JPH04237996A - Superconductive power generation/illumination device utilizing sun light - Google Patents

Superconductive power generation/illumination device utilizing sun light

Info

Publication number
JPH04237996A
JPH04237996A JP3142324A JP14232491A JPH04237996A JP H04237996 A JPH04237996 A JP H04237996A JP 3142324 A JP3142324 A JP 3142324A JP 14232491 A JP14232491 A JP 14232491A JP H04237996 A JPH04237996 A JP H04237996A
Authority
JP
Japan
Prior art keywords
power generation
permanent magnet
cylindrical
magnetic material
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3142324A
Other languages
Japanese (ja)
Inventor
Yoshihiro Onishi
大西 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3142324A priority Critical patent/JPH04237996A/en
Priority to CA002059569A priority patent/CA2059569C/en
Priority to AU10291/92A priority patent/AU657511B2/en
Priority to US07/975,445 priority patent/US5350958A/en
Priority to EP92300440A priority patent/EP0495681A2/en
Publication of JPH04237996A publication Critical patent/JPH04237996A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a superconductive power generation/illumination device utilizing sun light, which has a very excellent pseudo Josephson effect and an excellent power generation/illumination effect and can continuously attain power generation/illumination while rarely consuming the electricity of a storage battery, by using a superconducting coil as compared with the extremely low temperature required to maintain the superconductive state in the past. CONSTITUTION:A superconductive power generation/illumination device utilizing sun light is constituted of an overcharge preventing circuit 12 connected with a storage battery connected to a solar cell 10, an overdischarge preventing circuit 16 having an overdischarge display meter 18 and a chattering preventing circuit 20 and connected to the overcharge preventing circuit 12, a control unit 22 having an automatic/manual selector switch and an external switch and connected to the overdischarge preventing circuit 16, a timer 30 having a sunset illuminance detecting circuit 28 and a time selector switch and connected to the sunset illuminance detecting circuit 28, a superconductive power generation section 40, a D/A inverter 34, and an illumination device 36, and a superconducting coil is used for the field coil of the superconductive power generation section.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、太陽光利用超伝導発
電照明装置に関し、更に詳しくは超伝導状態を維持する
ため従来必要とした回転型極低温容器を廃止しても極め
て優れた疑似ジョセフソン効果が得られ、発電照明効果
が優れ、蓄電池等の電気を殆ど消耗することなく、且つ
発電を持続的に実施出来る太陽光利用超伝導発電照明装
置に関する。
[Industrial Application Field] This invention relates to a superconducting power generation lighting device using sunlight, and more specifically, the present invention relates to a superconducting power generation lighting device that utilizes sunlight, and more specifically, the present invention relates to a superconducting power generation lighting device that utilizes sunlight, and more specifically, to maintain a superconducting state, an extremely excellent pseudo-Joseph The present invention relates to a solar superconducting power generation lighting device that can obtain the Son effect, have an excellent power generation lighting effect, hardly consume electricity from storage batteries, etc., and can continuously generate power.

【0002】0002

【従来の技術】現在発電用に使用されている石油、石炭
、原子力等は、有限な資源であると同時に、有害な産業
廃棄物を排出し、環境汚染の大きな原因ともなっている
BACKGROUND OF THE INVENTION Petroleum, coal, nuclear power, and the like currently used for power generation are limited resources and at the same time emit harmful industrial waste and are a major cause of environmental pollution.

【0003】そこでこれら資源を使用せず、石油等の代
替エネルギーとして期待され、且つ殆ど無限の資源であ
る太陽光を電気エネルギに変えて所要の太陽電池に充電
し、該太陽電池の電気エネルギを超伝導モータに導いて
発電し、無公害的に利用する装置が提案されている。
[0003] Therefore, without using these resources, sunlight, which is expected to be an alternative energy to oil and other sources and is an almost limitless resource, is converted into electrical energy to charge the required solar cells, and the electrical energy of the solar cells is converted into electrical energy. A device has been proposed that generates electricity by guiding it to a superconducting motor and uses it in a non-polluting manner.

【0004】しかし公知の超伝導モータに於ては、超伝
導状態を維持するため極低温を得なければならないとい
う最大の欠陥がある。そのため窒素ガスやヘリウム・ガ
スを使用して回転型極低温容器を冷却する必要がある。
However, the major drawback of known superconducting motors is that extremely low temperatures must be obtained in order to maintain the superconducting state. Therefore, it is necessary to cool the rotating cryocontainer using nitrogen gas or helium gas.

【0005】これら窒素ガスやヘリウム・ガスを使用し
た冷却装置は必然的に大型化し、操作が複雑であり、太
陽電池から蓄電池に導かれる電流が極めてすくないので
発電照明効率が良くない。
[0005] These cooling devices using nitrogen gas or helium gas are inevitably large in size, complicated to operate, and have poor power generation lighting efficiency because the current led from the solar cell to the storage battery is extremely small.

