JPH0556627A - Superconducting motor and superconducting coil - Google Patents

Superconducting motor and superconducting coil

Info

Publication number
JPH0556627A
JPH0556627A JP3072630A JP7263091A JPH0556627A JP H0556627 A JPH0556627 A JP H0556627A JP 3072630 A JP3072630 A JP 3072630A JP 7263091 A JP7263091 A JP 7263091A JP H0556627 A JPH0556627 A JP H0556627A
Authority
JP
Japan
Prior art keywords
permanent magnet
coil
cylindrical
superconducting
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3072630A
Other languages
Japanese (ja)
Inventor
Yoshihiro Onishi
義弘 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3072630A priority Critical patent/JPH0556627A/en
Priority to US07/975,445 priority patent/US5350958A/en
Priority to AU10291/92A priority patent/AU657511B2/en
Priority to CA002059569A priority patent/CA2059569C/en
Priority to EP92300440A priority patent/EP0495681A2/en
Publication of JPH0556627A publication Critical patent/JPH0556627A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To obtain a solar light utilizing superconducting motor and a superconducting coil which can obtain excellent quasi-Josephson effect, has an excellent generating effect and can continuously generate electricity without almost consuming electricity of a storage battery by using the coil though they have heretofore needed a cryogenic temperature so as to maintain a superconducting state. CONSTITUTION:The superconducting motor comprises a nonmagnetic casing 12, a stator 14 provided in the casing 12 with a cylindrical permanent magnet made of a magnetic material, and a cylindrical rotor 26 in the stator 14. A field coil 42 in the stator 14 is formed of a primary copper wire filament coil 44 and a secondary coil is formed of a superconducting filament coil 46.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、超伝導モータ及び超
伝導コイルに関し、更に詳しくは超伝導状態を維持する
ため従来必要とした回転型極低温容器を廃止したにもか
かわらず、疑似ジョセフソン効果が得られ、更に永久磁
石の同極間の反発力を利用し、蓄電池等の電気を殆ど消
耗することなく、持続的に回転運動が得られ、その回転
運動を利用して回転又は発電効率を大幅に改良する超伝
導モータ及び超伝導コイルに関する。 【0002】 【従来の技術】現在発電用に使用されている石油、石
炭、原子力等は、有限な資源であると同時に、有害な産
業廃棄物を排出し、環境汚染の大きな原因ともなってい
る。 【0003】そこでこれら資源を使用せず、石油等の代
替エネルギーとして期待され、且つ殆ど無限の資源であ
る太陽光を電気エネルギに変えて所要の太陽電池に充電
し、該太陽電池の電気エネルギを超伝導モータに導いて
発電し、無公害的に利用する装置が提案されている。 【0004】しかし公知の超伝導モータに於ては、超伝
導状態を維持するため極低温を得なければならないとい
う最大の欠陥がある。そのため窒素ガスやヘリウム・ガ
スを使用して回転型極低温容器を冷却する必要がある。 【0005】これら窒素ガスやヘリウム・ガスを使用し
た冷却装置は必然的に大型化し、操作が複雑であり、回
転又は発電効率が良くない。 【0006】更に永久磁石の性質として同極間は反発し
合い、異極間は吸引し合うが、これら永久磁石のN極と
S極は如何にそれら部材を薄片に切断しても一方側はN
極に他方側はS極に磁化され、互いに吸引し合うので回
転運動を持続させることは不可能であった。 【発明が解決しようとする課題】この発明が解決しよう
とする問題点は、前述の通り超伝導状態を維持するため
に回転型極低温容器を必要とし、装置全体が大型化して
複雑となり、回転又は発電効率が極めて低いことであ
る。 【0007】 【課題を解決しようとする手段】前述の欠陥を解決する
ため、この発明は非磁性体製円筒形ケーシングの内壁面
に一体に設けられ、且つ両端面に非磁性体製保持盤を一
体に設けられた永久磁石製円筒形ステータと;非磁性体
製回転軸、該非磁性体製回転軸の外周囲に一体に設けら
れた非磁性体製円筒形永久磁石保持板、該非磁性体製円
筒形永久磁石保持板の外壁面に一体に設けられた永久磁
石製円筒形ロータ、、それらの両端面に一体に設けられ
た非磁性体製保持盤とを有し、該永久磁石製円筒形ステ
ータの内周囲面に所定の間隙をおいて設けられ、且つ該
永久磁石製円筒形ステータに対して同心円状に設けられ
た永久磁石製円筒形ロータと;該永久磁石製円筒形ステ
ータと該永久磁石製円筒形ロータとの間隙内で内側に所
要回数捲回された一次界磁銅線コイル、該一次界磁銅線
コイルの外側に所要回数捲回された二次界磁超伝導捲線
コイル、該非磁性体製回転軸の両端近くに遊嵌された各
軸受を中心内側に夫々形成した凹部内に嵌合し、且つ該
非磁性体製円筒形ケーシングの両端に一体に設けられた
非磁性体製円盤形エンド・カバー、該非磁性体製回転軸
の一端に設けられた補助モータとから成り;該永久磁石
製円筒形ステータの内周壁がN極に励磁されれば、該永
久磁石製円筒形ロータの外周壁もN極に励磁され、該永
久磁石製円筒形ロータの外周壁がS極に励磁されれば、
該永久磁石製円筒形ステータの内周壁もS極に励磁さ
れ、同極間の反発力を利用して回転運動を得る様にする
超伝導モータ及び該超伝導モータに使用する超伝導コイ
ルである。 【0008】又コイルを銅線コイルとし、二次捲線コイ
ルを超伝導コイルとして成り、従来の冷却装置を全く使
用しない超伝導モータである。 【0009】 【実施例】 【請求項1】記載の超伝導モータ10を示す図1〜7に
於て、非磁性体製円筒形ケーシング12の内壁面に永久
磁石製円筒形ステータ14を一体に設ける。該永久磁石
製円筒形ステータ14は、特に図6a〜6dに示す通り
一定の厚みを有する円筒を、一定の幅で略3分割した部
分的永久磁石14a、14a、14aを合わせて円筒形
を形成する。該永久磁石製円筒形ステータ14の両端面
に非磁性体製保持盤16、16を一体に設ける。該永久
磁石製円筒形ステータ14の内側に設けられる円筒形回
転体20の外周囲は、後述の様に該永久磁石製円筒形ス
テータ14とに間隙40を形成するために、当然該ステ
ータ14より小径とする。該回転体20の非磁性体製回
転軸22は、所要の直径と長さとを有し、その一端は後
述の補助モータ50を設けられる様に稍延長する。該非
磁性体製回転軸22の外周囲に非磁性体製円筒形永久磁
石保持板24を一体に設け、次ぎに該保持板24の外壁
面に永久磁石製円筒形ロータ26を一体に設けて該円筒
形回転体20とする。特に図6a、6bに示す通り、該
円筒形回転体20は、一定の厚みを有し、且つ長手方向
及び円周方向に一定の厚みを有する円筒を、一定の幅で
略2分割した各永久磁石26a、26aをあわせて円筒
形を形成する様にする。 【0010】 【請求項2】に於て、図5に示す様に該回転体20の長
手方向及び円周方向に所要長さで区分された該各永久磁
石26a、26aを、該永久磁石製円筒形ステータ14
の該部分的永久磁石14a、14a、14aの内周囲面
の長手方向に、順次所要角度15°〜30°毎ずらして
設けて一体とする。該永久磁石製円筒形ロータ26の両
