JPH055690A - Porosity measurement device and measurement method - Google Patents

Porosity measurement device and measurement method

Info

Publication number
JPH055690A
JPH055690A JP3157935A JP15793591A JPH055690A JP H055690 A JPH055690 A JP H055690A JP 3157935 A JP3157935 A JP 3157935A JP 15793591 A JP15793591 A JP 15793591A JP H055690 A JPH055690 A JP H055690A
Authority
JP
Japan
Prior art keywords
porosity
thickness
recording paper
transmittance
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3157935A
Other languages
Japanese (ja)
Other versions
JP2954745B2 (en
Inventor
Akira Makabe
晃 真壁
Motomichi Shibano
元通 芝野
Tetsuo Nakajima
哲郎 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15793591A priority Critical patent/JP2954745B2/en
Publication of JPH055690A publication Critical patent/JPH055690A/en
Application granted granted Critical
Publication of JP2954745B2 publication Critical patent/JP2954745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To improve the quality control of a recording paper in regard to the device and the method of the recording paper for its porosity. CONSTITUTION:A porosity measurement device 13 having a generation source 3 for generating an X-ray 4 for a recording paper 2 arranged on a table 1 and a detection sensor 5 for detecting the strength of the X-ray, a thickness detection means 7 for detecting the thickness of the recording paper 2 and an operation means 10 for performing the operation of a bulk density from a desired porosity and thickness and calculating the porosity from the bulk density and a separately obtained true density are composed to measure a porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、記録用紙の空隙率測定
装置および測定方法に関する。紙は連続的な多孔構造の
ため、液体を吸収し、気体を透過するという性質を有す
る。このような特性を最も利用した紙としては、濾紙,
吸取紙,記録用紙などが挙げられ、どのような紙でも大
なり小なりこの特性を利用している。例えば、現代の印
刷方式は大部分がこの多孔構造を利用した方式である。
特に、記録用紙は多孔構造を利用するため、この多孔構
造を定量的に求めることが、記録用紙の品質管理上必要
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording paper porosity measuring device and measuring method. Since paper has a continuous porous structure, it has the property of absorbing liquid and transmitting gas. Paper that makes the most of these characteristics is filter paper,
Blotting paper, recording paper, etc. can be mentioned, and any kind of paper uses this characteristic to a greater or lesser extent. For example, most modern printing methods utilize this porous structure.
In particular, since the recording paper uses a porous structure, it is necessary to quantitatively determine this porous structure for quality control of the recording paper.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】記録
用紙は多孔構造を有している。レーザプリンタによる印
字の写真を例に挙げると、図3に示すように、球形のト
ナー(着色樹脂粉)が紙の孔の部分にのるように印字が
形成されている。また、紙はミクロ的に見ると毛細管構
造を取っており、用紙中で気孔が均一に分布していると
して平均的な毛細管径を測定し、管理を行ってきた。と
ころが、この測定方法は空気を送るなど圧力を加え測定
するため、毛細管径が圧力によって異なるなどの問題点
が生じる。また、図3からわかるように、用紙上で気孔
は決して均一に分布していない。そのため、このような
平均的な毛細管径も実際の値と違ってくることが予想で
きる。したがって、従来の測定方法は気孔が均一に分布
していると仮定し、測定する場合に接触法を用いること
から、正確に空隙率を測定することができなかった。
2. Description of the Related Art Recording paper has a porous structure. Taking a photograph of printing by a laser printer as an example, as shown in FIG. 3, the printing is formed so that spherical toner (colored resin powder) is on the hole of the paper. In addition, the paper has a capillary structure when viewed microscopically, and it has been managed by measuring the average capillary diameter assuming that the pores are uniformly distributed in the paper. However, since this measuring method is performed by applying pressure such as sending air, there is a problem that the diameter of the capillary varies depending on the pressure. Also, as can be seen from FIG. 3, the pores are never evenly distributed on the paper. Therefore, it can be expected that such an average capillary diameter will differ from the actual value. Therefore, the conventional measurement method cannot accurately measure the porosity because it is assumed that the pores are uniformly distributed and the contact method is used for the measurement.

