JPH0556967A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0556967A
JPH0556967A JP3222900A JP22290091A JPH0556967A JP H0556967 A JPH0556967 A JP H0556967A JP 3222900 A JP3222900 A JP 3222900A JP 22290091 A JP22290091 A JP 22290091A JP H0556967 A JPH0556967 A JP H0556967A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic probe
laser
specimen
multiple reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3222900A
Other languages
Japanese (ja)
Inventor
Yoshizo Hagino
芳造 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP3222900A priority Critical patent/JPH0556967A/en
Publication of JPH0556967A publication Critical patent/JPH0556967A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the sensitivity at the time of detecting vibration of the mirror surface, in the ultrasonic probe for fetching a reflected wave of an ultrasonic wave radiated into a living body as vibration of the mirror surface by an interference of a laser light. CONSTITUTION:By a reflected wave from an examining body 7, the thin film mirror surface 12 vibrates. A laser emitted from a projector 8 passes through an incident hole 11 of the upper face mirror 10 and is reflected by the thin film mirror surface 12 and subjected to multiple reflection, and thereafter, goes out of an emitting hole 13 and reaches a photodetector 14. In the photodetector 14, vibration of the thin film mirror surface 12 is detected by a phase difference caused by an interference of the transmitted laser and the photodetected laser. Since a multiple reflection of the laser is executed in a groove 9, the phase difference increases and the sensitivity is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波探触子における
超音波受波回路であって、レーザによる受波の装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic wave receiving circuit in an ultrasonic probe and a device for receiving a wave by a laser.

【0002】[0002]

【従来の技術】超音波診断装置の超音波探触子におい
て、従来の受波器は圧電素子により超音波を検出してお
り、原理的に検体の機械エネルギーを質量のある圧電素
子で受け止めて振動による圧力を電気エネルギーに変換
していることからエネルギーの損失を免れることができ
ない。これに対して、検体の振動を質量の小さい薄い鏡
に伝え、その鏡にレーザを反射させてレーザで振動を検
出する方法は非接触の測定技術として他の部門で開発さ
れているが、その検出方法は、反射してきたレーザに投
射に使用したレーザを加えて生じた干渉波の位相をホモ
ダイン検波の電子回路で電気信号として検出するか、あ
るいは投射に使用したレーザを周波数を変えて反射レー
ザとの間でヘテロダイン検波の電子回路で超音波振動を
検出している。従って、検出の感度は、電子回路に入力
される2波のレーザの波長の干渉波の光度の変化がある
程度大きくなければ電子回路で検出できないという限界
がある。この限界が検出微小振動の振幅の限界であっ
た。言い換えると、レーザ方式は電子回路の性能から振
動の振幅の検出に限界があった。
2. Description of the Related Art In an ultrasonic probe of an ultrasonic diagnostic apparatus, a conventional wave receiver detects an ultrasonic wave by a piezoelectric element, and in principle, the mechanical energy of a sample is received by a piezoelectric element having a mass. Since the pressure due to vibration is converted into electric energy, energy loss cannot be avoided. On the other hand, a method of transmitting the vibration of the specimen to a thin mirror with a small mass, reflecting the laser on the mirror and detecting the vibration with the laser has been developed as a non-contact measurement technology in other departments. The detection method is to detect the phase of the interference wave generated by adding the laser used for projection to the reflected laser as an electric signal with an electronic circuit of homodyne detection, or change the frequency of the laser used for projection and change the reflected laser Ultrasonic vibrations are detected by an electronic circuit of heterodyne detection between and. Therefore, there is a limit to the detection sensitivity that the electronic circuit cannot detect unless the change in the luminous intensity of the interference wave of the wavelength of the two-wave laser input to the electronic circuit is large to some extent. This limit was the limit of the amplitude of the detected microvibration. In other words, the laser method has a limitation in detecting the amplitude of vibration due to the performance of the electronic circuit.

【0003】[0003]

【発明が解決しようとする課題】けれども、超音波の振
動振幅としては更に小さい振幅まで検出するためには使
用するレーザの波長を短くすることにより同じ微小振動
の振幅に対しての位相差を大きくする方法も考えられる
が、紫外線やそれ以下の短い波長に対して微視的に平面
で、反射率が可視光と同程度の鏡は、次第にコスト的に
困難となる。
However, in order to detect the vibration amplitude of ultrasonic waves to a smaller value, the phase difference for the same small vibration amplitude is increased by shortening the wavelength of the laser used. A method of doing so is also conceivable, but a mirror that is microscopically flat with respect to ultraviolet rays and short wavelengths shorter than that and has a reflectance similar to that of visible light becomes gradually difficult in terms of cost.

【0004】従って、通常のレーザによるシステムで2
波のレーザ間の高感度な位相差の検出が望まれる。
Therefore, in a conventional laser system, 2
It is desired to detect a highly sensitive phase difference between lasers of a wave.

【0005】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、探触子のレーザ方式受波回路
に新たに、より高感度な機構を提供することにある。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to newly provide a higher sensitivity mechanism for a laser type receiving circuit of a probe.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、検体もしくは検体の超音波振動を最もよ
く伝える個所に接触する薄い鏡にレーザをわずか傾斜し
て投射し、反射レーザを相対するもう1枚の鏡との間で
反射を繰り返して進行反射させて取り出すことにより、
検体の振動による位相の変動を増大させた後に電子回路
で検出することにある。
In order to achieve the above object, the present invention provides a reflection laser by projecting a laser at a slight inclination to a thin mirror in contact with a specimen or a portion where ultrasonic vibration of the specimen is best transmitted. By repeating the reflection with another mirror facing each other, progressively reflecting it, and taking it out,
The purpose is to detect with an electronic circuit after increasing the fluctuation of the phase due to the vibration of the specimen.

【0007】[0007]

【作用】上記構成によれば、多重反射の回数に比例して
位相の変位が増大するので、同一電子回路にあっても位
相量の検出限界が多重反射の回数に比例して微小化する
ために高感度化が可能となる。
According to the above construction, since the phase displacement increases in proportion to the number of multiple reflections, the detection limit of the phase amount is reduced in proportion to the number of multiple reflections even in the same electronic circuit. High sensitivity is possible.

【0008】[0008]

【実施例】以下、本発明の好適な実施例を図面に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0009】図1には、本発明に係る超音波診断装置1
における探触子2の具体的な構成が示されている。
FIG. 1 shows an ultrasonic diagnostic apparatus 1 according to the present invention.
The specific configuration of the probe 2 in FIG.

【0010】超音波診断装置1からケーブル3を経てト
リガ信号が探触子2へ送られ、超音波送波器配列4のう
ち図には明示していないが、トリガに同期して単数もし
くは複数の素子5に高圧のパルスが供給され、素子5か
らは、3.5メガヘルツの1個もしくは2,3個の超音
波の波動が音響レンズ6を経て検体7に供給され、同時
に前記複数の素子5の隣接する溝9の上面を形成する上
面鏡10の入射孔11に向けて、投光器8よりトリガに
同期して投射方向と投射時間が制御されるレーザビーム
を投光する。
A trigger signal is sent from the ultrasonic diagnostic apparatus 1 to the probe 2 via the cable 3, and although not shown in the drawing of the ultrasonic transmitter array 4, a single signal or a plurality of signals are synchronized with the trigger. A high-voltage pulse is supplied to the element 5 of the device 5, and one or a few waves of ultrasonic waves of 3.5 MHz are supplied from the device 5 to the specimen 7 through the acoustic lens 6, and at the same time, the plurality of elements are supplied. A laser beam whose projection direction and projection time are controlled in synchronization with the trigger is projected from the projector 8 toward the entrance hole 11 of the top mirror 10 forming the top surface of the adjacent groove 9 of 5.

