JPH0556679B2 - - Google Patents

Info

Publication number
JPH0556679B2
JPH0556679B2 JP17104784A JP17104784A JPH0556679B2 JP H0556679 B2 JPH0556679 B2 JP H0556679B2 JP 17104784 A JP17104784 A JP 17104784A JP 17104784 A JP17104784 A JP 17104784A JP H0556679 B2 JPH0556679 B2 JP H0556679B2
Authority
JP
Japan
Prior art keywords
thin plate
thin
slot
plates
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17104784A
Other languages
Japanese (ja)
Other versions
JPS6148999A (en
Inventor
Takao Funamoto
Mitsuo Kato
Ryoichi Kajiwara
Satoshi Ogura
Yutaka Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17104784A priority Critical patent/JPS6148999A/en
Publication of JPS6148999A publication Critical patent/JPS6148999A/en
Publication of JPH0556679B2 publication Critical patent/JPH0556679B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、サイリスタなどの半導体装置に使用
する積層構造冷却フインの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a laminated cooling fin used in a semiconductor device such as a thyristor.

〔発明の背景〕[Background of the invention]

サイリスタなどの半導体素子は、容量の大型化
に伴つて、いかに効率のよい冷却方式を採用する
かが重要な課題となつており、その1つとして、
フロン等の蒸発性の良い冷却液の沸騰および凝縮
の繰返しを利用して冷却を行う沸騰冷却方式が採
用されている。沸騰冷却装置は、第5図に示すよ
うに一般に冷却液を収納する冷却フイン1と、そ
の上部に設けられた凝縮器2とからなつている。
冷却フインと凝縮器の間には絶縁材で作られた管
3を有する方式となつている。ところでこの沸騰
冷却装置では、半導体素子4の熱負荷の大小によ
つて内圧が真空から2〜3気圧まで変化するため
厳重な気密容器としなければならない。また冷却
フインは半導体素子からの熱をフロン沸騰により
冷却する部分であり、前記のとおりの気密性とと
もに冷却効率を高める必要がある。このためこの
方式の冷却フインをいかなる構造にするか、また
それをいかに製造するかについて従来より研究開
発が続けられてきているがいまだそれらの要件を
十分満足する技術が開発されていないのが現状で
ある。すなわち、従来、この方式の冷却フインを
製造する方法として、第6図に示すように、まず
冷却フイン内の流体通路を押出成形や切削加工に
より形成し(工程A,B)、次に管7,8および
側板を溶接し(加工C,D)し、その後ブスバー
6を溶接して第7図に示す構造冷却フインを製造
する方法が用いられているが、この方法では、溶
接工数が多く気密性確保に問題が多いばかりでな
く溶接変形に多大の注意をはらう必要があり技術
的な困難性を伴う。さらにこの方法の大きな欠点
は、押出法又は切削法により流体通路を形成して
いるため、流体通路の太さを小さくすることに限
界があることである。流体通路の太さを小さく
し、その数を多くすることは伝熱面積を大にし冷
却効率を高めるうえで重要な事項である。
As the capacity of semiconductor devices such as thyristors increases, it has become an important issue to find an efficient cooling method.
A boiling cooling method is used, which performs cooling by repeatedly boiling and condensing a coolant with good evaporability, such as Freon. As shown in FIG. 5, the boiling cooling device generally consists of a cooling fin 1 for storing a cooling liquid, and a condenser 2 provided above the cooling fin 1.
A pipe 3 made of an insulating material is provided between the cooling fins and the condenser. By the way, in this boiling cooling device, the internal pressure changes from vacuum to 2 to 3 atmospheres depending on the magnitude of the heat load on the semiconductor element 4, so the container must be tightly airtight. Furthermore, the cooling fin is a part that cools the heat from the semiconductor element by boiling freon, and needs to have high cooling efficiency as well as airtightness as described above. For this reason, although research and development has been carried out on the structure of this type of cooling fin and how to manufacture it, the current state is that no technology has been developed that fully satisfies these requirements. It is. That is, conventionally, as shown in FIG. 6, as a method for manufacturing this type of cooling fin, fluid passages within the cooling fin are first formed by extrusion molding or cutting (steps A and B), and then the tubes 7 are formed. , 8 and the side plates (processing C, D), and then weld the bus bar 6 to produce the structural cooling fin shown in Fig. Not only are there many problems in ensuring the properties of the welding process, but also great care must be taken to prevent welding deformation, which is accompanied by technical difficulties. Furthermore, a major drawback of this method is that since the fluid passages are formed by extrusion or cutting, there is a limit to how small the thickness of the fluid passages can be. Reducing the thickness of the fluid passages and increasing their number is an important matter in increasing the heat transfer area and increasing the cooling efficiency.

この他に、第8図に示すような中空の冷却フイ
ンも考えられているが、この構造では、半導体素
子を冷却フインに固定するための数トンにも及ぶ
荷重付加に耐えられず冷却フインが変形する欠点
を有する。また、近年半導体整流装置は大容量化
の傾向にあり、装置はますます大型化する傾向に
ある。この大型化は装置スペースの増大の問題を
引起すため、装置の小型化が望まれている。この
装置の小型化に関する先行技術としては、特開昭
57−49787号公報に記載された技術が挙げられる。
この技術は、冷却フイン(蒸発器)と凝縮器との
間を絶縁材で接続することなく、半導体素子と、
冷却フイン及び凝縮器を有する冷却体との間に高
熱伝導性絶縁材を介設するものである。しかしな
がら、この技術によつても、ある程度の小型化は
進むものの、根本的な小型化を実現することはで
きなく、依然として冷却フインの小型化が半導体
整流装置の小型化のネツクになつている。
In addition, a hollow cooling fin as shown in Figure 8 has been considered, but this structure cannot withstand the load of several tons required to secure the semiconductor device to the cooling fin. It has the disadvantage of being deformed. Furthermore, in recent years, there has been a trend toward larger capacities of semiconductor rectifiers, and the devices have also tended to become larger and larger. Since this increase in size causes the problem of an increase in device space, it is desired that the device be made smaller. As a prior art related to the miniaturization of this device, there is
The technique described in Japanese Patent No. 57-49787 is mentioned.
This technology connects semiconductor elements and
A highly thermally conductive insulating material is interposed between the cooling fins and a cooling body having a condenser. However, even with this technology, although miniaturization has progressed to some extent, it has not been possible to achieve fundamental miniaturization, and miniaturization of cooling fins remains the key to miniaturization of semiconductor rectifier devices.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、流体通路の形状、寸法が任意
に設定でき冷却効率が高く、かつ気密性が確保さ
れ、装置の小型化にも対応できる半導体用積層構
造冷却フインの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a laminated structure cooling fin for semiconductors, which allows the shape and dimensions of fluid passages to be arbitrarily set, has high cooling efficiency, ensures airtightness, and is compatible with miniaturization of devices. It is in.

〔発明の概要〕[Summary of the invention]

本発明は、前述の目的を達成するためには従来
のような、押出し加工又は切削加工による流体通
路の成形と溶接による組立てによる冷却フインで
は限界かあり、これに代る新規な方式の冷却フイ
ンを開発すべきであるとの考えから、鋭意研究し
た結果、以下に述べる積層構造の冷却フインの製
造方法を開発したものである。
In order to achieve the above-mentioned object, the conventional cooling fins in which fluid passages are formed by extrusion or cutting and assembled by welding have reached their limits. Based on the idea that we should develop a cooling fin, we conducted extensive research and developed the method for manufacturing cooling fins with a laminated structure described below.

本発明は、熱伝導性の良好な金属の薄板を積層
してなり、平らな外表面に取付けられる半導体素
子を冷却する流体の通路を内部に設けた半導体用
積層構造冷却フインを製造する方法であつて、ま
ず薄板として、平板の第1の薄板と、1個の半導
体素子に対応して複数の細溝穴を並列に形成しか
つこの複数の細溝穴の始終端それぞれの近傍にこ
の細溝穴と直交して広幅溝穴を形成した第2の薄
板と、第2の薄板に形成された広幅溝穴から各細
溝穴の端部を含む幅の拡大溝穴をその広幅溝穴と
細溝穴端部に該当する位置に形成した第3の薄板
との3種類を製作し、3種類の薄板の接合面を非
酸化性雰囲気中で清浄化し、接合面に接合合金層
を形成し、その後1枚の第1の薄板、1枚または
複数枚の第2の薄板、1枚または複数枚の第3の
薄板、1枚または複数枚の第2の薄板及び1枚の
第1の薄板の順になるように積層し、それから接
合し、次に接合した積層板の一側面から拡大溝穴
の長手方向に、第2の薄板の広幅溝穴と各細溝穴
間が直接に開通するように入口穴と出口穴を形成
し、各溝を流体の通路とすることを特徴としてい
る。
The present invention is a method for manufacturing a laminated structure cooling fin for semiconductors, which is made of laminated metal thin plates with good thermal conductivity and has a fluid passage inside for cooling semiconductor elements mounted on a flat outer surface. First, as a thin plate, a plurality of thin slotted holes are formed in parallel in a first flat plate corresponding to one semiconductor element, and these thin slotted holes are formed in the vicinity of each of the starting and ending ends of the plurality of narrow slotted holes. a second lamella forming a wide slot orthogonal to the slot, and an enlarged slot extending from the wide slot formed in the second lamina to the wide slot including the end of each narrow slot; Three types were manufactured, with a third thin plate formed at the position corresponding to the end of the narrow slot hole, and the bonding surfaces of the three types of thin plates were cleaned in a non-oxidizing atmosphere to form a bonding alloy layer on the bonding surface. , then one first thin plate, one or more second thin plates, one or more third thin plates, one or more second thin plates and one first thin plate. Then, from one side of the bonded laminates in the longitudinal direction of the enlarged slots, the wide slots of the second thin plate and each of the narrow slots are directly opened. It is characterized in that an inlet hole and an outlet hole are formed in the groove, and each groove is used as a passage for fluid.

具体的には、熱伝導性の良い例えば銅,アルミ
ニウム又はそれらの合金などの材料を素材とした
第1ないし第3の薄板を製作し、該薄板の積層接
合に際して、非酸化性雰囲気中で、Arイオンビ
ーム等によつて接合面を清浄化した後、接合用合
金層を蒸着又はスパツタ蒸着法により形成して接
合することにより、気密性にすぐれた半導体用積
層構造冷却フインが得られることを見出したもの
である。そして本発明の有効性は以下に述べる構
成の詳細な説明により、一層明確になるであろ
う。
Specifically, first to third thin plates made of a material with good thermal conductivity, such as copper, aluminum, or an alloy thereof, are manufactured, and when the thin plates are laminated and bonded, in a non-oxidizing atmosphere, After cleaning the bonding surface with an Ar ion beam, etc., a bonding alloy layer is formed by vapor deposition or sputter deposition, and bonding is performed to obtain a laminated structure cooling fin for semiconductors with excellent airtightness. This is what I found. The effectiveness of the present invention will become clearer from the detailed explanation of the configuration described below.

本発明においては、冷却フイン1の流体通路を
予め加工された薄板を積層接合することによつて
形成されるため、従来の押出し加工又は切削加工
と異つて、いかなる形状、寸法の流体通路5,1
1でも、プレス打抜きなどの比較的簡単な加工技
術によつて形成することが可能である。又プレス
打抜き加工に代えて、従来より知られているフオ
トエツチング、イオンビーム加工など微細加工技
術を利用すれば、一層微細な流体通路を形成する
ことができ冷却効率が高まることは言うまでもな
い。また本発明の製造方法において、薄板の積層
接合に際し、非酸化性雰囲気中で、Arイオンビ
ームなどによつて接合面を清浄化した後、さらに
その接合面に接合合金層を蒸着又はスパツタ蒸着
により形成して接合するようにした技術的理由は
以下のことを考慮したためである。前述のとお
り、半導体用冷却フインは、使用時に真空から2
〜3気圧程度の圧力変化が起るため、その気密性
が重要な問題となり、接合を強固にする必要があ
るとともに、精密な流体通路の確保を容易にする
ためである。すなわち、素材となる金属板表面は
通常汚染膜又は酸化膜で覆われているため、この
ままの金属板を拡散接合するには極めて高い温度
と接合圧力を要し、このため変形が生じやすい。
特に素材としてアルミニウム又はその合金を素材
とする薄板は緻密で安定な酸化膜を有するためそ
の接合は極めて困難である。そこで本発明者等
は、この問題について種々研究した結果、非酸化
性雰囲気中で、まず接合面の表面の汚染膜、酸化
膜をArイオンビーム等により除去清浄化したの
ち、更にその接合面に蒸着またはスパツタ蒸着法
により銅などの接合用合金層を形成して接合する
手段を講じることにより、比較的低温度、低接合
圧力で、したがつて変形の恐れがなく、強固な積
層接合が可能であることを見出したものである。
積層接合の他の方法として、ロウ付け法も考えら
れるが、この方法を用いる場合は、接合に際して
ロウ材が流体通路に流れ込み通路をふさぐ恐れが
あるため、ロウ材の量に十分注意する必要があ
る。また他の方法として、接合面にインサートを
挿入して液相拡散接合する方法もあるが、この方
法においても、インサートの溶込みにより通路が
埋まる恐れがあり、インサートの厚さ十分注意を
払う必要がある。
In the present invention, since the fluid passages of the cooling fins 1 are formed by laminating and bonding pre-processed thin plates, unlike conventional extrusion or cutting processes, the fluid passages 5 of any shape and size can be formed. 1
1 can be formed by a relatively simple processing technique such as press punching. It goes without saying that if conventionally known microfabrication techniques such as photoetching and ion beam machining are used instead of press punching, even finer fluid passages can be formed and cooling efficiency can be increased. In addition, in the manufacturing method of the present invention, when laminating and bonding thin plates, after cleaning the bonding surface with an Ar ion beam or the like in a non-oxidizing atmosphere, a bonding alloy layer is further deposited on the bonding surface by vapor deposition or sputter deposition. The technical reason for forming and bonding is due to the following considerations. As mentioned above, cooling fins for semiconductors must be removed from the vacuum at the time of use.
Since a pressure change of about 3 atmospheres occurs, airtightness is an important issue, and it is necessary to strengthen the joint and to facilitate the establishment of precise fluid passages. That is, since the surface of the metal plate used as the raw material is usually covered with a contaminated film or an oxide film, extremely high temperatures and bonding pressures are required to diffusion bond the metal plate as it is, and deformation is therefore likely to occur.
In particular, thin plates made of aluminum or an alloy thereof have a dense and stable oxide film, so joining them is extremely difficult. As a result of various studies on this problem, the present inventors first removed and cleaned the contaminated film and oxide film on the surface of the bonding surface using an Ar ion beam in a non-oxidizing atmosphere, and then further cleaned the surface of the bonding surface. By forming and bonding a bonding alloy layer such as copper using vapor deposition or sputter vapor deposition, it is possible to achieve strong laminated bonding at relatively low temperatures and bonding pressures, without fear of deformation. This is what we found out.
Another method for laminated bonding is brazing, but when using this method, the amount of brazing filler metal must be carefully controlled as there is a risk that the filler metal may flow into the fluid passage and block it during bonding. be. Another method is to perform liquid phase diffusion bonding by inserting an insert into the joint surface, but even with this method, there is a risk that the passage may be filled by penetration of the insert, so careful attention must be paid to the thickness of the insert. There is.