【0003】その結果、記録用紙の品質管理を精度よく
行うことができないという問題点があった。本発明は、
このような従来の問題点に鑑みてなされたものであっ
て、記録用紙の品質管理を向上させることができる空隙
率固定装置および測定方法を提供することを目的とす
る。
As a result, there has been a problem that the quality control of the recording paper cannot be performed accurately. The present invention is
The present invention has been made in view of such conventional problems, and an object thereof is to provide a porosity fixing device and a measuring method capable of improving quality control of recording paper.

【0004】[0004]

【課題を解決するための手段】図1は本発明の原理説明
図である。図1において、13はテーブル1上に配置し
た記録用紙2に対してX線4を発生する発生源3とX線
4の強度を検出する検出センサ5を有する透過率測定装
置、7は前記記録用紙2の厚さを検出する厚さ検出手
段、10は求めた透過率と厚さにより嵩密度を演算し嵩
密度と別途求めた真密度により空隙率を演算する演算手
段である。
FIG. 1 illustrates the principle of the present invention. In FIG. 1, 13 is a transmittance measuring device having a source 3 for generating X-rays 4 on a recording sheet 2 arranged on a table 1 and a detection sensor 5 for detecting the intensity of the X-rays 4, and 7 is the recording. The thickness detecting means 10 for detecting the thickness of the paper 2 is a calculating means for calculating the bulk density based on the calculated transmittance and thickness, and calculating the porosity based on the bulk density and the true density separately calculated.

【0005】[0005]

【作用】テーブル上に配置した記録用紙に対してX線を
照射する。このとき、X線は直進し、その透過率は、ラ
ンバートベールの法則に従う。透過率はX線の強度を検
出する検出センサにより読み取ることができ、また、記
録用紙の厚さは厚さ検出手段により検出される。
The recording sheet arranged on the table is irradiated with X-rays. At this time, the X-ray goes straight, and its transmittance follows Lambert-Beer's law. The transmittance can be read by a detection sensor that detects the intensity of X-rays, and the thickness of the recording paper is detected by the thickness detecting means.

【0006】求めた透過率と厚さにより、所定の関係式
から嵩密度を演算して求めることができる。求めた嵩密
度と、別途求めた真密度により、所定の関係式から空隙
率を演算して求めることができる。このように、気孔が
均一に分布していると仮定することなく、また、接触方
式を用いることなく、非接触方式を用いるので、空隙率
を正確に求めることができる。
The bulk density can be calculated from a predetermined relational expression based on the calculated transmittance and thickness. With the obtained bulk density and the separately obtained true density, the porosity can be calculated by a predetermined relational expression. Since the non-contact method is used without assuming that the pores are uniformly distributed, and the contact method is not used, the porosity can be accurately obtained.

【0007】その結果、記録用紙の品質管理を精度良く
行うことができる。
As a result, it is possible to accurately control the quality of recording paper.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2は本発明の一実施例を示す図である。図2に
おいて、1はテーブルであり、テーブル1上には静電力
で記録用紙2が付着してセットされる。3はX線発生源
(発生源)であり、X線発生源3はX線4を記録用紙2
に対して照射する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing an embodiment of the present invention. In FIG. 2, reference numeral 1 is a table on which a recording sheet 2 is attached and set by electrostatic force. 3 is an X-ray generation source (generation source).
Irradiate against.

【0009】5はX線検出センサ(検出センサ)であ
り、X線検出センサ5はX線強度を検出する。X線検出
センサ5の出力は検出計6に入力し、透過率が検出され
る。本実施例においては、X線4を用いる例について説
明したが、これに限定されるものではなく、X線4の代
りにβ線を用いても良い。 7は厚さ検出手段としてのレーザ変位計であり、レーザ
変位計7は非接触で記録用紙2の厚さを検出する。な
お、レーザ変位計7の代りに接触方式のデジタルマイク
ロメータを用いて、記録用紙2の厚さを測定するように
しても良い。
An X-ray detection sensor (detection sensor) 5 detects the X-ray intensity. The output of the X-ray detection sensor 5 is input to the detector 6 and the transmittance is detected. In this embodiment, the example using the X-ray 4 has been described, but the present invention is not limited to this, and β-ray may be used instead of the X-ray 4. Reference numeral 7 is a laser displacement meter as a thickness detecting means, and the laser displacement meter 7 detects the thickness of the recording paper 2 in a non-contact manner. A contact type digital micrometer may be used in place of the laser displacement meter 7 to measure the thickness of the recording paper 2.