側端にも非磁性体製保持盤26b、26bを一体に設
け,これら非磁性体製保持盤26b、26bの中心に該
回転軸22の貫通孔26c、26cを穿設し、これら貫
通孔に図示の通り該回転軸22を上下に貫通させる。該
永久磁石製円筒形ステータ14の各部分的永久磁石14
a、14a、14aに対して該永久磁石製円筒形ロータ
26の各部分的永久磁石26a、26aを放射状、且つ
同心円状に配置する。前述の通り、該各永久磁石26
a、26aを該永久磁石製円筒形ステータ14の該部分
的永久磁石14a、14a、14aの内周囲面の長手方
向に、順次所要角度15°〜30°毎ずらして設け、該
各部分的永久磁石14a、14a、14aの内周壁がN
極に励磁されれば、該各部分的永久磁石26a、26a
の内周壁もN極に励磁され、該部分的永久磁石26a、
26aの外周壁がS極に磁化されれば、該各部分的永久
磁石14a、14aの内周壁もS極に磁化され、同極間
の反発力を利用して回転運動を得る様に構成する。該回
転軸22の両端近くに軸受28、28を遊嵌し、これら
軸受28、28を非磁性体製円盤形エンド・カバー3
0、30の中心内側に夫々形成した凹部30a、30a
内に嵌合し、該回転軸22を各円盤形エンド・カバー3
0の中心に穿設した貫通孔30b内に貫通する。 【0011】該永久磁石製円筒形ステータ14の内周囲
面に所定の間隙40をおいて該永久磁石製円筒形ロータ
20を挿入し、該永久磁石製円筒形ステータ14に対し
て同心円状且つ放射状に回転自在に設ける。該永久磁石
製円筒形ロータ20の該非磁性体製円盤形エンド・カバ
ー30の周囲近くに一定間隔で透孔30c・・を穿設
し、これら透孔30c・・に対応する該非磁性体製円筒
形ケーシング12の両端縁にも長手方向に透孔12a・
・を穿設し、更に一方の該円盤形エンド・カバー30の
該貫通孔30bの周囲近くで2個所に、後述の界磁コイ
ル44、46の貫通孔30d、30dを穿設する。該非
磁性体製円筒形ケーシング12の両端縁に各非磁性体製
円盤形エンド・カバー30を合わせ、各透孔30cと1
2aとに止めボルト32・・を螺合貫通して該円筒形ケ
ーシング12と該円盤形エンド・カバー30とを一体と
する。該回転軸22の一端に補助モータ50を一体に設
けて該超伝導モータ10を構成する。 【0012】 【請求項3】記載の界磁コイル42を該間隙40内に設
ける。該界磁コイルは内側に所要回数捲回された一次捲
線銅線コイル44と、該一次捲線コイル44の外側に所
要回数捲回された二次捲線超伝導コイル46とから成
り、前述の通り該円盤形エンド・カバー30の該貫通孔
30d、30dから外側の後述の蓄電池例えば鉛蓄電池
66に接続する。該一次捲線コイル44をCu極細多芯
フィラメント・コイルとし、該二次捲線コイル46をN
Sn、VGa、VGe、Bi、Ca、CuO、
Srの超伝導材料合金の極細多芯フィラメント・コイル
とし、該超伝導材料合金の二次捲線極細多芯フィラメン
ト・コイル46の周囲にCu被覆層48を設け、該cu
被覆層48の周囲に絶縁被覆層49を設けて一体とす
る。 【0013】この発明に係る超伝導モータ10を図8、
9に示す太陽光利用発電装置100の後述の外部スイッ
チ118に接続する。該太陽光利用発電装置100は、
太陽に向かって所望角度で配置される太陽電池102
と、該太陽電池102に接続された鉛蓄電池106を有
する過充電防止回路104とから成る。該過充電防止回
路104に過放電表示メータ110とチャタリング防止
回路112とを有する過放電防止回路108を接続し、
該過放電防止回路108にコントロール・ユニット11
4を接続する。該コントロール・ユニット114には、
自動−手動切換スイッチ116と外部スイッチ118と
を設け、該自動−手動切換スイッチ116に日没照度検
出回路120を接続し、該日没照度検出回路120に時
間切換スイッチ126を有するタイマ124を設ける。
又該タイマ124を該外部スイッチ118に接続し、該
タイマ124にD/Aインバータ128を接続し、該タ
イマ124にD/Aインバータ128に前述の通り該超
伝導モータ10を接続し、更に該D/Aインバータ12
8に蛍光灯等の照明器具130を接続する。 【0014】 【考案の作用】前述の構成を有する超伝導モータ10及
び超伝導コイル46に於て、該太陽電池62により太陽
光エネルギを電気エネルギに変換された電流は、過充電
防止回路64を介して鉛蓄電池106に充電される。該
鉛蓄電池106からの電流は、該過放電防止回路10
8、その他の回路を介して該超伝導モータ10と該補助
モータ50とに導びかれる。該一次捲線コイル44と該
二次捲線コイル46とに通電し、該補助モータ50を駆
動すると、それと一体の該回転軸22と該永久磁石製円
筒形ロータ26とが回転し、磁束と電流の向きとに直角
な向きに連続した回転力が得られる。前述の通り、特に
該永久磁石製円筒形ステータ14の各部分的永久磁石1
4a、14a、14aに対して該永久磁石製円筒形ロー
タ26の部分的永久磁石26a、26aを放射状、且つ
同心円状に配置したものであり、特に該回転体20の長
手方向及び円周方向に所要長さで区分された該各永久磁
石26a、26aを、該永久磁石製円筒形ステータ14
の該部分的永久磁石14a、14a、14aの内周囲面
の長手方向に、順次所要角度15°〜30゜毎ずらして
設ける。従って該永久磁石製円筒形ステータ14の各部
分的永久磁石14aの内周壁がN極に励磁されれば、該
永久磁石製円筒形ロータ20の部分的永久磁石26aの
外周壁もN極に励磁され、該永久磁石製円筒形ロータ2
6の該部分的永久磁石26aの外周壁がS極に励磁され
れば、該永久磁石製円筒形ステータ14の各部分的永久
磁石14aの内周壁もS極に励磁され、同極間の反発力
を利用して連続した回転運動を得る様に構成する 【0014】 【考案の効果】(1) 【請求項2】記載の通り、該超伝導モータ10の該永久
磁石製円筒形ステータ14と該永久磁石製円筒形ロータ
20との間隙40に設けられる界磁捲線の該一次捲線コ
イル44をCu極細多芯フィラメント・コイルとし、該
二次捲線コイル46をNbSn、VGa、V
e、Bi、Ca、CuO、Srの超伝導材料合金の極細
多芯フィラメント・コイルとし、該超伝導材料合金の二
次捲線極細多芯フィラメント・コイル46の周囲にCu
被覆層48を設け、該Cu被覆層48の周囲に絶縁被覆
層49を設けて成るものであるから、従来の様な回転型
極低温容器を設ける必要が全くなくなる。 (2)極めて優れた疑似ジョセフソン効果が得られ、更
に該永久磁石製円筒形ステータ14の該永久磁石14a
と該永久磁石製円筒形ロータ26の永久磁石26aとの
同極間の反発力を利用して連続した回転運動を得る (3)該回転体20の長手方向及び円周方向に所要長さ
で区分された該各永久磁石26a、26aを、該永久磁
石製円筒形ステータ14の該部分的永久磁石14a、1
4a、14aの内周囲面の長手方向に、順次所要角度1
5°〜30°毎ずらして設けたものであるから、連続し
た回転力が得られる。 (4)この超伝導モータ10によれば、補助モータ50
を回転始動するために最初鉛蓄電池106からの電流を
使用したが、一旦該超伝導モータ10が回転すると、該
鉛電池106の電気を殆ど消耗することなく、持続的に
回転運動が得られ、その回転運動を利用して回転又は発
電効率を大幅に改良出来る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting motor and a superconducting coil, and more particularly to a rotary cryogenic container conventionally required to maintain a superconducting state. Despite the abolition, the pseudo-Josephson effect is obtained, and the repulsive force between the same poles of the permanent magnets is used to obtain a continuous rotary motion with almost no consumption of electricity such as a storage battery. TECHNICAL FIELD The present invention relates to a superconducting motor and a superconducting coil that utilize rotary motion to significantly improve rotation or power generation efficiency. [0002] Petroleum, coal, nuclear power, etc., which are currently used for power generation, are finite resources, and at the same time, they emit harmful industrial wastes and are a major cause of environmental pollution. Therefore, without using these resources, sunlight, which