【0006】更に永久磁石の性質として同極間は反発し
合い、異極間は吸引し合うが、これら永久磁石のN極と
S極は如何にそれら部材を薄片に切断しても一方側はN
極に他方側はS極に磁化され、互いに吸引し合うので回
転運動を持続させることは不可能であった。
Furthermore, as a property of permanent magnets, like poles repel each other and unlike poles attract each other, but no matter how you cut the N and S poles of these permanent magnets into thin pieces, one side N
The other side of the pole was magnetized to the S pole, and because they attracted each other, it was impossible to sustain the rotational motion.

【発明が解決しようとする課題】この発明が解決しよう
とする問題点は、前述の通り超伝導状態を維持するため
に回転型極低温容器を必要とし、装置全体が大型化して
複雑となり、発電照明効率が極めて低いことである。
[Problems to be Solved by the Invention] As mentioned above, the problem to be solved by this invention is that a rotating cryogenic container is required to maintain the superconducting state, and the entire device becomes large and complicated, which makes it difficult to generate electricity. The lighting efficiency is extremely low.

【0007】[0007]

【課題を解決しようとする手段】前述の欠陥を解決する
ため、この発明は太陽に向かって所要角度で配置される
太陽電池と;該太陽電池に接続され、且つ蓄電池を接続
した過充電防止回路と;過放電表示メータとチャタリン
グ防止回路とを有し、且つ該過充電防止回路に接続され
た過放電防止回路と;自動−手動切換スイッチと外部ス
イッチとを有し、且つ該過放電防止回路に接続されたコ
ントロール・ユニットと;該コントロール・ユニットに
接続された日没照度検出回路と;時間切換スイッチを有
し、且つ該日没照度検出回路に接続されたタイマと;該
コントロール・ユニットに接続された超伝導発電部と;
該コントロール・ユニットに接続されたD/Aインバー
タと該D/Aインバータに接続された照明装置とから成
る太陽光利用超伝導発電照明装置であり;該超伝導発電
部は非磁性体製円筒形ケーシング、該非磁性体製円筒形
ケーシングの内壁面に放射状に一体に設けられ、且つ両
端面に非磁性体製保持盤を一体に設けられた永久磁石製
円筒形ステータと、非磁性体製回転軸、該非磁性体製回
転軸の外壁面に一体に設けられた非磁性体製円筒形永久
磁石保持板、長手方向及び円周方向に所要長さで区分さ
れ、該非磁性体製円筒形永久磁石保持板の外壁面に一体
に設けられた永久磁石製円筒形ロータと、それらの両端
面に一体に設けられた非磁性体製保持盤とを有し、該永
久磁石製ステータの内周囲面に所定の間隙をおいて設け
られ、且つ該非磁性体製円筒形ケーシングの各永久磁石
製円筒形ステータに対して放射状に設けられた円筒形回
転体と、該永久磁石製円筒形ステータと該永久磁石製円
筒形ロータとの間隙内で内側に所要回数捲回された一次
界磁銅線コイル、該一次界磁銅線コイルの外側に所要回
数捲回された二次界磁超伝導捲線コイルとから成る界磁
コイルと、該非磁性体製回転軸の両端近くに遊嵌された
各軸受を中心内側に夫々形成した凹部内に嵌合し、且つ
該非磁性体製円筒形ケーシングの両端に一体に設けられ
た非磁性体製円盤形エンド・カバー及び該非磁性体製回
転軸の一端に設けられた補助モータとから成り、該コン
トロール・ユニットに接続した事を特徴とする太陽光利
用超伝導発電照明装置である
[Means for Solving the Problems] In order to solve the above-mentioned defects, the present invention provides a solar cell arranged at a required angle toward the sun; and an overcharge prevention circuit connected to the solar cell and connected to a storage battery. an over-discharge prevention circuit having an over-discharge indicator meter and a chattering prevention circuit, and connected to the over-discharge prevention circuit; and an automatic-manual changeover switch and an external switch; and the over-discharge prevention circuit. a control unit connected to; a sunset illuminance detection circuit connected to the control unit; a timer having a time changeover switch and connected to the sunset illuminance detection circuit; A connected superconducting power generation unit;
A solar power superconducting power generation lighting device comprising a D/A inverter connected to the control unit and a lighting device connected to the D/A inverter; a casing, a cylindrical stator made of a permanent magnet that is radially integrally provided on the inner wall surface of the cylindrical casing made of a non-magnetic material, and a cylindrical stator made of a permanent magnet that is integrally provided with a holding plate made of a non-magnetic material on both end faces, and a rotating shaft made of a non-magnetic material. , a non-magnetic cylindrical permanent magnet holding plate integrally provided on the outer wall surface of the non-magnetic rotating shaft; a non-magnetic cylindrical permanent magnet holding plate divided into required lengths in the longitudinal direction and circumferential direction; It has a cylindrical permanent magnet rotor that is integrally provided on the outer wall surface of the plate, and a non-magnetic material holding plate that is integrally provided on both end surfaces of the rotor. a cylindrical rotating body provided with a gap therebetween and radially provided to each permanent magnet cylindrical stator of the non-magnetic cylindrical casing; the permanent magnet cylindrical stator; and the permanent magnet cylindrical stator. Consists of a primary field copper wire coil wound inside the gap with the cylindrical rotor a predetermined number of times, and a secondary field superconducting wire coil wound outside the primary field copper wire coil a predetermined number of times. A field coil and each bearing loosely fitted near both ends of the non-magnetic rotating shaft are fitted into recesses formed inside the center, and are integrally provided at both ends of the non-magnetic cylindrical casing. A solar superconducting power generation lighting device comprising a disc-shaped end cover made of a non-magnetic material and an auxiliary motor provided at one end of the rotating shaft made of the non-magnetic material, and connected to the control unit. be