これに対し、本発明では接合合金層を蒸着又は
スパツタ蒸着により形成するため、その合金層の
厚さは極めて薄くすることが可能であり、接合の
際、接合合金が溶けても通路への流れ込みがなく
容易に精密な流体通路を有する積層構造冷却フイ
ンを製造することができる。
In contrast, in the present invention, the bonding alloy layer is formed by vapor deposition or sputter vapor deposition, so the thickness of the alloy layer can be made extremely thin, and even if the bonding alloy melts during bonding, it will not flow into the passage. Laminated structure cooling fins with precise fluid passages can be easily manufactured without any problems.

金属にセラミツクスを介在させた構造となつた
場合でも、セラミツクス接合面上に蒸着又はスパ
ツタ蒸着により薄いメタライズ層を形成し、さら
に接合用合金層を形成する方法を取るため、本質
的には、金属同志の場合とまつたく同じである。
Even in the case of a structure in which ceramic is interposed between metal, a thin metallized layer is formed on the ceramic bonding surface by vapor deposition or sputter deposition, and a bonding alloy layer is further formed. It is exactly the same as in the case of comrades.

また、積層構造冷却フインを製造する方法に於
て、該薄板の接合面を非酸化性雰囲気中で清浄化
し接合面に接合用合金層を形成した後、接合時に
流体通路となる溝を加工しても何ら問題は無い。
In addition, in the method of manufacturing a laminated structure cooling fin, after cleaning the bonding surfaces of the thin plates in a non-oxidizing atmosphere and forming a bonding alloy layer on the bonding surfaces, grooves that will become fluid passages during bonding are processed. There is no problem with that.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を、第1図、第2図および第3
図を用いて説明する。
Embodiments of the present invention are illustrated in FIGS. 1, 2, and 3.
This will be explained using figures.

第1図に示す板厚2mmのアルミニウム薄板9を
2枚と、プレスにより積層時に細溝穴としての流
体通路5、広幅溝穴としての流体通路11を形成
するように打ち抜いた板厚2mmのアルミニウム薄
板10を4枚と、同様に拡大溝穴としての流体通
路13を形成するようにプレス打抜き加工された
板厚4mmのアルミニウム板6を2枚を用意し、こ
れらを真空室に装入してそれぞれの接合面にAr
イオンビームを照射して清浄化したのち、同一真
空容器内で、スパツタ蒸着により銅を0.5μm付着
した。前記の処理を施した各アルミニウム板を第
2図に示すように積層した後、真空炉に装入し、
450℃、0.5Kg/mm2の加圧力で1時間接合を行い各
板を一体化し第7図の実線で示すような冷却フイ
ンを作製した。第3図に示す冷却フインにおいて
は、前記のとおり各薄板を接合した後、冷却媒体
の流入流出口の穴あけと各流体通路5と11を連
絡して冷却媒体が各流体通路に流入できるように
するために、側面12より穴あけ加工を施し、そ
の媒体の流入流出口に、該冷却フインと凝縮器と
の間で冷却媒体を循環させるための接続管7,8
を溶接により一体化している。第4図は第3図に
示すA−A断面図を示す。なお、この実施例にお
いては、予め流体通路11,13を設けている
が、これは後の穴あけ加工を容易にするためのも
ので、必ずしも予め流体通路11,13を設けて
おく必要はなく、後の穴あけ加工の際にこの流体
通路11,13を流体通路5につながるように形
成してもよい。また、ブスバーを2枚用いている
が、これも打抜き加工を容易にするためで1枚で
あつても本質的な問題はない。
Two aluminum thin plates 9 with a thickness of 2 mm shown in Fig. 1 are punched out using a press so as to form a fluid passage 5 as a narrow slot and a fluid passage 11 as a wide slot when stacked. Four thin plates 10 and two 4 mm-thick aluminum plates 6, which were similarly press-punched to form fluid passages 13 as enlarged slots, were prepared, and these were charged into a vacuum chamber. Ar on each joint surface
After cleaning by irradiating with an ion beam, copper was deposited to a thickness of 0.5 μm by sputter deposition in the same vacuum chamber. After the aluminum plates subjected to the above treatment were stacked as shown in Fig. 2, they were loaded into a vacuum furnace.
Bonding was performed at 450° C. for 1 hour under a pressure of 0.5 Kg/mm 2 to integrate the respective plates and produce a cooling fin as shown by the solid line in FIG. In the cooling fin shown in FIG. 3, after each thin plate is joined as described above, holes are made for the inflow and outflow ports for the cooling medium and the fluid passages 5 and 11 are connected so that the cooling medium can flow into each fluid passage. In order to do this, holes are drilled from the side surface 12, and connection pipes 7 and 8 are provided at the medium inflow and outflow ports for circulating the cooling medium between the cooling fins and the condenser.
are integrated by welding. FIG. 4 shows a sectional view taken along the line AA shown in FIG. In this embodiment, the fluid passages 11 and 13 are provided in advance, but this is to facilitate the subsequent drilling process, and it is not necessarily necessary to provide the fluid passages 11 and 13 in advance. The fluid passages 11 and 13 may be formed so as to be connected to the fluid passage 5 during later drilling. Further, although two busbars are used, this is also to facilitate punching, and there is no essential problem even if only one busbar is used.