is expected as an alternative energy source for petroleum and the like and is an almost unlimited resource, is converted into electric energy to charge the required solar cell, and the electric energy of the solar cell is changed. A device has been proposed that uses a superconducting motor to generate electricity and use it without pollution. However, in the known superconducting motor, there is the greatest defect that a cryogenic temperature must be obtained in order to maintain the superconducting state. Therefore, it is necessary to cool the rotary cryogenic vessel using nitrogen gas or helium gas. The cooling device using such nitrogen gas or helium gas is inevitably large in size, complicated in operation, and inefficient in rotation or power generation. Further, as a property of the permanent magnet, the same poles repel each other and the different poles attract each other. However, no matter how the N and S poles of these permanent magnets are cut into thin pieces, one side is N
Since the other side of the pole was magnetized to the S pole and attracted to each other, it was impossible to continue the rotational movement. The problem to be solved by the present invention is, as mentioned above, that a rotary cryogenic container is required to maintain a superconducting state, and the entire apparatus becomes large and complicated. Alternatively, the power generation efficiency is extremely low. In order to solve the above-mentioned deficiencies, the present invention is provided integrally with the inner wall surface of a non-magnetic cylindrical casing and has non-magnetic holding plates on both end surfaces. A permanent magnet cylindrical stator integrally provided; a non-magnetic rotating shaft; a non-magnetic cylindrical permanent magnet holding plate integrally provided on the outer periphery of the non-magnetic rotating shaft; A permanent magnet cylindrical rotor integrally provided on the outer wall surface of a cylindrical permanent magnet holding plate, and a non-magnetic holding plate integrally provided on both end faces of the permanent magnet cylindrical rotor. A permanent magnet cylindrical rotor provided on the inner peripheral surface of the stator at a predetermined gap and concentrically with the permanent magnet cylindrical stator; the permanent magnet cylindrical stator and the permanent magnet The required number of turns inside the gap with the magnet cylindrical rotor. Primary field copper wire coil wound several times, secondary field superconducting winding coil wound a required number of times outside the primary field copper wire coil, loosely fitted near both ends of the non-magnetic rotating shaft A non-magnetic disc-shaped end cover integrally fitted to both ends of the non-magnetic cylindrical casing and fitted in the respective recesses formed inside the center of the non-magnetic rotating shaft. When the inner peripheral wall of the permanent magnet cylindrical stator is excited to the N pole, the outer peripheral wall of the permanent magnet cylindrical rotor is also excited to the N pole, and the auxiliary magnet is provided to the permanent magnet. If the outer peripheral wall of the cylindrical rotor is excited to the S pole,
An inner peripheral wall of the permanent magnet cylindrical stator is also excited by an S pole, and a superconducting motor for obtaining a rotational motion by utilizing a repulsive force between the same poles and a superconducting coil used for the superconducting motor. .. Further, the coil is a copper wire coil and the secondary winding coil is a superconducting coil, and the superconducting motor does not use a conventional cooling device at all. 1 to 7 showing a superconducting motor 10 according to the present invention, a permanent magnet cylindrical stator 14 is integrally formed on an inner wall surface of a non-magnetic cylindrical casing 12. Set up. The permanent magnet cylindrical stator 14 is formed by combining partial permanent magnets 14a, 14a, 14a, which are obtained by dividing a cylinder having a constant thickness into three substantially constant widths as shown in