygen from the measurement gas chamber, and a negative value having an absolute value larger than the current value and supplying oxygen to the measurement gas chamber. Current value in the direction, a rectangular current in which two kinds of current values alternate is supplied to the oxygen pump element, and the duty ratio of the rectangular current is adjusted so that the generated voltage of the oxygen concentration battery element becomes a predetermined value. , After adjusting the rectangular current Air-fuel ratio detection method characterized by detecting the air-fuel ratio based on Yuti ratio, a is the gist.

【0013】[0013]

【作用】このように構成された本発明の空燃比検出方法
では、酸素濃淡電池素子の発生電圧が所定値となるよう
に酸素ポンプ素子に供給する矩形電流のデューティ比を
調節し、そのデューティ比に基づいて空燃比を検出して
いる。矩形電流のデューティ比から空燃比を算出する処
理はワンチップマイクロコンピュータを用いてソフトウ
ェアで行うことができるので、検出装置の構成を簡単に
すると共に検出精度を向上させることができる。
In the air-fuel ratio detecting method of the present invention thus constructed, the duty ratio of the rectangular current supplied to the oxygen pump element is adjusted so that the generated voltage of the oxygen concentration battery element becomes a predetermined value, and the duty ratio is adjusted. The air-fuel ratio is detected based on Since the process of calculating the air-fuel ratio from the duty ratio of the rectangular current can be performed by software using a one-chip microcomputer, the configuration of the detection device can be simplified and the detection accuracy can be improved.

【0014】また矩形電流を構成する負方向の電流値の
方が、正方向の電流値より絶対値において大きいので、
酸素濃淡電池素子の発生電圧は上昇するときと低下する
ときとの変化速度を略同じすることができる。このため
矩形電流の周波数を高くしたときに酸素濃淡電池素子の
発生電圧が高くなるのを防止することができる。
Since the negative current value forming the rectangular current is larger in absolute value than the positive current value,
The rate of change of the generated voltage of the oxygen concentration battery element when the voltage rises and when it decreases can be made substantially the same. Therefore, it is possible to prevent the generated voltage of the oxygen concentration battery element from increasing when the frequency of the rectangular current is increased.

【0015】[0015]

【実施例】以下本発明の実施例を図面と共に説明する。
図1は本発明が適用される実施例の空燃比検出装置を表
す概略構成図である。先ず空燃比センサ1は、固体電解
質基板3aの両側に多孔質電極3b,3cを形成した酸
素ポンプ素子3と、同じく固体電解質基板5aの両側に
多孔質電極5b,5cを形成した酸素濃淡電池素子5
と、これらの両素子3,5の間に積層されて測定ガス室
7を形成するスペーサ9とを備えている。そして、この
空燃比センサ1は図示せぬ内燃機関の排気系に取り付け
られる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an air-fuel ratio detection device of an embodiment to which the present invention is applied. First, the air-fuel ratio sensor 1 includes an oxygen pump element 3 having porous electrodes 3b and 3c formed on both sides of a solid electrolyte substrate 3a and an oxygen concentration cell element having porous electrodes 5b and 5c formed on both sides of the solid electrolyte substrate 5a. 5
And a spacer 9 which is laminated between these two elements 3 and 5 to form the measurement gas chamber 7. The air-fuel ratio sensor 1 is attached to the exhaust system of an internal combustion engine (not shown).

【0016】ここで、固体電解質基板3a,5aはイッ
トリア−ジルコニア固溶体から形成され、多孔質電極3
b,3c,5b,5cは、共素地としてのイットリア−
ジルコニア固溶体と残部白金から形成されている。尚、
上記固体電解質基板3a,5aの材料としては、イット
リア−ジルコニア固溶体の他に、カルシア−ジルコニア
固溶体が知られており、更に、二酸化セリウム、二酸化
トリウム、二酸化ハフニウムの各固溶体、ペロブスカイ
ト型固溶体、3価金属酸化物固溶体等が使用できる。
Here, the solid electrolyte substrates 3a and 5a are formed of a yttria-zirconia solid solution, and the porous electrode 3
b, 3c, 5b and 5c are yttria as a co-base
It is formed from a zirconia solid solution and the balance platinum. still,
As a material for the solid electrolyte substrates 3a and 5a, in addition to yttria-zirconia solid solution, calcia-zirconia solid solution is known. A metal oxide solid solution or the like can be used.