この実施例の冷却フインは、5mm×6mmの矩形
の流体通路を有しているが、その熱抵抗の測定を
行つた結果、0.005℃/Wと非常にすぐれた冷却
フインであることが判明した。また気密性におい
ても10-9Torr/sec以下とすぐれており、さらに
従来の冷却フインに比較して約1/2の薄肉化が達
成されている。
The cooling fin of this example has a rectangular fluid passage measuring 5 mm x 6 mm, and as a result of measuring its thermal resistance, it was found to be an extremely excellent cooling fin of 0.005°C/W. . It also has excellent airtightness, at less than 10 -9 Torr/sec, and is approximately 1/2 thinner than conventional cooling fins.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体用積層構造冷却フイン
の製造方法を、1個の半導体素子に対応して複数
の細溝穴を並列に形成しかつ細溝穴の始終端近傍
にそれぞれ広幅溝穴を形成した薄板と、この薄板
の広幅溝穴から細溝穴の端部を含む幅の拡大溝穴
を広幅溝穴と細溝穴端部に当たる位置に形成した
別の薄板とを、2枚の平板の間に適宜枚数配して
積層し、接合するものとしたので、必要によつて
は、細溝穴を微細にし、100μm以下のミクロンオ
ーダーの流体通路を自由に形成できるため、高い
冷却効率を有し装置の小型化に対応できる半導体
冷却フインを実現することができ、また薄板に広
幅溝穴、拡大溝穴を予め形成しておくので、細溝
穴に通ずる入口穴及び出口穴を容易に加工するこ
とができるという効果を有する。
According to the present invention, a method for manufacturing a laminated structure cooling fin for a semiconductor is provided in which a plurality of narrow slot holes are formed in parallel corresponding to one semiconductor element, and wide slots are formed near the beginning and end of each of the narrow slot holes. The formed thin plate and another thin plate in which enlarged slots with a width extending from the wide slot of this thin plate to the end of the narrow slot are formed at positions corresponding to the ends of the wide slot and the narrow slot are made into two flat plates. By placing an appropriate number of sheets between them, stacking them and bonding them together, if necessary, the slotted holes can be made finer and fluid passages on the micron order of 100 μm or less can be freely formed, resulting in high cooling efficiency. It is possible to realize a semiconductor cooling fin that can accommodate the miniaturization of equipment, and since wide slots and enlarged slots are pre-formed in the thin plate, the inlet and outlet holes leading to the narrow slots can be easily made. It has the effect that it can be processed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の積層板の形状を示す図、第2
図は本発明の積層状況の概略図、第3図は本発明
による冷却フインの完成図、第4図は第3図の冷
却フインの断面図、第5図は沸騰冷却装置の概略
図、第6図は従来の冷却フインの製造工程を示す
図、第7図は従来の冷却フインの完成図、第8図
は中空冷却フインを示す図である。 1……冷却フイン、2……凝縮器、3……絶縁
材、4……半導体素子、5,11,13……流体
通路、6……ブスバー、7,8……凝縮器と冷却
フインの接続管、9……半導体素子設置用薄板、
10……流体通路形成用薄板、12……側面。
Figure 1 is a diagram showing the shape of the laminate of the present invention, Figure 2 is a diagram showing the shape of the laminate of the present invention.
The figure is a schematic diagram of the lamination state of the present invention, Figure 3 is a completed diagram of the cooling fin according to the present invention, Figure 4 is a sectional view of the cooling fin of Figure 3, Figure 5 is a schematic diagram of the boiling cooling device, FIG. 6 is a diagram showing the manufacturing process of a conventional cooling fin, FIG. 7 is a diagram showing a completed conventional cooling fin, and FIG. 8 is a diagram showing a hollow cooling fin. DESCRIPTION OF SYMBOLS 1... Cooling fin, 2... Condenser, 3... Insulating material, 4... Semiconductor element, 5, 11, 13... Fluid passage, 6... Bus bar, 7, 8... Condenser and cooling fin Connection pipe, 9...Thin plate for installing semiconductor elements,
10... Thin plate for fluid passage formation, 12... Side surface.