【0010】レーザ変位計7の出力は検出計8に入力
し、A/D変換器9でデジタル値に変換された後に、M
PU(演算手段)10に入力する。また、X線検出セン
サ5の出力も検出計6およびA/D変換器9を経てMP
U10に入力する。 11はメモリであり、メモリ11には、吸光係数や別途
求めた真密度などの定数と、嵩密度、空隙率を求める関
係式が予め格納されている。
The output of the laser displacement meter 7 is input to the detector 8 and converted into a digital value by the A / D converter 9 and then M
Input to the PU (arithmetic means) 10. Further, the output of the X-ray detection sensor 5 also passes through the detector 6 and the A / D converter 9 and is output to MP
Input in U10. Reference numeral 11 denotes a memory, and the memory 11 stores in advance constants such as an extinction coefficient and a separately obtained true density, and a relational expression for obtaining a bulk density and a porosity.

【0011】MPU10は透過率と厚さにより、嵩密度
を演算し、嵩密度と別途求めた真密度により空隙率を演
算する。求めた空隙率は、表示装置12に表示される。
なお、13は透過率測定装置を示す。次に、空隙率を測
定する測定方法を説明する。X線検出センサ5が設置し
てあるテーブル1に静電力により記録用紙2をセットす
る。次に、X線4を被測定物である記録用紙2に照射す
る。このとき、X線4は直進し、その透過率はランバー
トベールの法則に従う。 ln(It/Io)=−KρL (1) ここで、ln(It/Io)は透過率であり、これはテ
ーブル1に設置したX線強度を検出するX線検出センサ
により読み取ることができる。なお、ItはX線入射前
強度、IoはX線入射後強度である。また、Kは吸光係
数であり、物質によって定まる係数である。ρは記録用
紙2の密度で未知数である。Lは記録用紙2の厚さであ
り、レーザ変位計7により求めることができる。つま
り、記録用紙2の密度あるいは厚さはX線4の透過率に
対して比例関係にある。(1)式により厚さLが求める
と嵩密度ρがわかり、逆に、嵩密度ρがわかると厚さL
を求めることができる。また、空隙率ε,真密度ρp
嵩密度ρには(2)式の関係がある。 ε=1−(ρ/ρp ) (2) ここで、ρp はオートピクノメータで求めることがで
き、記録用紙2によってきまる物性値である。そこで
(1)により嵩密度ρがわかるので、(2)式より非接
触で空隙率εを求めることができる。
The MPU 10 calculates the bulk density from the transmittance and the thickness, and calculates the porosity from the bulk density and the true density separately obtained. The obtained porosity is displayed on the display device 12.
In addition, 13 shows a transmittance measuring device. Next, a measuring method for measuring the porosity will be described. The recording paper 2 is set on the table 1 on which the X-ray detection sensor 5 is installed by electrostatic force. Next, the X-ray 4 is applied to the recording paper 2 which is the object to be measured. At this time, the X-ray 4 travels straight and its transmittance follows Lambert-Beer's law. ln (It / Io) = − KρL (1) Here, ln (It / Io) is the transmittance, which can be read by the X-ray detection sensor installed on the table 1 for detecting the X-ray intensity. In addition, It is intensity before X-ray incidence, and Io is intensity after X-ray incidence. K is an extinction coefficient, which is a coefficient determined by the substance. ρ is the density of the recording paper 2 and is an unknown number. L is the thickness of the recording paper 2 and can be obtained by the laser displacement meter 7. That is, the density or thickness of the recording paper 2 is proportional to the transmittance of the X-ray 4. When the thickness L is calculated by the equation (1), the bulk density ρ is known, and conversely, when the bulk density ρ is known, the thickness L is calculated.
Can be asked. Further, the porosity ε, the true density ρ p, and the bulk density ρ have the relationship of the equation (2). ε = 1- (ρ / ρ p ) (2) Here, ρ p can be obtained by an auto pycnometer and is a physical property value determined by the recording paper 2. Therefore, since the bulk density ρ can be known from (1), the porosity ε can be obtained from the equation (2) without contact.