FIGS. To do. Nonmagnetic holding plates 16, 16 are integrally provided on both end faces of the permanent magnet cylindrical stator 14. The outer periphery of the cylindrical rotating body 20 provided inside the permanent magnet cylindrical stator 14 is naturally formed from the stator 14 in order to form a gap 40 with the permanent magnet cylindrical stator 14 as described later. Use a small diameter. The non-magnetic rotary shaft 22 of the rotary body 20 has a required diameter and length, and one end thereof is slightly extended so that an auxiliary motor 50 described later can be provided. A non-magnetic cylindrical permanent magnet holding plate 24 is integrally provided on the outer periphery of the non-magnetic rotating shaft 22, and then a permanent magnet cylindrical rotor 26 is integrally provided on the outer wall surface of the holding plate 24. It is a cylindrical rotating body 20. In particular, as shown in FIGS. 6a and 6b, the cylindrical rotating body 20 has a constant thickness and a permanent cylinder obtained by dividing a cylinder having a constant thickness in the longitudinal direction and the circumferential direction into two substantially constant widths. The magnets 26a and 26a are combined to form a cylindrical shape. According to a second aspect of the present invention, as shown in FIG. 5, the permanent magnets 26a, 26a, which are divided in the longitudinal direction and the circumferential direction of the rotating body 20 by a required length, are made of the permanent magnets. Cylindrical stator 14
Of the partial permanent magnets 14a, 14a, 14a are sequentially arranged in the longitudinal direction of the inner peripheral surface of the partial permanent magnets 14a, 14a, 14a at a required angle of 15 ° to 30 ° to be integrated. Nonmagnetic holding plates 26b, 26b are integrally provided at both ends of the permanent magnet cylindrical rotor 26, and the through holes 26c, 26c of the rotary shaft 22 are formed at the centers of the nonmagnetic holding plates 26b, 26b. And the rotary shaft 22 is vertically penetrated through these through holes as shown in the drawing. Each partial permanent magnet 14 of the permanent magnet cylindrical stator 14
The partial permanent magnets 26a, 26a of the permanent magnet cylindrical rotor 26 are arranged radially and concentrically with respect to a, 14a, 14a. As described above, each permanent magnet 26
a, 26a are provided in the longitudinal direction of the inner peripheral surfaces of the partial permanent magnets 14a, 14a, 14a of the cylindrical stator 14 made of permanent magnets by sequentially displacing them by a required angle of 15 ° to 30 °. The inner peripheral walls of the magnets 14a, 14a, 14a are N
When excited by the poles, the respective partial permanent magnets 26a, 26a
The inner peripheral wall of is also excited to the N pole, and the partial permanent magnets 26a,
When the outer peripheral wall of 26a is magnetized to the S pole, the inner peripheral wall of each of the partial permanent magnets 14a and 14a is also magnetized to the S pole, and the repulsive force between the same poles is used to obtain the rotational motion. .. Bearings 28, 28 are loosely fitted near both ends of the rotary shaft 22, and the bearings 28, 28 are made of a non-magnetic disk-shaped end cover 3
Recesses 30a, 30a formed inside the centers of 0 and 30, respectively
Each of the disk-shaped end covers 3 fitted inside
It penetrates into the through hole 30b formed at the center of 0. The permanent magnet cylindrical rotor 20 is inserted into the inner circumferential surface of the permanent magnet cylindrical stator 14 with a predetermined gap 40 between the permanent magnet cylindrical stator 14 and the permanent magnet cylindrical stator 14. It is rotatably installed. The perforated holes 30c ... Are formed near the periphery of the non-magnetic disc-shaped end cover 30 of the permanent magnet cylindrical rotor 20, and the non-magnetic cylinders corresponding to these perforated holes 30c. Through-holes 12a are formed in the longitudinal direction on both edges of the shaped casing 12.