【0017】また、酸素濃淡電池素子5の外側の多孔質
電極5cを覆って、固体電解質からなる遮蔽体11が貼
り付けられている。一方スペーサ9の素材としては、ア
ルミナ、スピネル、フォルステライト、ステアタイト、
ジルコニア等が用いられる。また、測定ガス室7の内側
には、上記多孔質電極3c,5bが露出しており、更
に、スペーサ9の先端には、測定ガス室7と排気管内の
測定ガス雰囲気とを連通させるガス拡散孔13が設けら
れている。このガス拡散孔13には、アルミナからなる
多孔質の充填材15が詰められており、それによって、
測定ガスの測定ガス室7への流入等を律速するガス拡散
制限部17が形成される。
Further, a shield 11 made of a solid electrolyte is attached so as to cover the porous electrode 5c outside the oxygen concentration battery element 5. On the other hand, as the material of the spacer 9, alumina, spinel, forsterite, steatite,
Zirconia or the like is used. The porous electrodes 3c and 5b are exposed inside the measurement gas chamber 7, and the tip of the spacer 9 is a gas diffusion for communicating the measurement gas chamber 7 with the measurement gas atmosphere in the exhaust pipe. A hole 13 is provided. The gas diffusion holes 13 are filled with a porous filler material 15 made of alumina, whereby
A gas diffusion limiting portion 17 is formed to rate-control the inflow of the measurement gas into the measurement gas chamber 7.

【0018】次に酸素ポンプ素子3の多孔質電極3b,
3cの間には、リレー19の接点R1を介して直流電源
21が接続されると共に、それと並列にリレー19の接
点R2を介して直流電源23が接続されている。尚、接
点R1は通常閉じておりリレー19のソレノイドコイル
Lが励磁されると開く所謂b接点であり、一方接点R2
は通常開いておりソレノイドコイルLが励磁されると閉
じる所謂a接点である。またソレノイドコイルLには駆
動回路等を備えた電子制御回路ECUからの信号が入力
され、これによってリレー19が駆動される。
Next, the porous electrode 3b of the oxygen pump element 3 is
Between 3c, a DC power supply 21 is connected via a contact R1 of the relay 19, and a DC power supply 23 is connected in parallel with it via a contact R2 of the relay 19. The contact R1 is a so-called b contact that is normally closed and that opens when the solenoid coil L of the relay 19 is excited, while the contact R2 is one.
Is a so-called a contact which is normally open and is closed when the solenoid coil L is excited. A signal from an electronic control circuit ECU having a drive circuit and the like is input to the solenoid coil L, which drives the relay 19.

【0019】尚、直流電源23は多孔質電極3bから多
孔質電極3cに向かって200μAの電流を供給し、直
流電源21は多孔質電極3cから多孔質電極3bに向か
って300μAの電流を供給するものである。一方多孔
質電極5b,5cの間には、多孔質電極5cから多孔質
電極5bに向かって常時27.5μAの電流を供給する
直流電源25が接続され、更に多孔質電極5b,5c間
に発生する電圧は電子制御回路ECUに入力されてい
る。
The DC power supply 23 supplies a current of 200 μA from the porous electrode 3b to the porous electrode 3c, and the DC power supply 21 supplies a current of 300 μA from the porous electrode 3c to the porous electrode 3b. It is a thing. On the other hand, between the porous electrodes 5b and 5c, a direct current power supply 25 for constantly supplying a current of 27.5 μA from the porous electrode 5c to the porous electrode 5b is connected, and further generated between the porous electrodes 5b and 5c. The voltage to be applied is input to the electronic control circuit ECU.