Claims (1)

【特許請求の範囲】[Claims] 1 熱伝導性の良好な金属の薄板を積層してな
り、外平面に取付ける半導体素子を冷却する流体
の通路を内部に設けた半導体用積層構造冷却フイ
ンの製造方法において、前記薄板として、平板で
なる第1の薄板と、1個の半導体素子に対応して
複数の細溝穴を並列に形成しかつ該複数の細溝穴
の始終端それぞれの近傍に該細溝穴と直交して広
幅溝穴を形成した第2の薄板と、第2の薄板に形
成された広幅溝穴から各細溝穴の端部を含む幅の
拡大溝穴を該広幅溝穴と該細溝穴端部に該当する
位置に形成した第3の薄板との3種類を製作し、
該各薄板の接合面を非酸化性雰囲気中で清浄化
し、接合面に接合合金層を形成し、それから1枚
の第1の薄板、1枚または複数枚の第2の薄板、
1枚または複数枚の第3の薄板、1枚または複数
枚の第2の薄板及び1枚の第1の薄板の順に積層
して接合し、該接合した積層板の1側面から拡大
溝穴長手方向に、第2の薄板の広幅溝穴と各細溝
穴が直接つながるように、入口穴と出口穴を形成
し、各溝を流体の通路とすることを特徴とする半
導体用積層構造冷却フインの製造方法。
1. A method for producing a cooling fin with a laminated structure for a semiconductor, which is formed by laminating thin metal plates with good thermal conductivity and has a fluid passage inside for cooling a semiconductor element attached to an outer surface, wherein the thin plate is a flat plate. a first thin plate, a plurality of narrow slot holes are formed in parallel corresponding to one semiconductor element, and wide grooves are formed in the vicinity of each of the starting and ending ends of the plurality of narrow slot holes, orthogonal to the narrow slot holes. a second thin plate having a hole formed therein; and an enlarged slot having a width extending from the wide slot formed in the second thin plate to include the end of each narrow slot, corresponding to the wide slot and the end of the narrow slot. We manufactured three types with a third thin plate formed at the position where
The bonding surfaces of each of the thin plates are cleaned in a non-oxidizing atmosphere to form a bonding alloy layer on the bonding surfaces, and then one first thin plate, one or more second thin plates,
One or more third thin plates, one or more second thin plates, and one first thin plate are laminated and bonded in this order, and an enlarged longitudinal slot is formed from one side of the bonded laminated plates. A cooling fin with a laminated structure for semiconductors, characterized in that an inlet hole and an outlet hole are formed in the direction so that the wide slot of the second thin plate and each narrow slot are directly connected, and each groove is used as a passage for fluid. manufacturing method.
JP17104784A 1984-08-17 1984-08-17 Laminated structure cooling fin and method of producing same Granted JPS6148999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17104784A JPS6148999A (en) 1984-08-17 1984-08-17 Laminated structure cooling fin and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17104784A JPS6148999A (en) 1984-08-17 1984-08-17 Laminated structure cooling fin and method of producing same

Publications (2)

Publication Number Publication Date
JPS6148999A JPS6148999A (en) 1986-03-10
JPH0556679B2 true JPH0556679B2 (en) 1993-08-20

Family

ID=15916094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17104784A Granted JPS6148999A (en) 1984-08-17 1984-08-17 Laminated structure cooling fin and method of producing same

Country Status (1)

Country Link
JP (1) JPS6148999A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959195B (en) 2011-12-07 2018-04-20 英特尔公司 Volume resistance fan equipment and system
US10545546B2 (en) 2018-02-23 2020-01-28 Intel Corporation Reversible direction thermal cooling system
EP3628872B1 (en) 2018-09-27 2023-01-25 INTEL Corporation Volumetric resistance blowers

Also Published As

Publication number Publication date
JPS6148999A (en) 1986-03-10

Similar Documents

Publication Publication Date Title
EP0012770B1 (en) Fluid cooled semiconductor device
JP5052350B2 (en) Heat sink with microchannel cooling
EP3446058B1 (en) Microchannel evaporators with reduced pressure drop
US7277283B2 (en) Cooling apparatus, cooled electronic module and methods of fabrication thereof employing an integrated coolant inlet and outlet manifold
JP3438087B2 (en) Ribbon plate heat pipe
US8254422B2 (en) Microheat exchanger for laser diode cooling
US6003591A (en) Formed laminate heat pipe
US20050126758A1 (en) Heat sink in the form of a heat pipe and process for manufacturing such a heat sink
WO2011065457A1 (en) Laminate and manufacturing method for same
EP3539156A1 (en) Method and device for spreading high heat fluxes in thermal ground planes
CN113465430B (en) Ultrathin thermal diode based on gas-liquid coplanar structure and preparation method thereof
CN109416224B (en) Laminated microchannel heat exchanger
CN113587692B (en) Micro-channel heat sink and manufacturing method thereof
CN113056087B (en) Printed circuit board embedded with micro-channel and preparation method thereof
JPH0556679B2 (en)
CN116817648A (en) Ceramic temperature equalizing plate and manufacturing method thereof
JPH0361539B2 (en)
JPS61104645A (en) Cooler and manufacture thereof
WO2021086893A2 (en) Ultrasonic additively manufactured coldplates on heat spreaders
TWI792852B (en) A three-dimensional heat dissipation circuit board assembly and manufacturing method thereof
WO2023133720A1 (en) Manufacturing method for circuit board assembly having three-dimensional heat dissipation
JP4984955B2 (en) Power element mounting unit, power element mounting unit manufacturing method, and power module
US20230226590A1 (en) Microchannel heat sink and method of manufacturing the same
JP6673635B2 (en) Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink
US20230091157A1 (en) Laminated thin heat dissipation device and method of manufacturing the same