【0012】このように、記録用紙2に気孔が均一に分
布していると仮定することなく、また、非接触方式を用
いるので、記録用紙2の空隙率およびその分布を正確に
求めることができる。その結果、記録用紙2の品質管理
を精度よく行うことができる。
As described above, the porosity of the recording paper 2 and its distribution can be accurately obtained without assuming that the pores are evenly distributed on the recording paper 2 and by using the non-contact method. .. As a result, the quality control of the recording paper 2 can be performed accurately.

【0013】[0013]

【発明の効果】以上説明してきたように、本発明によれ
ば、記録用紙の透過率と厚さを非接触で求め、これによ
り、嵩密度を求め、嵩密度と別途求めた真密度により、
空隙率を正確に求めることができる。その結果、記録用
紙の品質管理を精度良く行うことができる。
As described above, according to the present invention, the transmittance and the thickness of the recording paper are obtained in a non-contact manner, and thereby the bulk density is obtained.
The porosity can be accurately determined. As a result, it is possible to accurately control the quality of the recording paper.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図FIG. 1 is an explanatory diagram of the principle of the present invention.

【図2】本発明の一実施例を示す図FIG. 2 is a diagram showing an embodiment of the present invention.

【図3】記録用紙の毛細管構造を示す図FIG. 3 is a diagram showing a capillary structure of recording paper.

【符号の説明】[Explanation of symbols]

1:テーブル 2:記録用紙 3:X線発生源(発生源) 4:X線 5:X線検出センサ(検出センサ) 6,8:検出計 7:レーザ変位計(厚さ検出手段) 9:A/D変換器 10:MPU(演算手段) 11:メモリ 12:表示装置 13:透過率測定装置 1: Table 2: Recording paper 3: X-ray generation source (generation source) 4: X-ray 5: X-ray detection sensor (detection sensor) 6, 8: Detection meter 7: Laser displacement meter (thickness detection means) 9: A / D converter 10: MPU (computing means) 11: memory 12: display device 13: transmittance measuring device

Claims (1)

【特許請求の範囲】 【請求項1】テーブル(1)上に配置した記録用紙
(2)に対してX線(4)を発生する発生源(3)とX
線(4)の強度を検出する検出センサ(5)を有する透
過率測定装置(13)と、前記記録用紙(2)の厚さを
検出する厚さ検出手段(7)と、求めた透過率と厚さに
より嵩密度を演算し嵩密度と別途求めた真密度により空
隙率を演算する演算手段(10)を備えたことを特徴と
する空隙率測定装置。 【請求項2】前記X線(4)の代りにβ線を用いたこと
を特徴とする空隙率測定装置。 【請求項3】前記透過率測定装置(13)を用いて記録
用紙(2)の透過率を測定するとともに、記録用紙
(2)の厚さを検出し、求めた透過率と厚さにより嵩密
度を演算し、別途真密度を求めて、嵩密度と真密度によ
り空隙率を演算することを特徴とする空隙率測定方法。
Claim: What is claimed is: 1. A source (3) for generating an X-ray (4) and an X for a recording sheet (2) arranged on a table (1).
A transmittance measuring device (13) having a detection sensor (5) for detecting the intensity of the line (4), a thickness detecting means (7) for detecting the thickness of the recording paper (2), and the calculated transmittance. A porosity measuring device comprising: a calculating unit (10) for calculating a bulk density based on a thickness and a thickness, and calculating a porosity based on a true density separately obtained from the bulk density. 2. A porosity measuring device using β rays instead of the X rays (4). 3. The transmittance of the recording paper (2) is measured by using the transmittance measuring device (13), the thickness of the recording paper (2) is detected, and the bulk is determined according to the calculated transmittance and thickness. A method for measuring porosity, which comprises calculating the density, separately determining the true density, and calculating the porosity from the bulk density and the true density.
JP15793591A 1991-06-28 1991-06-28 Porosity measurement device and measurement method Expired - Fee Related JP2954745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15793591A JP2954745B2 (en) 1991-06-28 1991-06-28 Porosity measurement device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15793591A JP2954745B2 (en) 1991-06-28 1991-06-28 Porosity measurement device and measurement method