【0008】又界磁捲線の一次捲線コイルを銅線コイル
とし、二次捲線コイルを超伝導コイルとして成り、従来
の冷却装置を全く使用しない超伝導モータである。
In addition, the primary winding coil of the field winding is a copper wire coil, and the secondary winding coil is a superconducting coil, and the superconducting motor does not use any conventional cooling device.

【0009】[0009]

【実施例】【Example】

【請求項1】記載の太陽光利用超伝導発電照明装置を図
1〜7について説明する。太陽に向かって所要角度で配
置される太陽電池10に過充電防止回路12を接続し、
該過充電防止回路12に蓄電池例えば鉛蓄電池14を接
続する。該過充電防止回路12に例えば発光ダイオード
等の過放電表示メータ18とチャタリング防止回路20
とを有する過放電防止回路16を接続し、該過放電防止
回路16にコントロール・ユニット22を接続する。該
コントロール・ユニット22は自動−手動切替スイッチ
22aと外部タンブラ・スイッチ22bとを有し、該コ
ントロール・ユニット22に日没照度検出回路28を接
続し、タイマー・セット時間切替スイッチ32を有する
タイマー30を接続し、該コントロール・ユニット22
にD/Aインバータ34を接続し、該D/Aインバータ
34に例えば蛍光灯等の照明器具36を接続する。更に
該コントロール・ユニット22と該D/Aインバータ3
4との中点に超伝導発電部40を接続する。
Claims: 1. The solar light-utilizing superconducting power generation lighting device described above will be explained with reference to FIGS. 1 to 7. An overcharge prevention circuit 12 is connected to a solar cell 10 placed at a required angle toward the sun,
A storage battery, such as a lead acid battery 14, is connected to the overcharge prevention circuit 12. The overcharge prevention circuit 12 includes an overdischarge indicator meter 18 such as a light emitting diode, and a chattering prevention circuit 20.
A control unit 22 is connected to the overdischarge prevention circuit 16. The control unit 22 has an automatic-manual changeover switch 22a and an external tumbler switch 22b, a sunset illuminance detection circuit 28 is connected to the control unit 22, and a timer 30 having a timer set time changeover switch 32. and connect the control unit 22
A D/A inverter 34 is connected to the D/A inverter 34, and a lighting fixture 36 such as a fluorescent lamp is connected to the D/A inverter 34. Furthermore, the control unit 22 and the D/A inverter 3
The superconducting power generation unit 40 is connected to the midpoint between the two.

【0010】0010

【請求項2】記載の超伝導発電部40は、図2〜4に示
す通り、非磁性体製円筒形ケーシング42の内壁面に永
久磁石製円筒形ステータ44を一体に設ける。該永久磁
石製円筒形ステータ44は、図  に示す通り長手方向
及び円周方向に所要長さと厚みとを有する円筒を、一定
の幅と円弧で略3分割した各永久磁石44a、44a、
44aを合わせて円筒形を形成する。該永久磁石製円筒
形ステータ44の両端面に非磁性体製保持盤46、46
を一体に設ける。該永久磁石製円筒形ステータ44の内
側に設けられる回転体48の外周囲は、後述の様に該永
久磁石製円筒形ステータ44とに間隙49を形成するた
めに、当然該ステータ44より小径とする。該回転体4
8の非永久磁石製回転軸50は、所要の直径と長さとを
有し、その一端は後述の補助モータ68を設けられる様
に稍延長する。該回転体48の外周囲に非磁性体製永久
磁石保持板52を一体に設け、次ぎに該保持板52の外
壁面に永久磁石製円筒形ロータ54を一体に設ける。特
に図4、5に示す通り、該永久磁石製円筒形ロータ54
は、一定の厚みを有し、且長手方向及び円周方向に一定
の厚みを有する円筒を、一定の幅で略2分割した各永久
磁石54a、54aを合わせて円筒形とする。該永久磁
石製円筒形ロータ54の両端面にも非磁性体製保持盤5
6、56を一体に設け、該保持盤56、56の中心に貫
通孔56a、56aを形成し、該非永久磁石製回転軸5
0を貫通する。該永久磁石製円筒形ステータ44の内側
に一次界磁極細銅線フィラメント60を所要回数捲回し
、該一次界磁極細銅線フィラメントコイル60の外側に
所要回数捲回された二次界磁超伝導極細銅線フィラメン
ト・コイル62とから成る界磁コイル58を設ける。 該一次捲線コイル60をCu極細多芯フィラメント・コ
イルとし、該二次捲線コイル62をNb3Sn、V3G
a、V3Ge、Bi、Ca、CuO、Srの超伝導材料
合金の極細多芯フィラメント・コイルとし、該超伝導材
料合金の二次捲線極細多芯フィラメント・コイル62の
周囲にCu被覆層62aを設け、該Cu被覆層62aの
周囲に絶縁被覆層62bを設けて一体とする。該非磁性
体製回転軸50の両端近くに遊嵌された各軸受64、6
4を非磁性体製円盤形エンド・カバー66の中心内側に
夫々形成した凹部66a内に嵌合し、前述の通り該回転
軸50の両端を該エンド・カバー66の貫通孔66bか
ら外側に導き、該エンド・カバー66のボルト貫通孔6
6cと該保持盤46の貫通孔46b及び該円筒形ケーシ
ング42の端面の螺合穴42aにボルト67を螺合して
一体とし、該回転軸50の一端に補助モータ68を設け
る。そして該永久磁石製円筒形ステータ44の各部分的
永久磁石44aの内周壁がN極に励磁されれば、該永久
磁石製円筒形ロータ54の該各部分的永久磁石54a、
54aの外周壁もN極に励磁され、該永久磁石製円筒形
ロータ54の該部分的永久磁石54aの外周壁がS極に
励磁されれば、該永久磁石製円筒形ステータ44の該各
部分的永久磁石44aの内周壁もS極に励磁され、同極
間の反発力を利用して回転運動を得る様に構成する。
2. As shown in FIGS. 2 to 4, the superconducting power generation section 40 described above has a cylindrical stator 44 made of a permanent magnet integrally provided on the inner wall surface of a cylindrical casing 42 made of a non-magnetic material. The permanent magnet cylindrical stator 44 is made up of permanent magnets 44a, 44a, which are formed by dividing a cylinder having a required length and thickness in the longitudinal and circumferential directions into approximately three parts with a constant width and arc, as shown in the figure.
44a together form a cylindrical shape. Holding discs 46, 46 made of non-magnetic material are provided on both end surfaces of the cylindrical stator 44 made of permanent magnet.
are provided in one piece. The outer periphery of the rotating body 48 provided inside the permanent magnet cylindrical stator 44 is naturally made to have a smaller diameter than the stator 44 in order to form a gap 49 with the permanent magnet cylindrical stator 44 as described later. do. The rotating body 4
The rotating shaft 50 made of a non-permanent magnet 8 has a required diameter and length, and one end thereof is slightly extended so that an auxiliary motor 68, which will be described later, can be installed therein. A permanent magnet holding plate 52 made of a non-magnetic material is integrally provided around the outer periphery of the rotating body 48, and then a cylindrical rotor 54 made of a permanent magnet is integrally provided on the outer wall surface of the holding plate 52. In particular, as shown in FIGS. 4 and 5, the permanent magnet cylindrical rotor 54
The permanent magnets 54a, 54a, which are obtained by dividing a cylinder having a constant thickness in the longitudinal direction and the circumferential direction into approximately two parts with a constant width, form a cylindrical shape. A holding plate 5 made of non-magnetic material is also provided on both end surfaces of the cylindrical rotor 54 made of permanent magnet.
6 and 56 are integrally provided, through holes 56a and 56a are formed in the centers of the holding plates 56 and 56, and the non-permanent magnet rotating shaft 5
Penetrates 0. A primary field ultra-fine copper wire filament 60 is wound the required number of times inside the permanent magnet cylindrical stator 44, and a secondary field superconductor is wound the required number of times outside the primary field ultra-fine copper wire filament coil 60. A field coil 58 consisting of an ultra-fine copper wire filament coil 62 is provided. The primary winding coil 60 is made of Cu ultra-fine multifilament coil, and the secondary winding coil 62 is made of Nb3Sn, V3G.
a, an ultrafine multifilament coil made of a superconducting material alloy of V3Ge, Bi, Ca, CuO, and Sr, and a Cu coating layer 62a is provided around the secondary winding ultrafine multifilament coil 62 of the superconducting material alloy. , an insulating coating layer 62b is provided around the Cu coating layer 62a to integrate the Cu coating layer 62a. Bearings 64, 6 loosely fitted near both ends of the non-magnetic rotating shaft 50
4 are fitted into the recesses 66a formed inside the center of a disc-shaped end cover 66 made of non-magnetic material, and as described above, both ends of the rotary shaft 50 are guided to the outside through the through hole 66b of the end cover 66. , the bolt through hole 6 of the end cover 66
6c, the through hole 46b of the holding plate 46, and the threaded hole 42a of the end face of the cylindrical casing 42 to integrate a bolt 67, and an auxiliary motor 68 is provided at one end of the rotating shaft 50. When the inner peripheral wall of each partial permanent magnet 44a of the permanent magnet cylindrical stator 44 is excited to the north pole, each partial permanent magnet 54a of the permanent magnet cylindrical rotor 54,
If the outer peripheral wall of the permanent magnet 54a is also excited to the north pole, and the outer peripheral wall of the partial permanent magnet 54a of the permanent magnet cylindrical rotor 54 is excited to the south pole, each part of the permanent magnet cylindrical stator 44 The inner circumferential wall of the target permanent magnet 44a is also magnetized to the S pole, and the repulsion between the same poles is used to obtain rotational motion.

【0011】[0011]

【請求項3】記載の太陽光利用超伝導発電照明装置70
は、所要長さと幅とを有するメイン・シャシー72の中
心に通線孔72aを形成し、且つ両端にランプ・ソケッ
ト72bを設け、これらランプ・ソケット72b、72
bに直管型蛍光灯74を設け、該メイン・シャシー72
上に該D/Aインバータ34を設け、前述のタイマー・
セット時間切替スイッチ自動−手動切替スイッチ22a
と外部タンブラ・スイッチ22bとを設け、該メイン・
シャシー72に所要のカバー76を設ける。
Claim 3: A superconducting power generation lighting device 70 using sunlight as described above.
A main chassis 72 having a required length and width has a wire passage hole 72a formed in the center thereof, and lamp sockets 72b are provided at both ends, and these lamp sockets 72b, 72
A straight tube fluorescent lamp 74 is installed in b, and the main chassis 72
The D/A inverter 34 is provided above, and the above-mentioned timer/
Set time changeover switch automatic-manual changeover switch 22a
and an external tumbler switch 22b, and the main
A necessary cover 76 is provided on the chassis 72.

【0012】0012

【考案の作用】前述の構成を有する太陽光利用超伝導発
電照明装置70に於て、太陽電池10を北半球では真南
で仰角30°〜40°に配置する。太陽光エネルギヲ該
太陽電池10により電気エネルギに変換した電流を該過
充電防止回路12を介して鉛蓄電池14に充電される。 該鉛蓄電池14からの電流は、該過放電防止回路16、
コントロール・ユニット22、その他の回路を介して該
超伝導発電部40と該補助モータ68とに導びかれる。 そして該一次捲線コイル58と該二次捲線コイル60と
に通電し、更に該補助モータ50を駆動すると、それと
一体の該回転軸50と該永久磁石製円筒形ロータ54と
が回転し、磁束と電流の向きとに直角な向きに連続した
回転力が得られる。従って該永久磁石製円筒形ステータ
44の各部分的永久磁石44aの内周壁がN極に磁化さ
れれば、該永久磁石製円筒形ステータ44の該各部分的
永久磁石44aの内周壁がN極に励磁されれば、該部分
的永久磁石54aの外周壁もN極に磁化され、該永久磁
石製円筒形ロータ54の該部分的永久磁石54aの外周
壁がS極に磁化されれば、該永久磁石製円筒形ステータ
44の該各部分的永久磁石44aの内周壁もS極に磁化
され、同極間の反発力を利用して連続した回転運動を得
る様に構成する
[Operation of the invention] In the solar superconducting power generation illumination device 70 having the above-described configuration, the solar cell 10 is arranged due south at an elevation angle of 30° to 40° in the northern hemisphere. Solar energy is converted into electrical energy by the solar cell 10, and the lead acid battery 14 is charged via the overcharge prevention circuit 12. The current from the lead acid battery 14 is passed through the overdischarge prevention circuit 16,
The power is guided to the superconducting power generation section 40 and the auxiliary motor 68 via the control unit 22 and other circuits. Then, when the primary winding coil 58 and the secondary winding coil 60 are energized and the auxiliary motor 50 is further driven, the rotating shaft 50 and the permanent magnet cylindrical rotor 54, which are integral with it, rotate, and the magnetic flux and A continuous rotational force can be obtained in a direction perpendicular to the direction of the current. Therefore, if the inner peripheral wall of each partial permanent magnet 44a of the permanent magnet cylindrical stator 44 is magnetized to the north pole, the inner peripheral wall of each partial permanent magnet 44a of the permanent magnet cylindrical stator 44 becomes the north pole. If the outer peripheral wall of the partial permanent magnet 54a of the permanent magnet cylindrical rotor 54 is magnetized to the south pole, the outer peripheral wall of the partial permanent magnet 54a will also be magnetized to the north pole. The inner circumferential wall of each partial permanent magnet 44a of the permanent magnet cylindrical stator 44 is also magnetized to the S pole, and is configured to obtain continuous rotational motion by utilizing the repulsive force between the same poles.

【0014】[0014]

【考案の効果】(1)該太陽電池10に過充電防止回路
12を接続し、更に該コントロール・ユニット22と該
D/Aインバータ34との中点に超伝導発電部40を接
続したものであるから、連続し、優れた発電照明効果が
得られる。 (2)特に該永久磁石製円筒形ロータ54と該永久磁石
製円筒形ステータ44の間隙49に設けられる界磁捲線
58の該一次捲線コイル60をCu極細多芯フィラメン
ト・コイルとし、該二次捲線コイル62をNb3Sn、
V3Ga、V3Ge、Bi、Ca、CuO、Srの超伝
導材料合金の極細多芯フィラメント・コイルとし、該超
伝導材料合金の二次捲線極細多芯フィラメント・コイル
62の周囲にCu被覆層60aを設け、該Cu被覆層6
0bの周囲に絶縁被覆層60cを設けて成り、従来の様
な回転型極低温容器を設ける必要が全くなくなる。 (3)太陽光利用超伝導発電照明装置70によれば、該
超伝導発電部40に前述の超伝導コイルを設けたので、
極めて優れた疑似ジョセフソン効果が得られ、補助モー
タ68を回転始動するために最初鉛蓄電池14からの電
流を使用したが、一旦該補助モータ68が回転すると、
該鉛電池14の電気を殆ど消耗することなく、持続的に
回転運動が得られ、その回転運動を利用して発電照明効
率を大幅に改良し、持続照明が可能となる。
[Effects of the invention] (1) An overcharge prevention circuit 12 is connected to the solar cell 10, and a superconducting power generation section 40 is further connected to the midpoint between the control unit 22 and the D/A inverter 34. Because of this, you can get continuous and excellent power-generating lighting effects. (2) In particular, the primary winding coil 60 of the field winding 58 provided in the gap 49 between the permanent magnet cylindrical rotor 54 and the permanent magnet cylindrical stator 44 is a Cu ultrafine multifilament coil, and the secondary The winding coil 62 is made of Nb3Sn,
An ultrafine multifilament coil made of a superconducting material alloy of V3Ga, V3Ge, Bi, Ca, CuO, and Sr, and a Cu coating layer 60a is provided around the secondary winding ultrafine multifilament coil 62 of the superconducting material alloy. , the Cu coating layer 6
Since an insulating coating layer 60c is provided around 0b, there is no need to provide a rotating type cryogenic container as in the prior art. (3) According to the solar superconducting power generation lighting device 70, since the superconducting power generating section 40 is provided with the above-mentioned superconducting coil,
A very good pseudo-Josephson effect is obtained, and the current from the lead-acid battery 14 is initially used to start the auxiliary motor 68, but once the auxiliary motor 68 rotates,
A continuous rotational motion can be obtained without almost consuming the electricity of the lead battery 14, and by utilizing the rotational motion, the power generation lighting efficiency is greatly improved, and continuous lighting becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明に係る太陽光利用超伝導発電照明装置
の回路図である。
FIG. 1 is a circuit diagram of a superconducting power generation lighting device using sunlight according to the present invention.

【図2】[Figure 2]

【図1】の回路図の超伝導発電部の正面図である。FIG. 1 is a front view of the superconducting power generation section in the circuit diagram of FIG.

【図3】[Figure 3]

【図2】の超伝導発電部の平面図である。FIG. 2 is a plan view of the superconducting power generation section of FIG.

【図4】[Figure 4]

【図3】の1V−1V線の線縦断面図である。FIG. 3 is a vertical cross-sectional view taken along the line 1V-1V of FIG.

【図5】[Figure 5]

【図4】のV−V線の線横断面図である。FIG. 4 is a cross-sectional view taken along line VV in FIG. 4;

【図6】超伝導コイルの超拡大横断面図である。FIG. 6 is a super-enlarged cross-sectional view of a superconducting coil.

【図7】照明器具の分解斜視図である。FIG. 7 is an exploded perspective view of the lighting fixture.

【図8】太陽電池を設ける状態を示す略図である。10
・・・太陽電池;12・・・過充電防止回路;14・・
・鉛蓄電池;16・・・過放電防止回路;18・・・過
放電表示メータ;20・・・チャタリング防止回路;2
2・・・コントロール・ユニット;28・・・日没照度
検出回路;30・・・タイマー;32・・・タイマー・
セット時間切替スイッチ;34・・・D/Aインバータ
;36・・・照明器具;40・・・超伝導発電部;42
・・・非磁性体製円筒形ケーシング;44・・・永久磁
石製円筒形ステータ;44a・・・各永久磁石;46・
・・非磁性体製保持盤;48・・・回転体;49・・・
間隙;50・・・非永久磁石製回転軸;54・・・永久
磁石製円筒形ロータ;58・・・界磁コイル;60・・
・一次界磁極細銅線フィラメント・コイル;62・・・
二次界磁超伝導極細銅線フィラメント・コイル;68・
・・補助モータ;70・・・太陽光利用超伝導発電照明
装置。
FIG. 8 is a schematic diagram showing a state in which solar cells are provided. 10
...Solar cell; 12...Overcharge prevention circuit; 14...
・Lead acid battery; 16... Over-discharge prevention circuit; 18... Over-discharge display meter; 20... Chattering prevention circuit; 2
2... Control unit; 28... Sunset illuminance detection circuit; 30... Timer; 32... Timer;
Set time selection switch; 34...D/A inverter; 36...Lighting equipment; 40...Superconducting power generation unit; 42
... Cylindrical casing made of non-magnetic material; 44... Cylindrical stator made of permanent magnet; 44a... Each permanent magnet; 46.
...Non-magnetic material holding plate; 48...Rotating body; 49...
Gap; 50... Rotating shaft made of non-permanent magnet; 54... Cylindrical rotor made of permanent magnet; 58... Field coil; 60...
・Primary field ultra-fine copper wire filament coil; 62...
Secondary field superconducting ultrafine copper wire filament coil; 68.
...Auxiliary motor; 70...Superconducting power generation lighting device using sunlight.

Claims (1)

【特許請求の範囲】 【請求項1】太陽に向かって所要角度で配置される太陽
電池と;該太陽電池に接続され、且つ蓄電池を接続した
過充電防止回路と;過放電表示メータとチャタリング防
止回路とを有し、且つ該過充電防止回路に接続された過
放電防止回路と;自動−手動切換スイッチと外部スイッ
チとを有し、且つ該過放電防止回路に接続されたコント
ロール・ユニットと;該コントロール・ユニットに接続
された日没照度検出回路と;時間切換スイッチを有し、
且つ該日没照度検出回路に接続されたタイマと;該コン
トロール・ユニットに接続された超伝導発電部と;該コ
ントロール・ユニットに接続されたD/Aインバータと
;該D/Aインバータに接続された照明装置と、から成
る太陽光利用超伝導発電照明装置。 【請求項2】非磁性体製円筒形ケーシングと;該非磁性
体製円筒形ケーシングの内壁面に放射状に一体に設けら
れ、且つ両端面に非磁性体製保持盤を一体に設けられた
永久磁石製円筒形ステータと;非磁性体製回転軸、該非
磁性体製回転軸の外壁面に一体に設けられた非磁性体製
円筒形永久磁石保持板、長手方向及び円周方向に所要長
さで区分され、該非磁性体製円筒形永久磁石保持板の外
壁面に一体に設けられた永久磁石製円筒形ロータ、それ
らの両端面に一体に設けられた非磁性体製保持盤とを有
し、該永久磁石製ステータの内周囲面に所定の間隙をお
いて設けられ、且つ該非磁性体製円筒形ケーシングの各
永久磁石製円筒形ステータに対して同心円と放射状に設
けられた円筒形回転体と;  該永久磁石製円筒形ステ
ータと該永久磁石製円筒形ロータとの間隙内で内側に所
要回数捲回された一次界磁銅線コイル、該一次界磁銅線
コイルの外側に所要回数捲回された二次界磁超伝導捲線
コイルとから成る界磁コイルと;該非磁性体製回転軸の
両端近くに遊嵌された各軸受を中心内側に夫々形成した
凹部内に嵌合し、且つ該非磁性体製円筒形ケーシングの
両端に一体に設けられた非磁性体製円盤形エンド・カバ
ーと;該非磁性体製回転軸の一端に設けられた補助モー
タと;該コントロール・ユニットに接続された超伝導発
電部とを有する 【請求項1】記載の太陽光利用超伝導発電照明装置。 【請求項3】所要長さと幅とを有し、中心に通線孔を形
成し、且つ両端にランプ・ソケットを設けたメイン・シ
ャシーと;タイマー・セット時間切替スイッチ、自動−
手動切替スイッチ、過放電モニター用発光ダイオード、
太陽電池用コネクタ、蓄電池用コネクタ、外部タンブラ
・スイッチ用コネクタをと有し、且つ該メイン・シャシ
ーベー上に設けられたコントロール・ユニットと;該コ
ントロール・ユニットに接続されたD/Aインバータと
;該ランプ・ソケットに挿入された直管型蛍光灯と;該
メイン・シャシーに設けられたカバーとから成る【請求
項1】及び 【請求項2】記載の太陽光利用超伝導発電照明装置。
[Scope of Claims] [Claim 1] A solar cell arranged at a predetermined angle toward the sun; an overcharge prevention circuit connected to the solar cell and connected to a storage battery; an overdischarge indicator meter and chattering prevention circuit; an over-discharge prevention circuit having a circuit and connected to the over-discharge prevention circuit; a control unit having an automatic-manual changeover switch and an external switch and connected to the over-discharge prevention circuit; a sunset illuminance detection circuit connected to the control unit; and a time changeover switch;
and a timer connected to the sunset illuminance detection circuit; a superconducting power generation section connected to the control unit; a D/A inverter connected to the control unit; A superconducting power generation lighting device using sunlight, consisting of [Claim 2] A cylindrical casing made of a non-magnetic material; a permanent magnet integrally provided radially on the inner wall surface of the cylindrical casing made of a non-magnetic material, and holding plates made of a non-magnetic material integrally provided on both end surfaces. A cylindrical stator made of a non-magnetic material, a rotating shaft made of a non-magnetic material, a cylindrical permanent magnet holding plate made of a non-magnetic material integrally provided on the outer wall surface of the rotating shaft made of a non-magnetic material, and having a required length in the longitudinal and circumferential directions. It has a cylindrical permanent magnet rotor that is divided into sections and is integrally provided on the outer wall surface of the cylindrical permanent magnet holding plate made of a non-magnetic material, and a holding plate made of a non-magnetic material that is integrally provided on both end surfaces thereof, a cylindrical rotating body provided at a predetermined gap on the inner circumferential surface of the permanent magnet stator, and provided concentrically and radially with respect to each permanent magnet cylindrical stator of the non-magnetic cylindrical casing; ; a primary field copper wire coil wound inside the gap between the permanent magnet cylindrical stator and the permanent magnet cylindrical rotor a required number of times, and a primary field copper wire coil wound outside the primary field copper wire coil the required number of times; a field coil consisting of a secondary field superconducting wound coil; each bearing loosely fitted near both ends of the non-magnetic rotating shaft; fitted into a recess formed inside the center; a non-magnetic disc-shaped end cover integrally provided at both ends of the magnetic cylindrical casing; an auxiliary motor provided at one end of the non-magnetic rotating shaft; a super motor connected to the control unit; A superconducting power generation lighting device using sunlight according to claim 1, comprising a conduction power generation section. 3. A main chassis having the required length and width, having a wire hole in the center, and having lamp sockets at both ends; a timer/set time changeover switch;
Manual changeover switch, light emitting diode for overdischarge monitor,
a control unit having a solar battery connector, a storage battery connector, and an external tumbler switch connector and provided on the main chassis bay; a D/A inverter connected to the control unit; A solar superconducting power generation lighting device according to claims 1 and 2, comprising a straight tube fluorescent lamp inserted into a lamp socket; and a cover provided on the main chassis.
JP3142324A 1991-01-17 1991-01-17 Superconductive power generation/illumination device utilizing sun light Pending JPH04237996A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3142324A JPH04237996A (en) 1991-01-17 1991-01-17 Superconductive power generation/illumination device utilizing sun light
CA002059569A CA2059569C (en) 1991-01-17 1992-01-17 Superconducting rotating machine, a superconducting coil, and a superconducting generator for use in a lighting equipment using solar energy
AU10291/92A AU657511B2 (en) 1991-01-17 1992-01-17 A superconducting rotating machine, a superconducting coil, and a superconducting generator for use in a lighting equipment using solar energy
US07/975,445 US5350958A (en) 1991-01-17 1992-01-17 Superconducting rotating machine, a superconducting coil, and a superconducting generator for use in a lighting equipment using solar energy
EP92300440A EP0495681A2 (en) 1991-01-17 1992-01-17 Superconducting rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3142324A JPH04237996A (en) 1991-01-17 1991-01-17 Superconductive power generation/illumination device utilizing sun light

