JPH0556659B2 - - Google Patents

Info

Publication number
JPH0556659B2
JPH0556659B2 JP60001071A JP107185A JPH0556659B2 JP H0556659 B2 JPH0556659 B2 JP H0556659B2 JP 60001071 A JP60001071 A JP 60001071A JP 107185 A JP107185 A JP 107185A JP H0556659 B2 JPH0556659 B2 JP H0556659B2
Authority
JP
Japan
Prior art keywords
substrate
temperature
voltage
threshold voltage
mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60001071A
Other languages
Japanese (ja)
Other versions
JPS61160960A (en
Inventor
Yoshiro Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60001071A priority Critical patent/JPS61160960A/en
Publication of JPS61160960A publication Critical patent/JPS61160960A/en
Publication of JPH0556659B2 publication Critical patent/JPH0556659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • H01L27/0211Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique adapted for requirements of temperature

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板温度の変化に伴ない生ずる電界
効果トランジスタのしきい値電圧変動を緩和する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention alleviates threshold voltage fluctuations of field effect transistors that occur with changes in substrate temperature.

従来の技術 本来、絶縁ゲート型(IG)電界効果トランジ
スタ(FET)のしきい値電圧は、第2図に示し
た様な温度依存性を有する。この温度依存性は、
ゲート絶縁膜厚、チヤンネル基板濃度等に依存す
るが、一般に、次式で表わすことができる(参考
文献:Sze 2nd edition Physics of
Semiconductor devices P451)。
Prior Art Originally, the threshold voltage of an insulated gate (IG) field effect transistor (FET) has a temperature dependence as shown in FIG. This temperature dependence is
Although it depends on the gate insulating film thickness, channel substrate concentration, etc., it can generally be expressed by the following formula (Reference: Sze 2nd edition Physics of
Semiconductor devices P451).

dVT/dT=dΨB/dT(2+1/Ci√εsqNA/ΨB)……
(1) ただし、dΨB/dT±1/T〔Eg(T=O)/2q−|
ΨB (T)|〕 ……(1a) ここで、T:基板温度(K) ΨB:半導体のフエルミ準位と真性フエルミ
準位との差 Ci:絶縁膜容量(F/cm2) Εs:半導体の誘電率(F/cm) q:電子の電荷(C) NA:半導体内の不純物濃度( /cm3) Eg:禁制帯幅(eV) たとえば、絶縁膜厚100nm、不純物濃度1×
1015/cmの酸化シリコンを絶縁膜とするn型シリ
コンMOSFETの場合、その温度依存性は約2m
V/℃となる。
dV T /dT=dΨ B /dT (2+1/C i √ε s qN AB )...
(1) However, dΨ B /dT±1/T[E g (T=O)/2q−|
Ψ B (T) |] ... (1a) Where, T: Substrate temperature (K) Ψ B : Difference between the Fermi level of the semiconductor and the intrinsic Fermi level C i : Insulating film capacitance (F/cm 2 ) E s : Dielectric constant of semiconductor (F/cm) q : Electron charge (C) N A : Impurity concentration in semiconductor (/cm 3 ) E g : Forbidden band width (eV) For example, insulating film thickness 100 nm, impurity Concentration 1×
In the case of an n-type silicon MOSFET whose insulating film is silicon oxide of 10 15 /cm, its temperature dependence is approximately 2 m.
V/°C.

従来、IGFETは、通常デジタル回路に用いら
れる事が多く、また微小電圧差の検出には、セン
スアンプ回路のように、まつたく同じ構造の隣接
しあつたトランジスタを対象に使用する事から、
この様な温度差を問題にする事は少なく、これを
緩和しようとする従来例も見当らない。
Conventionally, IGFETs are often used in digital circuits, and to detect minute voltage differences, they are used to detect adjacent transistors with the same structure, such as in sense amplifier circuits.
Such a temperature difference is rarely a problem, and there are no conventional examples that attempt to alleviate it.