Publications (2)

Publication Number Publication Date
JPH055690A true JPH055690A (en) 1993-01-14
JP2954745B2 JP2954745B2 (en) 1999-09-27

Family

ID=15660699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15793591A Expired - Fee Related JP2954745B2 (en) 1991-06-28 1991-06-28 Porosity measurement device and measurement method

Country Status (1)

Country Link
JP (1) JP2954745B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018463A1 (en) * 2004-07-15 2006-02-23 Asociación De Investigación De Las Industrias Cerámicas A.I.C.E. Method and device for non-destructively measuring the density of ceramic tiles
JP2006248024A (en) * 2005-03-10 2006-09-21 Seiko Epson Corp Device for determining printing method, printer, and determination method of printing method
JP2006248152A (en) * 2005-03-14 2006-09-21 Seiko Epson Corp Device for determining printing method, printer, and determination method of printing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018463A1 (en) * 2004-07-15 2006-02-23 Asociación De Investigación De Las Industrias Cerámicas A.I.C.E. Method and device for non-destructively measuring the density of ceramic tiles
ES2247933A1 (en) * 2004-07-15 2006-03-01 Asociacion De Investigacion De Las Industrias Ceramicas A.I.C.E. Method and device for non-destructively measuring the density of ceramic tiles
JP2006248024A (en) * 2005-03-10 2006-09-21 Seiko Epson Corp Device for determining printing method, printer, and determination method of printing method
JP4582319B2 (en) * 2005-03-10 2010-11-17 セイコーエプソン株式会社 Printing method determining apparatus, printing apparatus, and printing method determining method
JP2006248152A (en) * 2005-03-14 2006-09-21 Seiko Epson Corp Device for determining printing method, printer, and determination method of printing method
JP4577503B2 (en) * 2005-03-14 2010-11-10 セイコーエプソン株式会社 Printing method determining apparatus, printing apparatus, and printing method determining method

Also Published As

Publication number Publication date
JP2954745B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
US7363800B2 (en) Apparatus and method for measuring compositional parameters of a mixture
US7379828B2 (en) Method and apparatus for determining a quality metric of a measurement of a fluid parameter
Johnson et al. Laser velocimeter and hot-wire anemometer comparison in a supersonic boundary layer
JPS5920806A (en) Method and device for measuring sheet-shaped material
Guillonneau et al. Extraction of mechanical properties with second harmonic detection for dynamic nanoindentation testing
JP2954745B2 (en) Porosity measurement device and measurement method
Ozawa et al. Cross-spectral analysis of PSP images for estimation of surface pressure spectra corrupted by the shot noise
US4920265A (en) System for determining the basis weight of cord reinforced tire fabric
JPS6166953A (en) Method and device for measuring property of high-pressure westeam in small-diameter metallic pipe
US4505154A (en) Contactless measuring device for real-time detection of the properties and quantities respectively characteristic of the separation of volumes of liquid and the splitting of layers of liquid in the nips formed by the rollers on printing machines
US4136281A (en) Energy fluence meter for x-rays
US3604252A (en) Interferometric system for measuring physical condition of a medium
Yates Experimental observations of voidage in gas fluidized beds
JP2022091880A (en) Apparatus for simultaneously determining weight of composite sheet
US3303044A (en) Controlling coating weight through differential in tension
Welch et al. The reduction of uncertainties for absolute piston gage pressure measurements in the atmospheric pressure range
JP3078598B2 (en) Young's modulus measuring device and measuring method
JP4613613B2 (en) Physical quantity measurement method
JPH0126017B2 (en)
JPH08193877A (en) Method and device for measuring energy density of ultrasonic wave, and ultrasonic apparatus using the device
SU845552A1 (en) Method of measuring the thickness of metal pipeline wall
CA3193402A1 (en) Method and apparatus for measuring wet gas utilizing an augmented coriolis flow meter
Sharma Study of turbulent structure with hot-wires smaller than the viscous length
Sokolov et al. Dynamic thermal methods and microprocessing units for measuring the rates and properties of material flows
JPH0477262B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990622

LAPS Cancellation because of no payment of annual fees