【0020】次にこのように構成された空燃比検出装置
の動作を説明する。先ず直流電源25が多孔質電極5c
から多孔質電極5bに向かって常時27.5μAの電流
を供給すると、測定ガス室7内の酸素ガスが多孔質電極
5b表面でイオン化した後固体電解質基板5aを介して
多孔質電極5c表面へ移動し、そこで再び酸素ガスとな
る。多孔質電極5cは遮蔽体11によって被覆され所定
の漏出抵抗を有するので、多孔質電極5c表面は基準と
なる酸素濃度、例えば大気と同程度、若しくはそれ以上
の酸素濃度に保持される。尚酸素濃淡電池素子に定常電
流を通電して、基準となる酸素濃度を得る方法は、特開
昭61−296262号に詳しいのでここでは詳述しな
い。
Next, the operation of the air-fuel ratio detecting device thus constructed will be described. First, the DC power supply 25 is the porous electrode 5c.
When a current of 27.5 μA is constantly supplied from the electrode to the porous electrode 5b, the oxygen gas in the measurement gas chamber 7 is ionized on the surface of the porous electrode 5b and then moves to the surface of the porous electrode 5c through the solid electrolyte substrate 5a. Then, it becomes oxygen gas again. Since the porous electrode 5c is covered with the shield 11 and has a predetermined leakage resistance, the surface of the porous electrode 5c is maintained at a reference oxygen concentration, for example, at an oxygen concentration equal to or higher than the atmospheric concentration. The method of obtaining a reference oxygen concentration by supplying a constant current to the oxygen concentration battery element is detailed in JP-A-61-296262 and will not be described in detail here.

【0021】次に電子制御回路ECUは設定された周波
数でソレノイドコイルLに矩形パルス状の電流を通電す
る。ソレノイドコイルLにパルス状の電流が通電される
と接点R2が閉じ、直流電源23によって多孔質電極3
bから多孔質電極3cに向かって200μAの電流が供
給される。すると測定ガス室7内の酸素ガスは多孔質電
極3c表面でイオン化した後固体電解質基板3aを介し
て多孔質電極3b表面へ移動し、再び酸素ガスとして測
定ガス雰囲気に排出される。
Next, the electronic control circuit ECU applies a rectangular pulse current to the solenoid coil L at the set frequency. When a pulsed current is applied to the solenoid coil L, the contact R2 is closed and the DC power source 23 causes the porous electrode 3
A current of 200 μA is supplied from b to the porous electrode 3c. Then, the oxygen gas in the measurement gas chamber 7 is ionized on the surface of the porous electrode 3c, then moves to the surface of the porous electrode 3b through the solid electrolyte substrate 3a, and is again discharged as oxygen gas into the measurement gas atmosphere.

【0022】一方ソレノイドコイルLに通電されていた
パルス状の電流が立ち下がると、接点R1が閉じ、直流
電源21によって多孔質電極3cから多孔質電極3bに
向かって300μAの電流が供給される。すると測定ガ
ス雰囲気の酸素ガスは多孔質電極3b表面でイオン化し
た後固体電解質基板3aを介して測定ガス室7内へ供給
される。即ち酸素ポンプ素子3は、正方向の200μA
と負方向の300μAとの二種類の電流値が、ソレノイ
ドコイルLに通電される矩形パルスと同一のデューティ
比で交番する矩形電流を通電される。
On the other hand, when the pulsed current that has been applied to the solenoid coil L falls, the contact R1 is closed and the DC power source 21 supplies a current of 300 μA from the porous electrode 3c to the porous electrode 3b. Then, the oxygen gas in the measurement gas atmosphere is ionized on the surface of the porous electrode 3b and then supplied into the measurement gas chamber 7 through the solid electrolyte substrate 3a. That is, the oxygen pump element 3 is 200 μA in the positive direction.
And rectangular current of 300 μA in the negative direction, a rectangular current alternating with a rectangular pulse applied to the solenoid coil L is applied.

【0023】このように酸素ガスが給排されて測定ガス
室7内の酸素濃度が変化すると、それに伴って多孔質電
極5b表面の酸素濃度も変化する。一方酸素濃淡電池素
子5は多孔質電極5b表面と多孔質電極5c表面との酸
素濃度比に対応した電圧を発生し、これによって両電極
5b,5c間の電位差が変化する。電子制御回路ECU
は多孔質電極5b,5c間の発生電圧を入力され、この
電圧が所定の値となるようにソレノイドコイルLに通電
するパルス状電流のデューティ比を調整する。更に電子
制御回路ECUはそのパルス状電流の調整後のデューテ
ィ比に基づいて内燃機関の空燃比を検出し、検出結果を
図示しない空燃比制御系へ出力する。
When the oxygen gas is supplied and exhausted in this way and the oxygen concentration in the measurement gas chamber 7 changes, the oxygen concentration on the surface of the porous electrode 5b also changes accordingly. On the other hand, the oxygen concentration battery element 5 generates a voltage corresponding to the oxygen concentration ratio between the surface of the porous electrode 5b and the surface of the porous electrode 5c, which changes the potential difference between the electrodes 5b and 5c. Electronic control circuit ECU
The voltage generated between the porous electrodes 5b and 5c is input, and the duty ratio of the pulsed current supplied to the solenoid coil L is adjusted so that this voltage has a predetermined value. Further, the electronic control circuit ECU detects the air-fuel ratio of the internal combustion engine based on the adjusted duty ratio of the pulsed current, and outputs the detection result to an air-fuel ratio control system (not shown).