., And through holes 30d and 30d of field coils 44 and 46, which will be described later, are formed at two locations near the periphery of the through hole 30b of the one disk-shaped end cover 30. Each non-magnetic disk-shaped end cover 30 is fitted to both end edges of the non-magnetic cylindrical casing 12, and each through hole 30c and 1
The cylindrical casing 12 and the disk-shaped end cover 30 are integrated with each other by threading a stop bolt 32 ... An auxiliary motor 50 is integrally provided at one end of the rotary shaft 22 to form the superconducting motor 10. 3. A field coil 42 according to claim 3 is provided in the gap 40. The field coil is composed of a primary winding copper wire coil 44 wound a required number of times inside and a secondary winding superconducting coil 46 wound a required number of times outside the primary winding coil 44, and as described above. The through holes 30d, 30d of the disk-shaped end cover 30 are connected to a storage battery, which will be described later, such as a lead storage battery 66 on the outside. The primary winding coil 44 is a Cu ultra-fine multifilament coil, and the secondary winding coil 46 is N
b 3 Sn, V 3 Ga, V 3 Ge, Bi, Ca, CuO,
An Sr superconducting material alloy ultrafine multifilament coil is provided, and a Cu coating layer 48 is provided around the secondary winding ultrafine multifilament coil 46 of the superconducting material alloy.
An insulating coating layer 49 is provided around the coating layer 48 to be integrated. A superconducting motor 10 according to the present invention is shown in FIG.
It connects with the below-mentioned external switch 118 of the solar power generation device 100 shown in FIG. The solar power generation device 100 is
Solar cell 102 arranged at a desired angle toward the sun
And an overcharge prevention circuit 104 having a lead storage battery 106 connected to the solar cell 102. An overdischarge prevention circuit 108 having an overdischarge display meter 110 and a chattering prevention circuit 112 is connected to the overcharge prevention circuit 104,
The control unit 11 is connected to the overdischarge prevention circuit 108.
Connect 4 The control unit 114 includes
An automatic / manual changeover switch 116 and an external switch 118 are provided, a sunset illuminance detection circuit 120 is connected to the automatic / manual changeover switch 116, and a timer 124 having a time changeover switch 126 is provided in the sunset illuminance detection circuit 120. ..
The timer 124 is connected to the external switch 118, the timer 124 is connected to the D / A inverter 128, the timer 124 is connected to the D / A inverter 128, and the superconducting motor 10 is connected as described above. D / A inverter 12
8 is connected to a lighting device 130 such as a fluorescent lamp. In the superconducting motor 10 and the superconducting coil 46 having the above-mentioned structure, the electric current obtained by converting the solar energy into the electric energy by the solar cell 62 passes through the overcharge prevention circuit 64. The lead storage battery 106 is charged via the battery. The current from the lead storage battery 106 is applied to the overdischarge prevention circuit 10
8. Guided to the superconducting motor 10 and the auxiliary motor 50 via other circuits. When the primary winding coil 44 and the secondary winding coil 46 are energized and the auxiliary motor 50 is driven, the rotary shaft 22 and the permanent magnet cylindrical rotor 26, which are integral with the auxiliary motor 50, rotate to generate magnetic flux and current. A continuous rotational force is obtained in a direction perpendicular to the direction. As mentioned above, in particular each partial permanent magnet 1 of the permanent magnet cylindrical stator 14
4a, 14a, 14a, the partial permanent magnets 26a, 26a of the permanent magnet cylindrical rotor 26 are arranged radially and concentrically, and particularly in the longitudinal direction and the circumferential direction of the rotating body 20. The permanent magnets 26a, 26a divided by the required length are replaced with the permanent magnet cylindrical stator 14
In the longitudinal direction of the inner peripheral surface of the partial permanent magnets 14a, 14a, 14a, they are sequentially displaced by a required angle of 15 ° to 30 °. Therefore, if the inner peripheral wall of each partial permanent magnet 14a of the permanent magnet cylindrical stator 14 is excited to the N pole, the outer peripheral wall of the partial permanent magnet 26a of the permanent magnet cylindrical rotor 20 is also excited to the N pole. The cylindrical rotor 2 made of permanent magnet
When the outer peripheral wall of the partial permanent magnet 26a of 6 is excited to the S pole, the inner peripheral wall of each of the partial permanent magnets 14a of the cylindrical stator 14 made of permanent magnet is also excited to the S pole, and repulsion between the same poles occurs. The permanent magnet cylindrical stator 14 of the superconducting motor 10 and the permanent magnet cylindrical stator 14 of the superconducting motor 10 are constructed so as to obtain a continuous rotary motion by utilizing force. the primary winding coil 44 of the field磁捲lines provided in a gap 40 between the permanent magnets made of a cylindrical rotor 20 made of Cu multifilamentary filament coil, the secondary winding coil 46 Nb 3 Sn, V 3 Ga , V 3 G
e, Bi, Ca, CuO, Sr superconducting material alloy superfine multifilament filament coil, and secondary winding ultrafine multifilament filament coil 46 of the superconducting material alloy
Since the coating layer 48 is provided and the insulating coating layer 49 is provided around the Cu coating layer 48, there is no need to provide a conventional rotary cryogenic container as in the prior art. (2) An extremely excellent pseudo-Josephson effect is obtained, and the permanent magnet 14a of the permanent magnet cylindrical stator 14 is further obtained.