Publications (1)

Publication Number Publication Date
JPH04237996A true JPH04237996A (en) 1992-08-26

Family

ID=15312701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3142324A Pending JPH04237996A (en) 1991-01-17 1991-01-17 Superconductive power generation/illumination device utilizing sun light

Country Status (1)

Country Link
JP (1) JPH04237996A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141726A (en) * 1984-12-11 1986-06-28 バイエル・アクチエンゲゼルシヤフト Aromatic polycarbonate and its production
JPS6419929A (en) * 1987-07-15 1989-01-24 Hitachi Ltd Solar power generator
JPH01117374A (en) * 1987-10-30 1989-05-10 Matsushita Electric Ind Co Ltd Solar energy storing device
JPH01270705A (en) * 1988-04-22 1989-10-30 Japan Electron Control Syst Co Ltd Electric motor car system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141726A (en) * 1984-12-11 1986-06-28 バイエル・アクチエンゲゼルシヤフト Aromatic polycarbonate and its production
JPS6419929A (en) * 1987-07-15 1989-01-24 Hitachi Ltd Solar power generator
JPH01117374A (en) * 1987-10-30 1989-05-10 Matsushita Electric Ind Co Ltd Solar energy storing device
JPH01270705A (en) * 1988-04-22 1989-10-30 Japan Electron Control Syst Co Ltd Electric motor car system

Similar Documents

Publication Publication Date Title
CA2059569C (en) Superconducting rotating machine, a superconducting coil, and a superconducting generator for use in a lighting equipment using solar energy
EP3050193B1 (en) Superconductive electric motor and generator
US20070052304A1 (en) Multi-pattern high temperature superconducting motor using flux trapping and concentration
Hull et al. Magnetomechanics of internal-dipole, Halbach-array motor/generators
JP4117960B2 (en) Hybrid superconducting energy storage system
JPH04237996A (en) Superconductive power generation/illumination device utilizing sun light
De Andrade et al. Third generation of flywheels: a promising substitute to batteries
RU2308643C1 (en) Autonomous source of electric power with handle drive
EP2058929A1 (en) Permanent magnet generator
CN100529510C (en) Manual power generation device and emergency light provided with the same
CN114362390A (en) Universal magnetic energy power battery
JPH0556627A (en) Superconducting motor and superconducting coil
CN102684452A (en) Super-conducting generator
Chubraeva et al. Project of autonomous power plant with high-temperature superconductive devices
Waltman et al. High-temperature superconducting magnet motor demonstration
Hummel et al. Electrical conduction in metals and alloys
CN1801586A (en) Superconductive motor
CN202586715U (en) Superconductive generator
KR20000076994A (en) Magnetic dynamo using rotation phenomenon by the repulsive force of permanent magnet
CN201904702U (en) Coaxial-swinging micro generator
RU2119708C1 (en) Load equalizer
Hopkins Electromotive forces
JPH10146074A (en) Superconducting dc power generator
Cansiz Energy Storage
JPH1014255A (en) Thermoelectric compound system