【0024】図2は理論空燃比で駆動されているガソリ
ンエンジンの排気管に空燃比センサ1を設置し、酸素ポ
ンプ素子3に通電される矩形電流を、周波数が1Hz,
デューティ比0.5としたときの、酸素ポンプ素子3に
供給される矩形電流の波形及び酸素濃淡電池素子5の発
生電圧を表している。尚、図において矩形波電流の電流
値は正方向を+として描いている。また酸素濃淡電池素
子5はガソリンエンジンが理論空燃比で駆動されている
とき、その排気管内の酸素濃度に対して450mVの電
圧を発生するものである。
In FIG. 2, an air-fuel ratio sensor 1 is installed in an exhaust pipe of a gasoline engine driven at a stoichiometric air-fuel ratio, and a rectangular current supplied to an oxygen pump element 3 is supplied at a frequency of 1 Hz.
The waveform of the rectangular current supplied to the oxygen pump element 3 and the generated voltage of the oxygen concentration battery element 5 are shown when the duty ratio is 0.5. In the drawing, the current value of the rectangular wave current is drawn as + in the positive direction. Further, the oxygen concentration battery element 5 generates a voltage of 450 mV with respect to the oxygen concentration in the exhaust pipe when the gasoline engine is driven at the stoichiometric air-fuel ratio.

【0025】図に示すように矩形電流が−300μAと
なり酸素が測定ガス室7へ供給されると、測定ガス室7
内の酸素濃度が上昇して多孔質電極5b表面と多孔質電
極5c表面との酸素濃度の差が少なくなるため、酸素濃
淡電池素子5の発生電圧が低下する。続いて矩形電流が
+200μAとなり酸素が測定ガス室7から排出される
と、測定ガス室7内の酸素濃度が低下して、多孔質電極
5b表面と多孔質電極5c表面との酸素濃度の差が拡大
するため、酸素濃淡電池素子5の発生電圧が上昇する。
そして再び矩形電流が−300μAとなって酸素濃淡電
池素子5の発生電圧が低下するといった挙動が周期的に
繰り返され、酸素濃淡電池素子5の発生電圧は450m
Vを中心に振動するようになる。
As shown in the figure, when the rectangular current becomes -300 μA and oxygen is supplied to the measurement gas chamber 7,
Since the oxygen concentration in the inside increases and the difference in oxygen concentration between the surface of the porous electrode 5b and the surface of the porous electrode 5c decreases, the generated voltage of the oxygen concentration battery element 5 decreases. Subsequently, when the rectangular current becomes +200 μA and oxygen is discharged from the measurement gas chamber 7, the oxygen concentration in the measurement gas chamber 7 decreases, and the difference in oxygen concentration between the surface of the porous electrode 5b and the surface of the porous electrode 5c is reduced. Due to the expansion, the generated voltage of the oxygen concentration battery element 5 rises.
Then, the behavior that the rectangular current again becomes −300 μA and the generated voltage of the oxygen concentration battery element 5 decreases is periodically repeated, and the generated voltage of the oxygen concentration battery element 5 is 450 m.
It comes to vibrate around V.

【0026】これは、矩形電流のデューティ比を0.5
とすれば測定ガス室7の酸素濃度の平均値と排気管内の
酸素濃度とが等しくなるためである。また、本実施例で
は正方向電流の絶対値を負方向電流の絶対値の1.5倍
にしているので、酸素濃淡電池素子5の発生電圧は、上
昇するときと低下するときとの変化速度が略同じとなり
略左右対称の曲線を呈する。
This is because the duty ratio of the rectangular current is 0.5.
This is because the average value of the oxygen concentration in the measurement gas chamber 7 becomes equal to the oxygen concentration in the exhaust pipe. Further, in the present embodiment, the absolute value of the positive direction current is set to 1.5 times the absolute value of the negative direction current, so that the generated voltage of the oxygen concentration battery element 5 changes at the time of increasing and decreasing. Are almost the same and exhibit a substantially symmetrical curve.

【0027】このため矩形電流の周波数を高くしても、
デューティ比が0.5であれば測定ガス室7内の酸素濃
度の平均値と排気管内の酸素濃度とを一致させることが
できる。図3に、矩形電流の周波数を40Hzとした点
を除いてはすべて図2と同様の条件で測定した矩形電流
の波形および酸素濃淡電池素子5の発生電圧を示す。こ
の場合、酸素濃淡電池素子5の発生電圧の変化は小刻み
になるが、相変わらず450mVを中心に振動する。即
ち測定ガス室7の酸素濃度の平均値と排気管内の酸素濃
度とが一致していることが判る。
Therefore, even if the frequency of the rectangular current is increased,
If the duty ratio is 0.5, the average value of the oxygen concentration in the measurement gas chamber 7 and the oxygen concentration in the exhaust pipe can be matched. FIG. 3 shows the waveform of the rectangular current and the generated voltage of the oxygen concentration battery element 5, which were measured under the same conditions as in FIG. 2 except that the frequency of the rectangular current was 40 Hz. In this case, the change in the generated voltage of the oxygen concentration battery element 5 is small, but it still oscillates around 450 mV. That is, it can be seen that the average value of the oxygen concentration in the measurement gas chamber 7 and the oxygen concentration in the exhaust pipe match.

【0028】このように、本実施例では酸素ポンプ素子
3に通電する矩形電流の周波数を高くしても、理論空燃
比で駆動しているガソリンエンジンに対して、矩形電流
のデューティ比0.5と酸素濃淡電池素子5の発生電圧
450mVとを対応させることができる。
As described above, in this embodiment, even if the frequency of the rectangular current supplied to the oxygen pump element 3 is increased, the duty ratio of the rectangular current is 0.5 for the gasoline engine driven at the stoichiometric air-fuel ratio. The generated voltage of the oxygen concentration battery element 5 can be made to correspond to 450 mV.

【0029】このため、例えば酸素濃淡電池素子5の発
生電圧を450mVとするために酸素ポンプ素子3に通
電する矩形電流のデューティ比を0.5より小さくしな
ければならない場合、即ち測定ガス室7に酸素を供給す
る負方向の電流を正方向の電流より長く通電しなければ
ならない場合は、ガソリンエンジンの空燃比がリッチで
あり、逆に、酸素濃淡電池素子5の発生電圧を450m
Vとするために酸素ポンプ素子3に通電する矩形電流の
デューティ比を0.5より大きくしなければならない場
合、即ち測定ガス室7から酸素を排出する正方向の電流
を負方向の電流より長く通電しなければならない場合
は、ガソリンエンジンの空燃比がリーンであると判断す
ることができる。また、このような空燃比の検出は矩形
電流の周波数が高くても同様に行なうことができる。
Therefore, for example, when the duty ratio of the rectangular current supplied to the oxygen pump element 3 must be smaller than 0.5 in order to set the generated voltage of the oxygen concentration battery element 5 to 450 mV, that is, the measurement gas chamber 7 When the negative current for supplying oxygen to the engine must be supplied longer than the positive current, the air-fuel ratio of the gasoline engine is rich, and conversely, the generated voltage of the oxygen concentration battery element 5 is 450 m.
When the duty ratio of the rectangular current supplied to the oxygen pump element 3 must be greater than 0.5 in order to obtain V, that is, the positive current for discharging oxygen from the measurement gas chamber 7 is longer than the negative current. When it is necessary to energize, it can be determined that the air-fuel ratio of the gasoline engine is lean. Further, such detection of the air-fuel ratio can be similarly performed even if the frequency of the rectangular current is high.

【0030】また更に、矩形電流のデューティ比から空
燃比を算出する処理はワンチップマイクロコンピュータ
を用いてソフトウェアで行うことができ、検出装置の構
成を簡単にすると共に検出精度を向上させることができ
る。このように本実施例の空燃比検出装置では、内燃機
関の空燃比を酸素ポンプ素子3に通電する矩形電流のデ
ューティ比に基づいて検出することにより、検出装置の
構成を簡単にすると共に検出精度を向上させることがで
き、更にその矩形電流の周波数を高くすることにより応
答性を向上させることができる。
Furthermore, the process of calculating the air-fuel ratio from the duty ratio of the rectangular current can be performed by software using a one-chip microcomputer, and the structure of the detection device can be simplified and the detection accuracy can be improved. .. As described above, in the air-fuel ratio detecting device of the present embodiment, the air-fuel ratio of the internal combustion engine is detected based on the duty ratio of the rectangular current flowing through the oxygen pump element 3, thereby simplifying the structure of the detecting device and detecting accuracy. Can be improved, and the responsiveness can be improved by further increasing the frequency of the rectangular current.