And a permanent magnet 26a of the permanent magnet cylindrical rotor 26 are used to obtain a continuous rotary motion by utilizing a repulsive force between the same poles. (3) The rotor 20 has a required length in the longitudinal direction and the circumferential direction. The divided permanent magnets 26a, 26a are replaced with the partial permanent magnets 14a, 1 of the permanent magnet cylindrical stator 14, respectively.
In the longitudinal direction of the inner peripheral surface of 4a, 14a, the required angle 1
Since it is provided by shifting every 5 ° to 30 °, a continuous rotating force can be obtained. (4) According to this superconducting motor 10, the auxiliary motor 50
The electric current from the lead storage battery 106 was used to start the rotation of the lead battery 106 once, but once the superconducting motor 10 rotates, a continuous rotary motion is obtained with almost no consumption of electricity of the lead battery 106, By utilizing the rotary motion, the rotary or power generation efficiency can be greatly improved.

【図面の簡単な説明】 【図1】この発明に係る超伝導モータの正面図である。 【図2】 【図1】に示す超伝導モータの平面図である。 【図3】 【図1】の111−111線縦断面図である。 【図4】 【図1】に示す超伝導モータの1V−1V線横断面図で
ある。 【図5】円筒形ステータから取出した円筒形回転体の正
面図である。 【図6】円筒形ステータと円筒形ロータの各永久磁石を
取出して模式的に磁束が中心に向かう状態を示す略図で
ある。 【図6a】円筒形ステータの部分的永久磁石の正面図で
ある。 【図6b】 【図6a】の側面図である。 【図6c】円筒形ロータの部分的永久磁石の正面図であ
る。 【図6d】 【図6c】の側面図である。 【図7】超伝導コイルの超拡大断面図である。 【図8】この発明に係る超伝導モータを太陽光利用発電
装置に接続した回路の略図である。 【図9】太陽電池を設置する状態を示す略図である。 10・・・超伝導モータ; 12・・・非磁性体製円筒形ケーシング; 14・・・永久磁石製円筒形ステータ; 14a・・・部分的永久磁石; 16・・・永久磁石製円筒形ステータ14の両端面の非
磁性体製保持盤; 20・・・円筒形回転体; 22・・・非磁性体製回転軸; 24・・・非磁性体製円筒形永久磁石保持板; 26・・・永久磁石円筒形ロータ; 26a・・・部分的永久磁石; 26b・・・非磁性体製保持盤; 28・・・軸受・・・; 30・・・非磁性体製円盤形エンド・カバー; 30a・・・非磁性体製円盤形エンド・カバーの内側の
凹部; 30b・・・非磁性体製円盤形エンド・カバーの貫通
孔; 30c・・・非磁性体製円盤形エンド・カバーの周囲近
くに一定間隔で穿設した透孔; 30d・・・一方の非磁性体製円盤形エンド・カバーの
周囲近くで2個所の貫通孔; 32・・・止めボルト; 40・・・間隙; 42・・・界磁コイル; 44・・・一次極細多芯フィラメント銅線コイル; 46・・・二次極細多芯フィラメント超伝導コイル; 48・・・Cu被覆層; 49・・・絶縁被覆層; 50・・・補助モータ; 100・・・太陽光利用発電装置; 102・・・太陽電池; 104・・・過充電防止回路; 106・・・鉛蓄電池; 108・・・過放電防止回路; 110・・・過放電表示メータ; 112・・・チャタリング防止回路; 114・・・コントロール・ユニット; 116・・・自動−手動切換スイッチ; 118・・・外部スイッチ; 120・・・日没照度検出回路; 124・・・タイマ; 126・・・時間切換スイッチ; 128・・・D/Aインバータ 130・・・照明器具。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a superconducting motor according to the present invention. FIG. 2 is a plan view of the superconducting motor shown in FIG. FIG. 3 is a vertical cross-sectional view taken along the line 111-111 in FIG. FIG. 4 is a cross-sectional view taken along line 1V-1V of the superconducting motor shown in FIG. FIG. 5 is a front view of a cylindrical rotating body taken out from a cylindrical stator. FIG. 6 is a schematic view showing a state in which the permanent magnets of the cylindrical stator and the cylindrical rotor are taken out and the magnetic flux is typically directed to the center. FIG. 6a is a front view of a partial permanent magnet of a cylindrical stator. FIG. 6b is a side view of FIG. 6a. FIG. 6c is a front view of a partial permanent magnet of a cylindrical rotor. FIG. 6d is a side view of FIG. 6c. FIG. 7 is a super-enlarged sectional view of the superconducting coil. FIG. 8 is a schematic diagram of a circuit in which a superconducting motor according to the present invention is connected to a solar power generator. FIG. 9 is a schematic view showing a state where a solar cell is installed. 10 ... Superconducting motor; 12 ... Non-magnetic cylindrical casing; 14 ... Permanent magnet cylindrical stator; 14a ... Partial permanent magnet; 16 ... Permanent magnet cylindrical stator Nonmagnetic holding plates on both end faces of 14; 20 ... Cylindrical rotating body; 22 ... Nonmagnetic rotating shaft; 24 ... Nonmagnetic cylindrical permanent magnet holding plate; 26 ...