一方、近年素子の物理寸法の縮小に伴ない、電
界が強まる事により生ずるホツト・キヤリア効
果、移動度の低下、キヤリア速度飽和等の諸問題
をさける為、電源電圧やしきい値電圧(VT)も
下げる必要性が生じて来た。しかし、(1)式からも
わかる様に、しきい値電圧の温度依存性は、電源
電圧の低下等と共に、単純に縮小する事はできな
い。このため、このVT温度依存性により、しき
い値電圧(VT)の下限が制限されてしまう。た
とえば、G.Baccarani,M.R.Wordeman,R.H.
Dennard等がアイイーイーイー トランスアクシ
ヨン オン エレクトロンデバイシズ,イーデー
−31巻、4号、452−462頁、1984年4月(IEEE
Transaction on Electron Devices,Vol.ED−
31,No.4,PP.452−462,Apr.1984)の“一般測
定理論及びその1/4マイクロメータ MOSFET
設計への応用(Genaralized Scaling Theory
and Its Application to a 1/4Micrometer
MOSFET Design)”の中で述べられている様
に、0.25μmレベルのMOSFETを実現しようとし
た時、使用温度範囲の上限を70℃と設定すると、
VTの下限は常温では250mVとなつてしまう。
On the other hand, as the physical dimensions of devices have decreased in recent years, the power supply voltage and threshold voltage (V T ) has also become necessary. However, as can be seen from equation (1), the temperature dependence of the threshold voltage cannot be simply reduced as the power supply voltage decreases. Therefore, this V T temperature dependence limits the lower limit of the threshold voltage (V T ). For example, G. Baccarani, MR Wordeman, RH
Dennard et al., IEEE Transaction on Electron Devices, Vol. 31, No. 4, pp. 452-462, April 1984 (IEEE
Transaction on Electron Devices, Vol.ED−
31, No. 4, PP. 452-462, Apr. 1984) “General measurement theory and its 1/4 micrometer MOSFET
Application to design (Generalized Scaling Theory)
and Its Application to a 1/4 Micrometer
MOSFET Design)”, when trying to realize a 0.25μm level MOSFET, if the upper limit of the operating temperature range is set at 70℃,
The lower limit of V T is 250mV at room temperature.

発明が解決しようとする問題点 以上、述べた様に、MOSFETのしきい値電圧
の温度依存性は、素子寸法や、電源電圧を縮小し
ても同様に縮小する事ができないため、VTの値
に対するVTの温度依存性の比が大きくなり、VT
の下限、ひいては、電源電圧の下限を決める要因
となる。
Problems to be Solved by the Invention As stated above, the temperature dependence of the MOSFET threshold voltage cannot be reduced even if the element size or power supply voltage is reduced . The ratio of the temperature dependence of V T to the value increases, and V T
This is a factor that determines the lower limit of power supply voltage and, in turn, the lower limit of power supply voltage.

本発明は、かかる点を解決するためになされた
もので、1つの基板電位をコントロールする回路
を、半導体集積回路の内部に付加することだけ
で、基板上のすべての同一タイプ(n型か、ある
いはp型)のIGFETの温度依存性を緩和するこ
とを目的としている。
The present invention was made to solve this problem, and by simply adding a circuit for controlling the substrate potential inside the semiconductor integrated circuit, all the same type (n type, The purpose is to alleviate the temperature dependence of p-type (or p-type) IGFETs.

問題点を解決するための手段 本発明は、上記問題点を解決するため、半導体
基板の電位を、基板温度に応じて変えてやる事に
より、閾値電圧の温度依存性を緩和するものであ
る。
Means for Solving the Problems In order to solve the above problems, the present invention alleviates the temperature dependence of the threshold voltage by changing the potential of the semiconductor substrate depending on the substrate temperature.

作 用 本発明は、上記した構成により、基板電位を基
板温度に応じて、コントロールし、基板バイアス
効果を利用し、基板温度変化により生じたVT
動を補正する。
Effects The present invention, with the above-described configuration, controls the substrate potential according to the substrate temperature, utilizes the substrate bias effect, and corrects the V T fluctuation caused by the change in the substrate temperature.