【0031】尚、本実施例では酸素ポンプ素子3に通電
する矩形電流を+200μAと−300μAとの二種類
の電流値で構成しているが、この電流値は空燃比センサ
の特性や検出しようとする空燃比に応じて適切な値に設
定することができる。
In this embodiment, the rectangular current flowing through the oxygen pump element 3 is composed of two kinds of current values of +200 μA and -300 μA. This current value is used for the characteristics of the air-fuel ratio sensor and for the detection. It can be set to an appropriate value according to the air-fuel ratio to be set.

【0032】[0032]

【発明の効果】以上詳述したように本発明の空燃比検出
方法では、酸素ポンプ素子に通電する矩形電流のデュー
ティ比に基づいて空燃比を検出しているので、検出装置
の構成を簡単にすると共に検出精度を向上させることが
できる。
As described above in detail, in the air-fuel ratio detecting method of the present invention, the air-fuel ratio is detected based on the duty ratio of the rectangular current supplied to the oxygen pump element. In addition, the detection accuracy can be improved.

【0033】また、酸素ポンプ素子に通電する矩形電流
の周波数を高くしても酸素濃淡電池素子の発生電圧が高
くならないので、矩形波の周波数を高くして検出の応答
性を向上させることができる。
Further, since the generated voltage of the oxygen concentration cell element does not increase even if the frequency of the rectangular current supplied to the oxygen pump element is increased, the frequency of the rectangular wave can be increased to improve the detection response. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の空燃比検出装置を表す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram illustrating an air-fuel ratio detection device according to an embodiment.

【図2】実施例の酸素ポンプ素子に供給される低周波数
の矩形電流の波形および酸素濃淡電池素子の発生電圧を
表す説明図である。
FIG. 2 is an explanatory diagram showing a waveform of a low-frequency rectangular current supplied to the oxygen pump element of the embodiment and a generated voltage of the oxygen concentration battery element.

【図3】実施例の酸素ポンプ素子に供給される高周波数
の矩形電流の波形および酸素濃淡電池素子の発生電圧を
表す説明図である。
FIG. 3 is an explanatory diagram showing the waveform of a high-frequency rectangular current supplied to the oxygen pump element of the example and the generated voltage of the oxygen concentration battery element.

【図4】従来例の酸素ポンプ素子に供給される低周波数
の矩形電流の波形および酸素濃淡電池素子の発生電圧を
表す説明図である。
FIG. 4 is an explanatory diagram showing a waveform of a low-frequency rectangular current supplied to an oxygen pump element of a conventional example and a generated voltage of an oxygen concentration battery element.

【図5】従来例の酸素ポンプ素子に供給される高周波数
の矩形電流の波形および酸素濃淡電池素子の発生電圧を
表す説明図である。
FIG. 5 is an explanatory diagram showing a waveform of a high-frequency rectangular current supplied to an oxygen pump element of a conventional example and a generated voltage of an oxygen concentration battery element.

【符号の説明】[Explanation of symbols]

1…空燃比センサ 3…酸素ポンプ素子 5…
酸素濃淡電池素子 7…測定ガス室 17…ガス拡散制限部 19
…リレー 21,23,25…直流電源
1 ... Air-fuel ratio sensor 3 ... Oxygen pump element 5 ...
Oxygen concentration battery element 7 ... Measuring gas chamber 17 ... Gas diffusion limiting section 19
… Relays 21,23,25… DC power supply

Claims (1)