・ Permanent magnet cylindrical rotor; 26a ... Partial permanent magnet; 26b ... Non-magnetic holding plate; 28 ... Bearing ...; 30 ... Non-magnetic disc end cover; 30a: a concave portion inside the non-magnetic disc-shaped end cover; 30b: a through hole of the non-magnetic disc-shaped end cover; 30c: a periphery of the non-magnetic disc-shaped end cover Through-holes formed at regular intervals in the vicinity; 30d ... One nonmagnetic circle Two through holes near the periphery of the disk-shaped end cover; 32 ... Stop bolts; 40 ... Gap; 42 ... Field coil; 44 ... Primary ultra-fine multi-core filament copper wire coil; 46・ ・ ・ Secondary multi-filamentary superconducting coil; 48 ... Cu coating layer; 49 ... Insulating coating layer; 50 ... Auxiliary motor; 100 ... Solar power generation device; Solar cell; 104 ... Overcharge prevention circuit; 106 ... Lead storage battery; 108 ... Overdischarge prevention circuit; 110 ... Overdischarge display meter; 112 ... Chattering prevention circuit; 114 ... Control Unit: 116 ... Automatic-manual changeover switch; 118 ... External switch; 120 ... Sunset illuminance detection circuit; 124 ... Timer; 126 ... Time changeover switch; 128 ... D / A inverter 130 ... Lighting equipment.

Claims (1)

【特許請求の範囲】 【請求項1】非磁性体製円筒形ケーシングと;該非磁性
体製円筒形ケーシングの内壁面に放射状に一体に設けら
れ、且つ両端面に非磁性体製保持盤を一体に設けられた
永久磁石製円筒形ステータと;非磁性体製回転軸、該非
磁性体製回転軸の外周囲に一体に設けられた非磁性体製
円筒形永久磁石保持板、該非磁性体製円筒形永久磁石保
持板の外壁面に一体に設けられた永久磁石製円筒形ロー
タ、それらの両端面に一体に設けられた非 磁性体製保
持盤とを有し、該永久磁石製円筒形ステータの内周囲面
に所定の間隙をおいて設けられ、且つ該永久磁石製円筒
形ステータに対して同心円状且つ放射状に設けられた円
筒形回転体と;該永久磁石製円筒形ステータ、該永久磁
石製円筒形ロータとの間隙内で内側に所要回数捲回され
た一次捲線コイル、該一次捲線コイルの外側に所要回数
捲回された二次捲線コイルとから成る界磁コイルと;該
非磁性体製回転軸の両端近くに遊嵌された各軸受を中心
内側に夫々形成した凹部内に嵌合し、且つ該非磁性体製
円筒形ケーシングの両端に一体に設けられた非磁性体製
円盤形エンド・カバーと;該非磁性体製回転軸の一端に
設けられた補助モータと;から成る超伝導モータ。 【請求項2】長手方向及び円周方向に所要長さで区分さ
れた該各区分永久磁石を、該永久磁石製円筒形ステータ
の内周囲面の長手方向に、順次所要角度毎ずらして設け
て該円筒形回転体として成る 【請求項1】及び 【請求項2】記載の超伝導モータ。 【請求項3】該界磁コイルの該一次捲線コイルをCu極
細多芯フィラメント・コイルとし、該二次捲線コイルを
NbSn、VGa、VGe、Bi、Ca、Cu
O、Srの超伝導材料合金の極細多芯フィラメント・コ
イルとし、該超伝導材料合金の二次捲線極細多芯フィラ
メント・コイルの周囲にCu被覆層を設け、該Cu被覆
層の周囲に絶縁被覆層を設けて成る 【請求項1】及び 【請求項2】記載の超伝導コイル。
Claim: What is claimed is: 1. A non-magnetic cylindrical casing; and a non-magnetic holding plate that is radially provided integrally on an inner wall surface of the non-magnetic cylindrical casing and has both end faces. A permanent magnet cylindrical stator provided in the nonmagnetic body, a nonmagnetic rotating shaft, a nonmagnetic cylindrical permanent magnet holding plate integrally provided on the outer periphery of the nonmagnetic rotating shaft, and the nonmagnetic cylinder A permanent magnet cylindrical rotor integrally provided on the outer wall surface of the permanent magnet holding plate, and nonmagnetic holding plates integrally provided on both end surfaces of the permanent magnet cylindrical rotor. A cylindrical rotor provided on the inner peripheral surface with a predetermined gap and provided concentrically and radially with respect to the permanent magnet cylindrical stator; the permanent magnet cylindrical stator, the permanent magnet Wound inside the gap with the cylindrical rotor a required number of times A primary winding coil, and a field coil consisting of a secondary winding coil wound outside the primary winding coil a required number of times; and bearings that are loosely fitted near both ends of the non-magnetic rotary shaft A non-magnetic disc-shaped end cover that fits into each of the formed recesses and is integrally provided at both ends of the non-magnetic cylindrical casing; and an auxiliary provided at one end of the non-magnetic rotating shaft. A superconducting motor consisting of a motor and a. 2. The sectioned permanent magnets, which are sectioned in a required length in a longitudinal direction and a circumferential direction, are provided in the longitudinal direction of an inner peripheral surface of the cylindrical stator made of permanent magnets by sequentially shifting them by a required angle. The superconducting motor according to any one of claims 1 and 2, which is formed as the cylindrical rotating body. 3. The primary winding coil of the field coil is a Cu ultra-fine multifilament filament coil, and the secondary winding coil is Nb 3 Sn, V 3 Ga, V 3 Ge, Bi, Ca, Cu.