【0011】1回の投光継続時間は、前記超音波の波動
が検体の最深部を1往復に要する時間中継続投光され
る。
One projection duration is such that the ultrasonic wave is continuously projected for the time required for one round trip through the deepest part of the sample.

【0012】投光されたレーザビームは、まず溝9の底
面を形成する薄膜鏡面12で反射され、次いで相対する
上面鏡10によって反射され、更に薄膜鏡面12との間
で多重繰り返し反射し、上面鏡10の適宜個所に空けら
れた出射孔13に導かれて、出射孔13より溝を出たレ
ーザビームは、トリガによって受光方向を制御された受
光器14において受光される。
The projected laser beam is first reflected by the thin film mirror surface 12 forming the bottom surface of the groove 9, then by the opposing top surface mirror 10, and is repeatedly reflected between the thin film mirror surface 12 and the upper surface. The laser beam guided to the emission hole 13 provided at an appropriate place of the mirror 10 and exiting the groove from the emission hole 13 is received by the light receiver 14 whose light receiving direction is controlled by a trigger.

【0013】なお、請求項5に挙げた繰り返しの多重反
射、及び請求項6に挙げた光増幅、及び請求項7による
繰り返しは、予め設定した距離段階に対応させてトリガ
によって受光器14に光増幅器を内蔵させて、そこで増
幅後、投光器8を経て最初と同様に投光される。
The repetitive multiple reflections recited in claim 5, the optical amplification recited in claim 6, and the iterations recited in claim 7 cause the light to be received by the light receiver 14 by a trigger corresponding to a preset distance step. An amplifier is built in, and after being amplified there, the light is projected through the light projector 8 in the same manner as at the beginning.

【0014】図2で、溝9において入射孔11と出射孔
13の孔の列は別の列として形成し、多重反射時の上面
鏡10の反射点とは重ならないような鏡の構造とする。
In FIG. 2, the rows of the entrance holes 11 and the exit holes 13 in the groove 9 are formed as different rows, and the mirror structure is such that the reflection points of the top mirror 10 during multiple reflection do not overlap. ..

【0015】溝9における入射孔11と出射孔13との
間の区間長を、例として請求項1の1本の振動素子配列
で、観察する深さをD=20mmとし、周波数3.5M
Hzの超音波の波長λは、波長=伝搬速度/周波数の関
係から、0.44mmとなり、その深さを送受の往復伝
搬で半波長以内における信号加算の範囲を示す。第1フ
レネルゾーンの半径r1 は、r1 =(Dλ/2)1/2
式より、r1 =2.1mmの程度で、観察する深さDの
平方根に比例するので、信号加算の観点から、前記区間
長はこのフレネルゾーンの直径、2r1 =4.2mm,の
中に十分入るように決める。なお、この程度の区間長以
内で、多重の反射回数が十分得られれば、これがいずれ
の距離に対しても共通の基礎の信号となるので、本発明
の範囲でないが信号処理の分野で、数ミリから数十セン
チメートルの検体内の観察深さに対する信号の合成に共
通の信号として間引き、選択を容易にすることができ
る。
The section length between the entrance hole 11 and the exit hole 13 in the groove 9 is, for example, one vibration element array according to claim 1, the observation depth is D = 20 mm, and the frequency is 3.5 M.
The wavelength λ of the ultrasonic wave of Hz is 0.44 mm from the relationship of wavelength = propagation velocity / frequency, and the depth indicates the range of signal addition within half a wavelength in round trip propagation of transmission and reception. The radius r 1 of the first Fresnel zone is in the order of r 1 = 2.1 mm from the equation r 1 = (Dλ / 2) 1/2 , and is proportional to the square root of the depth D to be observed. From the viewpoint, the section length is determined so as to be sufficiently within the diameter of this Fresnel zone, 2r 1 = 4.2 mm. Note that if a sufficient number of multiple reflections are obtained within this section length, this is a common basic signal for any distance, so it is not within the scope of the present invention. The signal can be thinned out as a signal common to the synthesis of signals for the observation depth in the specimen of millimeters to several tens of centimeters to facilitate selection.