【特許請求の範囲】 【請求項1】 ガス拡散制限部を介して測定ガス雰囲気
と連通する測定ガス室と、通電される電気量に対応した
量の酸素を該測定ガス室に給排する酸素ポンプ素子と、
該測定ガス室の酸素濃度と基準となる酸素濃度との比に
対応した電圧を発生する酸素濃淡電池素子と、を備えた
空燃比センサを用いて空燃比を検出する空燃比検出方法
において、上記測定ガス室から酸素を排出する正方向の
電流値と、該電流値より大きな絶対値を有しかつ上記測
定ガス室へ酸素を供給する負方向の電流値との、二種類
の電流値が交番する矩形電流を上記酸素ポンプ素子に通
電し、上記酸素濃淡電池素子の発生電圧が所定値となる
ように該矩形電流のデューティ比を調節し、上記矩形電
流の調節後のデューティ比に基づいて空燃比を検出する
ことを特徴とする空燃比検出方法。
Claim: What is claimed is: 1. A measuring gas chamber communicating with a measuring gas atmosphere through a gas diffusion limiting section, and oxygen for supplying and discharging to the measuring gas chamber an amount of oxygen corresponding to the amount of electricity supplied. A pump element,
In an air-fuel ratio detecting method for detecting an air-fuel ratio using an air-fuel ratio sensor, which comprises an oxygen concentration cell element that generates a voltage corresponding to the ratio of the oxygen concentration of the measurement gas chamber and a reference oxygen concentration, Two kinds of alternating current values, a positive current value for discharging oxygen from the measurement gas chamber and a negative current value having an absolute value larger than the current value and supplying oxygen to the measurement gas chamber, are alternating. A rectangular current is applied to the oxygen pump element, the duty ratio of the rectangular current is adjusted so that the generated voltage of the oxygen concentration battery element reaches a predetermined value, and the duty is adjusted based on the adjusted duty ratio of the rectangular current. An air-fuel ratio detection method characterized by detecting a fuel ratio.
JP3158905A 1991-06-28 1991-06-28 Air-fuel ratio detection method Expired - Lifetime JP3048256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3158905A JP3048256B2 (en) 1991-06-28 1991-06-28 Air-fuel ratio detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3158905A JP3048256B2 (en) 1991-06-28 1991-06-28 Air-fuel ratio detection method

Publications (2)

Publication Number Publication Date
JPH055722A true JPH055722A (en) 1993-01-14
JP3048256B2 JP3048256B2 (en) 2000-06-05

Family

ID=15681923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3158905A Expired - Lifetime JP3048256B2 (en) 1991-06-28 1991-06-28 Air-fuel ratio detection method

Country Status (1)

Country Link
JP (1) JP3048256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160435B2 (en) 1997-12-22 2007-01-09 Ngk Insulators, Ltd. Gas sensor and method for controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160435B2 (en) 1997-12-22 2007-01-09 Ngk Insulators, Ltd. Gas sensor and method for controlling the same
US7655131B2 (en) 1997-12-22 2010-02-02 Ngk Insulators, Ltd. Gas sensor and method for controlling the same

Also Published As

Publication number Publication date
JP3048256B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
US6214207B1 (en) Method and apparatus for measuring oxygen concentration and nitrogen oxide concentration
US6383354B1 (en) Gas concentration sensing apparatus
US6635161B2 (en) NOx sensor control circuit unit and NOx sensor system using the same
EP0887640B1 (en) Gas sensor
US6341599B1 (en) Power supply control system for heater used in gas concentration sensor
JP2004069547A (en) Control device of air/fuel ratio sensor
US7776194B2 (en) Gas concentration measuring apparatus designed to compensate for output error
JP2000171439A (en) Gas concentration detector
JP4219414B2 (en) Method for measuring oxidizable components in gas mixture
JP3849678B2 (en) Gas concentration measuring device
JP4385423B2 (en) Exhaust temperature measuring device
JPH10153576A (en) Air-fuel ratio sensor
JPH11344466A (en) Heater control device of gas concentration sensor
JP3048256B2 (en) Air-fuel ratio detection method
JP2001074693A (en) Heater control device for gas concentration sensor
JP2017053802A (en) Gas concentration humidity detection device and gas concentration humidity detection method
JP4048489B2 (en) Oxygen sensor abnormality detection device and abnormality detection method
JP2004205357A (en) Detection method of gas concentration
US6589409B2 (en) Multilayered gas sensing element employable in an exhaust system of an internal combustion engine
JPH0413961A (en) Air/fuel ratio detector
JP2006071429A (en) Gas concentration detecting apparatus
JPS60243316A (en) Secondary air control device of engine
JP3854040B2 (en) Air-fuel ratio detection device for internal combustion engine
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPS61161445A (en) Air/furl ratio detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12