実施例 第1図は、本発明を構成する基板電位設定回路
の一実施例である。第1図において、1は基板電
圧設定回路ブロツクを示し、2はそれにより、補
償を受けるIGFETを示している。本実施例では、
これらの回路をSi基板上に形成する。3はダイオ
ードを示し、PN接合から成るダイオードを順方
向に4段直列に用いる。4は抵抗であり、半導体
基板内の拡散層を用いて、約5KΩになるよう形
成する。端子5はグランド(oV)に接続し、端
子6は−3.8Vの負バイアスに接続して使用する。
端子7は、基板電圧の出力端子であり、ブロツク
2のFETに供給される。また端子7の電位は、
ダイオード3の順方向電圧(VD)が、0.2mA常
温で流した時0.7Vであることから、−3.8+4VD
−1.0(V)である。一方、ブロツク2に示され
た、補償を受けるFETと、ゲート酸化膜厚
20nm、基板濃度3×1016/cm3のn型MOSFETで
あり、温度補償される前には、第3図aに示した
様に、そのしきい値電圧は−30℃から+70℃の使
用設定温度範囲において、dVT/dT−
1.8mV/℃程度の温度依存性を有する。基板電圧
設定回路1の基板電圧出力端子7の電位依存性
は、第3図bの実線で示した様になる。これは、
pn接合ダイオードの順方向電圧(VD)の温度依
存性が1つ当たりΔVD/ΔT=−1.8mV/℃であ
るためで、これを直列に4段接続した回路3では
温度依存性は4倍の−7.2mV/℃となる。従つて
−30℃から70℃の間ではしきい値電圧は−0.64V
から−1.36Vまで変化させる事ができる。この基
板電圧の変化は、FET2のしきい値電圧を基板バ
イアス効果により第3図bの破線で示したように
変化させる。この基板電圧によつて受けるFET2
のしきい値電圧の変化は、同じFET2が温度変化
によつて受けたしきい値電圧の変化とちようど打
ち消し合う方向に働く。したがつて、この温度補
償を受けたMOSFETのVTの温度依存性は第3図
cの様になり、−30℃から70℃の間で、変動幅は、
20mVと、補償を受けないMOSFETの変動幅
180mVに比べ1/9と軽減されることがわかる。
Embodiment FIG. 1 shows an embodiment of a substrate potential setting circuit constituting the present invention. In FIG. 1, 1 indicates a substrate voltage setting circuit block, and 2 indicates an IGFET compensated thereby. In this example,
These circuits are formed on a Si substrate. Reference numeral 3 indicates a diode, and four stages of diodes consisting of a PN junction are used in series in the forward direction. 4 is a resistor, which is formed using a diffusion layer in the semiconductor substrate to have a resistance of approximately 5KΩ. Terminal 5 is connected to ground (oV), and terminal 6 is connected to -3.8V negative bias.
Terminal 7 is a substrate voltage output terminal and is supplied to the FET of block 2. Also, the potential of terminal 7 is
Since the forward voltage (V D ) of diode 3 is 0.7 V when 0.2 mA is applied at room temperature, -3.8 + 4 V D =
-1.0 (V). On the other hand, the compensated FET shown in block 2 and the gate oxide film thickness
It is an n-type MOSFET with a thickness of 20 nm and a substrate concentration of 3 x 10 16 /cm 3. Before temperature compensation, its threshold voltage can be used between -30°C and +70°C, as shown in Figure 3a. Within the set temperature range, dV T /dT−
It has a temperature dependence of about 1.8mV/℃. The potential dependence of the substrate voltage output terminal 7 of the substrate voltage setting circuit 1 is as shown by the solid line in FIG. 3b. this is,
This is because the temperature dependence of the forward voltage (V D ) of a pn junction diode is ΔV D /ΔT = -1.8 mV/℃ per pn junction diode, and in circuit 3 in which four stages are connected in series, the temperature dependence is 4. This is twice as high as -7.2mV/℃. Therefore, the threshold voltage is -0.64V between -30℃ and 70℃.
It can be varied from -1.36V. This change in substrate voltage causes the threshold voltage of FET 2 to change as shown by the broken line in FIG. 3b due to the substrate bias effect. FET2 received by this substrate voltage
The change in threshold voltage of FET2 works in the direction of exactly canceling out the change in threshold voltage that the same FET2 receives due to temperature change. Therefore, the temperature dependence of V T of the MOSFET that has received this temperature compensation is as shown in Figure 3c, and the fluctuation range is between -30°C and 70°C.
20mV and uncompensated MOSFET fluctuation range
It can be seen that the voltage is reduced to 1/9 compared to 180mV.

また、基板電位コントロールによるIGFETの
温度補償は、第4図aに示した様に、サブスレツ
シユホール領域におけるVG−log IDカーブの傾き
が温度の上昇と共に、小さくなるのに対し、基板
電圧を下げる事により、第4図bに示す様に、傾
きを大きくするといつた効果もあり、温度上昇に
伴なう、傾きの低下のために生ずる、ソース・ド
レイン間のリーク電流の増大をおさえる。
In addition, as shown in Figure 4a, the temperature compensation of the IGFET by controlling the substrate potential is such that the slope of the V G -log I D curve in the subthreshold hole region decreases as the temperature rises, while the substrate voltage As shown in Figure 4b, lowering has the effect of increasing the slope, suppressing the increase in leakage current between the source and drain that occurs due to the decrease in slope as the temperature rises. .