A super-multifilament filament coil of a superconducting material alloy of O and Sr, a secondary winding extra-fine multifilament coil of the superconducting material alloy, a Cu coating layer is provided around the Cu coating layer, and an insulating coating is provided around the Cu coating layer. The superconducting coil according to claim 1 or 2, which is provided with layers.
JP3072630A 1991-01-17 1991-01-17 Superconducting motor and superconducting coil Pending JPH0556627A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3072630A JPH0556627A (en) 1991-01-17 1991-01-17 Superconducting motor and superconducting coil
US07/975,445 US5350958A (en) 1991-01-17 1992-01-17 Superconducting rotating machine, a superconducting coil, and a superconducting generator for use in a lighting equipment using solar energy
AU10291/92A AU657511B2 (en) 1991-01-17 1992-01-17 A superconducting rotating machine, a superconducting coil, and a superconducting generator for use in a lighting equipment using solar energy
CA002059569A CA2059569C (en) 1991-01-17 1992-01-17 Superconducting rotating machine, a superconducting coil, and a superconducting generator for use in a lighting equipment using solar energy
EP92300440A EP0495681A2 (en) 1991-01-17 1992-01-17 Superconducting rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3072630A JPH0556627A (en) 1991-01-17 1991-01-17 Superconducting motor and superconducting coil

Publications (1)

Publication Number Publication Date
JPH0556627A true JPH0556627A (en) 1993-03-05

Family

ID=13494902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3072630A Pending JPH0556627A (en) 1991-01-17 1991-01-17 Superconducting motor and superconducting coil

Country Status (1)

Country Link
JP (1) JPH0556627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1299935A1 (en) * 2000-05-12 2003-04-09 Reliance Electric Technologies, LLC Hybrid superconducting motor/generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1299935A1 (en) * 2000-05-12 2003-04-09 Reliance Electric Technologies, LLC Hybrid superconducting motor/generator
EP1299935A4 (en) * 2000-05-12 2007-08-08 Reliance Electric Tech Hybrid superconducting motor/generator

Similar Documents

Publication Publication Date Title
JP6461385B2 (en) Superconducting motor and generator
US7382072B2 (en) Generator
US5350958A (en) Superconducting rotating machine, a superconducting coil, and a superconducting generator for use in a lighting equipment using solar energy
US20100253177A1 (en) Multi-pattern high temperature superconducting motor using flux trapping and concentration
US20200251971A1 (en) Radial-Gap Type Superconducting Synchronous Machine, Magnetizing Apparatus, and Magnetizing Method
WO2017190292A1 (en) Efficient laminated coreless generator and manufacturing method therefor
CA1191535A (en) Rolling magnetic friction electricity generator
CN106374644B (en) A kind of static sealing high-temperature superconductor magnetic flux switching motor
JPH0556627A (en) Superconducting motor and superconducting coil
JPH10136609A (en) Motor and storage apparatus using the wire
JP2007037343A (en) Superconductive device and axial gap type superconducting motor
JPH04237996A (en) Superconductive power generation/illumination device utilizing sun light
JPH10146074A (en) Superconducting dc power generator
RU2631673C1 (en) High-temperature superconducting electromagnetic induction motor with radial gap
JPH10225098A (en) Generator and motor
CN222015160U (en) Magnet assembly and aviation miniature motor magnet orientation device with same
KR20160121917A (en) Rotating Armature Type Wind Power Generator with Dual Field Windings
RU206674U1 (en) Radial synchronous generator
RU2696273C1 (en) Two-pack inductor electric machine with combined excitation (versions)
US3833841A (en) Prime mover with internal power source
GB2224398A (en) Generator/motor combination with high density magnetic fields
CN101847925A (en) Superconducting rotating generator
JP2007295778A (en) Elementary particle motor and elementary particle repulsion type high-speed torque fluctuation three-phase motor therewith
JP2000324786A (en) Unified body type single-pole induction generator of plurality divided magnetic conductors
CN115622444A (en) Permanent magnet ferromagnetic variable rotor transmission structure and magnetic variable energy system thereof