【0016】一方、観察する深さが増すと信号が弱くな
るので、これらを考慮して請求項5と請求項7に対して
多重反射の数や、繰り返し回数を増して感度の増大を図
る。請求項2及び請求項3に対しては帯状の配列素子の
中央に数ミクロン程度の細い溝9を形成し、入射孔11
と出射孔13の穴を走査間隔で空け、超音波ビームの走
査時に複数素子のグループの中央に近いところにある溝
9の入射孔11と出射孔13の孔がいずれも第1フレネ
ルゾーンの範囲に入るような間隔にする。
On the other hand, since the signal becomes weaker as the depth of observation increases, the number of multiple reflections and the number of repetitions are increased in order to increase the sensitivity in consideration of the above. According to claims 2 and 3, a narrow groove 9 of about several microns is formed in the center of the strip-shaped array element, and the entrance hole 11 is formed.
And the exit hole 13 are opened at scanning intervals, and the entrance hole 11 of the groove 9 and the exit hole 13 which are located near the center of the group of plural elements when scanning the ultrasonic beam are both within the range of the first Fresnel zone. Make the intervals so that you can enter.

【0017】受光器14で受波したレーザ波は図1に検
波器16と簡単に示しているが、検波器16では例えば
投光器8のコヒーレント光を分波して混合しホモダイン
検波を行うことにより、検体の内部から反射してくる微
小振幅の超音波振動をレーザの位相変動として高感度で
電気信号として検出することができる。
The laser wave received by the light receiver 14 is simply shown as the detector 16 in FIG. 1. In the detector 16, for example, the coherent light from the projector 8 is demultiplexed and mixed to perform homodyne detection. Ultrasonic vibrations of minute amplitude reflected from the inside of the specimen can be detected as electric signals with high sensitivity as phase fluctuations of the laser.

【0018】検出された信号は、通常のトランスジュー
サにおける場合と同様に、ケーブル17によって超音波
診断装置1に送られる。
The detected signal is sent to the ultrasonic diagnostic apparatus 1 by the cable 17 as in the case of a normal transducer.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
レーザにより限定された小区間の超音波の微小振動を、
超音波の送波器配列の個々の素子の数分の1から数倍の
区間長において多重の繰り返しを行うことにより2波の
レーザの位相差を拡大して電子回路に供給することがで
きるので高感度で受信できる。このことより医療はもち
ろん、超音波の計測技術を一段と向上させることができ
る。
As described above, according to the present invention,
Small vibration of ultrasonic waves in a small section limited by laser,
Since the phase difference between the two lasers can be expanded and supplied to the electronic circuit by performing multiple repetitions in the section length of a fraction to several times of the individual elements of the ultrasonic wave transmitter array. You can receive with high sensitivity. As a result, not only medical treatment but also ultrasonic measurement technology can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超音波探触子2の内部構造を示す
説明図である。
FIG. 1 is an explanatory diagram showing an internal structure of an ultrasonic probe 2 according to the present invention.

【図2】レーザの多重反射を示す説明図である。FIG. 2 is an explanatory diagram showing multiple reflection of a laser.

【符号の説明】[Explanation of symbols]

1 超音波診断装置 2 探触子 4 超音波振動素子配列(アレイ型超音波振動子) 9 溝 10 上面鏡 11 入射孔 12 薄膜鏡面 13 出射孔 1 Ultrasonic Diagnostic Device 2 Probe 4 Ultrasonic Vibration Element Array (Array Type Ultrasonic Transducer) 9 Groove 10 Top Mirror 11 Entrance Hole 12 Thin Film Mirror Surface 13 Exit Hole

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】1本の振動素子配列の、複数の素子への遅
延組合せパルス駆動による検体内の特定深度への超音波
ビームの走査を行う探触子において、検体内からの超音
波反射波を、検体表面に直接接触させるか、介在する音
響整合材に接触させた薄い反射鏡へ、超音波走査に同期
して駆動素子の溝に走査投射を行い、該溝の駆動素子の
面内に送信波と総合して第1フレネルゾーンに限定した
距離内で、1面を前述の薄い反射鏡で構成したレーザ導
波器の区間でレーザを多重反射させた後、送波レーザと
混合干渉させて振動する位相差を検出することにより超
音波を受波することを特徴とする超音波探触子。
1. A probe for scanning an ultrasonic beam to a specific depth in a specimen by delay combination pulse driving to a plurality of elements in one vibrating element array, wherein an ultrasonic reflected wave from the specimen is used. Directly onto the surface of the specimen or onto a thin reflecting mirror in contact with an intervening acoustic matching material, scanning projection is performed on the groove of the drive element in synchronization with ultrasonic scanning, and the surface of the drive element in the groove is projected. Combined with the transmitted wave, within a distance limited to the first Fresnel zone, multiple reflection of the laser is carried out in the section of the laser waveguide composed of the thin reflection mirror on one surface, and then mixed interference with the transmitted laser is performed. An ultrasonic probe characterized by receiving ultrasonic waves by detecting a phase difference that vibrates.
【請求項2】複数の振動素子配列を1本の帯状にし、該
帯を複数の同心円で同時走査を行い、該同心円に囲まれ
た同一の円環中に入る個々の振動素子に対して、半径の
2乗に比例した遅延時間を持たせたパルス駆動による検
体内の観測点に超音波出力を集中させる構造の超音波探
触子において、中央の振動素子配列の溝に請求項1記載
のレーザ装置により超音波を受波することを特徴とする
超音波探触子。
2. A plurality of vibrating element arrays are formed into a single band, and the bands are simultaneously scanned with a plurality of concentric circles, and for each vibrating element that enters the same ring surrounded by the concentric circles, The ultrasonic probe having a structure in which ultrasonic output is concentrated at an observation point in a sample by pulse driving having a delay time proportional to the square of the radius, according to claim 1, wherein a groove of the central vibration element array is provided. An ultrasonic probe characterized by receiving ultrasonic waves by a laser device.
【請求項3】請求項2記載の超音波探触子において、複
数の同心円を5個以内のフレネルゾーンの円環にカバー
される素子にして正負の駆動パルスにより超音波ビーム
を発生させることを特徴とする超音波探触子。
3. The ultrasonic probe according to claim 2, wherein a plurality of concentric circles are used as elements covered by an annulus of up to 5 Fresnel zones to generate an ultrasonic beam by positive and negative drive pulses. A characteristic ultrasonic probe.
【請求項4】請求項1から請求項3までのいずれかの請
求項において、音響レンズを使用している超音波探触子
にあっては、音響レンズの振動素子側の境界面にレーザ
反射用の薄い鏡を設けることを特徴とする超音波探触
子。
4. An ultrasonic probe using an acoustic lens according to any one of claims 1 to 3, wherein a laser reflection is applied to a boundary surface of the acoustic lens on the vibrating element side. An ultrasonic probe having a thin mirror for use.
【請求項5】請求項1から請求項4までのいずれかの請
求項に記載の超音波探触子において、多重反射後のレー
ザを再びその多重反射通路を1回以上往復させた後取り
出す機構を設けたことを特徴とする超音波探触子。
5. The ultrasonic probe according to any one of claims 1 to 4, wherein the laser after multiple reflection is taken out after reciprocating the multiple reflection path once or more again. An ultrasonic probe characterized by being provided with.
【請求項6】請求項5記載の超音波探触子において、多
重反射のための減衰を往復の際に途中において光増幅す
る回路を設けたことを特徴とする超音波探触子。
6. The ultrasonic probe according to claim 5, further comprising a circuit for optically amplifying attenuation due to multiple reflection during a round trip.
【請求項7】請求項1から請求項6までのいずれかの請
求項に記載の超音波探触子において、観察する検体の深
さに対応して多重反射の回数あるいは繰り返しによる回
数を増大することを特徴とする超音波探触子。
7. The ultrasonic probe according to any one of claims 1 to 6, wherein the number of multiple reflections or the number of repeated reflections is increased in accordance with the depth of the specimen to be observed. An ultrasonic probe characterized in that.
JP3222900A 1991-09-03 1991-09-03 Ultrasonic probe Pending JPH0556967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3222900A JPH0556967A (en) 1991-09-03 1991-09-03 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3222900A JPH0556967A (en) 1991-09-03 1991-09-03 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0556967A true JPH0556967A (en) 1993-03-09

Family

ID=16789630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3222900A Pending JPH0556967A (en) 1991-09-03 1991-09-03 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0556967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347898A1 (en) * 2003-10-15 2005-05-19 Carl Zeiss Light source beam guiding system, e.g. for sensor, has variable spacing and/or angle of two mirrors for varying deflection of outgoing light beam
WO2012053160A1 (en) * 2010-10-21 2012-04-26 パナソニック株式会社 Ultrasonic testing device and ultrasonic testing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347898A1 (en) * 2003-10-15 2005-05-19 Carl Zeiss Light source beam guiding system, e.g. for sensor, has variable spacing and/or angle of two mirrors for varying deflection of outgoing light beam
WO2012053160A1 (en) * 2010-10-21 2012-04-26 パナソニック株式会社 Ultrasonic testing device and ultrasonic testing method
US8855739B2 (en) 2010-10-21 2014-10-07 Panasonic Corporation Ultrasound examination apparatus and ultrasound examination method using laser light to detect microscopic displacement caused by reflected ultrasonic waves
JP5895152B2 (en) * 2010-10-21 2016-03-30 パナソニックIpマネジメント株式会社 Ultrasonic inspection apparatus and ultrasonic inspection method

Similar Documents

Publication Publication Date Title
US6609425B2 (en) Ultrasonic probe and ultrasonic diagnosis apparatus using the same
US20120157837A1 (en) Ultrasound probe and ultrasound examination device using the same
US6542245B2 (en) Dynamic change detecting method, dynamic change detecting apparatus and ultrasonic diagnostic apparatus
US6647792B2 (en) Ultrasonic probe, ultrasonic receiver and ultrasonic diagnostic apparatus
US4446543A (en) Optical resonator single-mode fiber hydrophone
EP3906407A1 (en) Device and method for testing a test object
KR100794645B1 (en) Method of generating image data and ultrasonic diagnostic apparatus using the same
US20230148869A1 (en) Mixed ultrasound transducer arrays
EP1158283B1 (en) Dynamic change detecting method, dynamic change detecting apparatus and ultrasonic diagnostic apparatus
US20020017141A1 (en) Ultrasonic detection method and apparatus and ultrasonic diagnostic apparatus
JPH0556967A (en) Ultrasonic probe
JPH10288607A (en) Ultrasonic sensor
JPWO2020141479A5 (en)
JP2002017723A (en) Ultrasonic probe and ultrasonograph using the same
US20230324548A1 (en) Synthetic aperture imaging systems and methods using mixed arrays
CN114018824B (en) Single-head laser ultrasonic equipment and method based on fiber Bragg grating
WO2024028874A1 (en) Miniature ultrasound detection system
JPH06113398A (en) Sound wave transducer element
CN114562942A (en) Measuring system and measuring method
JPS58140637A (en) Photoacoustic detector
JPS59142460A (en) Ultrasonic video device
JPH0580153A (en) Ultrasonic probe