発明の効果 以上、述べた様に、本発明によれば、半導体集
積回路内の同一基板内に、基板電圧をコントロー
ルする回路を設ける事により、きわめて、温度の
影響の受けにくい、集積回路が実現できる。
Effects of the Invention As described above, according to the present invention, by providing a circuit for controlling substrate voltage within the same substrate in a semiconductor integrated circuit, an integrated circuit that is extremely unaffected by temperature can be realized. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した回路図、第
2図はMOSFETのしきい値電圧の温度依存性を
示した図、第3図aは一実施例に用いた
MOSFETが、温度補償を受けない時のVTの温度
依存性を示す図、同図bは基板電圧設定回路の出
力電圧(VB)とそれにより補償を受けると想定
されるΔVTの補償分を示した図、同図cは実施例
において補償を受けたMOSFETの温度依存性を
示した図、第4図aはMOSFETのサブスレツシ
ユホールド特性の傾きの温度依存性を示す図、同
図bは同じ傾きの基板バイアス依存性を示す図で
ある。 1……基板電圧設定回路ブロツク、2……
IGFETブロツク、3……ダイオード、4……抵
抗、7……基板電圧出力端子。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the temperature dependence of the threshold voltage of a MOSFET, and Fig. 3a is a circuit diagram showing an embodiment of the present invention.
A diagram showing the temperature dependence of V T when the MOSFET is not subjected to temperature compensation. Figure b shows the output voltage (V B ) of the substrate voltage setting circuit and the compensation amount of ΔV T that is assumed to be compensated by it. FIG. 4c is a diagram showing the temperature dependence of the MOSFET compensated in the example, FIG. 4a is a diagram showing the temperature dependence of the slope of the subthreshold characteristic of the MOSFET, and FIG. are diagrams showing substrate bias dependence of the same slope. 1...Substrate voltage setting circuit block, 2...
IGFET block, 3...Diode, 4...Resistor, 7...Substrate voltage output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 基板温度を検出し、その基板温度により生ず
る電界効果トランジスタのしきい値電圧変動を補
償する様な基板電位を発生する基板電位設定回路
を同一基板上に設けた事を特徴とする半導体集積
回路。
1. A semiconductor integrated circuit characterized in that a substrate potential setting circuit that detects substrate temperature and generates a substrate potential that compensates for threshold voltage fluctuations of a field effect transistor caused by the substrate temperature is provided on the same substrate. .
JP60001071A 1985-01-08 1985-01-08 Semiconductor ic Granted JPS61160960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001071A JPS61160960A (en) 1985-01-08 1985-01-08 Semiconductor ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001071A JPS61160960A (en) 1985-01-08 1985-01-08 Semiconductor ic

Publications (2)

Publication Number Publication Date
JPS61160960A JPS61160960A (en) 1986-07-21
JPH0556659B2 true JPH0556659B2 (en) 1993-08-20

Family

ID=11491285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001071A Granted JPS61160960A (en) 1985-01-08 1985-01-08 Semiconductor ic

Country Status (1)

Country Link
JP (1) JPS61160960A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129745B2 (en) * 2004-05-19 2006-10-31 Altera Corporation Apparatus and methods for adjusting performance of integrated circuits

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232278A (en) * 1975-09-05 1977-03-11 Matsushita Electronics Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232278A (en) * 1975-09-05 1977-03-11 Matsushita Electronics Corp Semiconductor device

Also Published As

Publication number Publication date
JPS61160960A (en) 1986-07-21

Similar Documents

Publication Publication Date Title
US5532578A (en) Reference voltage generator utilizing CMOS transistor
KR0175319B1 (en) Constant voltage circuit
JP2615009B2 (en) Field effect transistor current source
US5581103A (en) Semiconductor integrated circuit device with input-protecting circuit
US3978577A (en) Fixed and variable threshold N-channel MNOSFET integration technique
US4454467A (en) Reference voltage generator
US4042945A (en) N-channel MOS transistor
KR940004830A (en) Semiconductor integrated circuit device
JPH1168105A (en) Semiconductor device
JP2528794B2 (en) Integrated circuit with latch-up protection circuit
US3448353A (en) Mos field effect transistor hall effect devices
JP3325396B2 (en) Semiconductor integrated circuit
CA1275457C (en) Integrated circuit in complementary circuit technology comprising a substrate bias generator
US3436621A (en) Linear amplifier utilizing a pair of field effect transistors
JPH0740050B2 (en) Voltage detection circuit
Hofstein An analysis of deep depletion thin-film MOS transistors
US3436622A (en) Compound channel insulated gate triode
JPH0556659B2 (en)
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
JPS6123669B2 (en)
EP0114061A2 (en) Semiconductor device having CMOS structures
US5144405A (en) Temperature compensation apparatus for logic gates
JPH04373158A (en) Constant voltage generating circuit
JPS63246018A (en) Delay circuit
US20210278286A1 (en) Thermal sensor circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees