JPH0556437B2 - - Google Patents
Info
- Publication number
- JPH0556437B2 JPH0556437B2 JP12501584A JP12501584A JPH0556437B2 JP H0556437 B2 JPH0556437 B2 JP H0556437B2 JP 12501584 A JP12501584 A JP 12501584A JP 12501584 A JP12501584 A JP 12501584A JP H0556437 B2 JPH0556437 B2 JP H0556437B2
- Authority
- JP
- Japan
- Prior art keywords
- polyvinylidene fluoride
- reinforcing
- pipe
- copolymer resin
- reinforcing layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003014 reinforcing effect Effects 0.000 claims description 21
- 239000002033 PVDF binder Substances 0.000 claims description 20
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 20
- 229920005989 resin Polymers 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 229920006026 co-polymeric resin Polymers 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 12
- 238000004804 winding Methods 0.000 claims description 9
- 239000011295 pitch Substances 0.000 claims description 7
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 4
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 239000003921 oil Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
Description
本発明は、高温の水、油、ガスなどの輸送に用
いられる輸送管に係り、特に可撓性を有し高圧高
温に耐えて所望の各種流体を輸送することができ
る高温流体用輸送管に関するものである。
従来、例えば、海底の油田から得られる油、ガ
ス等の輸送には、主として鉄管が用いられている
が、近年、施工の容易さから、可撓性の複合管が
注目を集めている。
例えば、この可撓性複合管としては、フランス
の「コフレキシツプ」社よりナイロンから成る内
管上、必要に応じて、Z形の短ピツチの補強条
と、平形の長ピツチの補強条とを巻回し、さらに
プラスチツクのシースを施した複合管が販売され
ている。この複合管は多くの海底油田において、
原油やガスの輸送に用いられているが、油井から
噴出して来る油の温度は時として100℃を越える
ものがあり、このような場所に使用すると、可成
りの短期間に油洩れの事故を起こすことがある。
すなわち、従来使用されているナイロン樹脂製
の内管では、100℃が使用限界温度と考えられ、
このような温度では長期の寿命を保証することが
できない。
一方、ナイロン樹脂に代わる耐熱性樹脂として
は、一般には、弗素樹脂や各種のエンジニアリン
グプラスチツクが考えられるが、高温高圧用輸送
管を製造するには、伸びが不足であつたり、スト
レスクラツキングの問題の派生が想定され、その
実用化は進んでいなかつた。
すなわち、例えば、ポリ弗化ビニリデン樹脂で
は、その優れた押出加工性、耐熱性、耐薬品性が
知られており、パイプライニング、ソリツドパイ
プ等の用途に実用化されているが、このようなフ
レキシブルな管への応用は、極めて細い管を除い
ては知られていなかつた。
この理由は、ポリ弗化ビニリデン樹脂の剛性が
高いため、本発明の如き用途に用いても、特に冬
期では、その低温のため、曲げたまま、あるい
は、曲げを伸長して鋸等で切断しようとすると、
数10mにわたつて、クラツクが伝播し、使用し供
し得なくなることがしばしば発生する。
この原因は、ポリ弗化ビニリデン樹脂の剛性が
高いばかりでなく、樹脂自体の成形収縮率の高さ
にも起因し、成形体の残留歪の大きさが問題点と
考えられる。すなわち、金属テープを相互に噛み
合わせながら巻回して作つた可撓性のインタロツ
ク金属管に、直接ポリ弗化ビニリデン樹脂を押出
被覆して得た管を、曲げてノツチを入れて、その
クラツクの伝播を観察すると、クラツクは、金属
管噛み合い部の凹部(樹脂成形物の凸部)から生
起していることが判つた。
本発明は、耐熱性に優れたポリ弗化ビニリデン
の特徴を生かし、しかも前述のような欠点を改良
した高温高圧で使用でき、その上可撓性にも優れ
た高温流体用輸送管を提供しようとするものであ
る。
すなわち、本発明は前述のような発明者等の
種々の研究検討の結果達成できたもので、その実
施例が図面にもみられるように、内部に高温高圧
の所望の流体を送通させるための、金属テープを
成形して相互に噛み合わせて成る可撓性のインタ
ロツク金属管と、該インタロツク金属管の外周を
被覆した内管と、該内管の外側上に設けた補強層
と、さらに該補強層の外周を被覆した保護シース
層とから構成した流体用輸送管において、前記内
管に、熱プレスにより作成したシートのアイゾツ
ト衝撃強度が10Kgcm/cm以上、見掛のヤング率が
90Kg/mm2以下のポリ弗化ビニリデン共重合体樹
脂、又はポリ弗化ビニリデン樹脂と前記共重合体
樹脂とのブレンド物、又は前記ポリ弗化ビニリデ
ン共重合体樹脂をベースとする組成物のいずれか
を用いて、押出成形したパイプを用いたことを特
徴とするものである。
本発明において、内管の構成材料を上述の如く
特定した理由は、かかる種類の材料で、しかもそ
のアイゾツト衝撃強度が10Kgcm/cm未満のもので
は、衝撃強度が弱すぎて不可であり、又、見掛の
ヤング率が90Kg/mm2を越えると容易に、クラツク
や裂けの発生の恐れがあるなどの理由に基づくも
のである。
なお本発明において云うポリ弗化ビニリデン共
重合体樹脂とは、弗化ビニリデンモノマーを主成
分とし、4−弗化エチレンモノマー、3−弗化1
−塩化エチレンモノマー、6−弗化プロピレンな
どのコモノマーの1種又は2種以上を共重合させ
て得た樹脂である。
また本発明で内管構成材料の特定のための衝撃
強度の測定を熱プレスにより作成したシートから
の試験片に限定した理由は熱プレス法が試験片の
作成が簡便であり、また測定値が低い値で得られ
るためである。
また本発明において、インタロツク金属管とし
ては、その外周面上にプラスチツクテープ巻回層
を設けたものを用いること望ましい。
その理由は、インタロツク金属管の金属テープ
の噛み合せ部は凹状であり、この上に直接内管が
押出成形されると、管素材が該凹部に喰い込み、
素材樹脂の種類、或いは内管の肉厚等により、そ
の部位がしば後工程においてクラツク発生の源と
なると云う現象の発生を抑制し得るためである。
また本発明において内管の外側に設けられる補
強層は内圧力に耐える作用をなすもので、通常金
属製或いは強化プラスチツク製の帯、条、線など
が用いられる。
また補強層を短ピツチの断面異形条と相互に巻
き方向の異なる少くとも二層の長ピツチに巻回し
てなる補強条とで構成すると、前者の補強条が主
として、管に作用する内圧力による円周応力に耐
える作用を果し、または後者は管に作用する内圧
力による軸方向に耐える作用を持たせ得る。
また補強層材として特に繊維強化プラスチツク
製の多突起形断面形状の条を用いると、補強層の
条間に適度の空間を持たせることができ、その結
果外部からの冷却を防止する効果が得られる。
以下本発明を実施例、比較例を挙げて説明す
る。
実施例 1
弗化ビニリデンモノマーと、3−弗化1−塩化
エチレンモノマーをモル比で9:1で反応させて
得たポリ弗化ビニリデン共重合体樹脂(熱プレス
で作成したシートのアイゾツト衝撃強度が11.6
Kg/mm/mm、見掛けのヤング率56.8Kg/mm2)を用
いて肉厚4mm/mmで内径2インチのパイプを押出
成形した。つぎに該パイプの外側に0.6mm/mm、
及び1mm/mmの厚さで幅50mmの鉄製帯を隣同士の
隙間が5m/mになるように各2層巻回し、更に
6m/の鉄線を巻角度15゜で2層相互に巻方向を
変えて巻回し、この上に4mm/mm厚のポリエチレ
ンを押出被覆して輸送管を作製した。
以上の製造過程でポリ弗化ビニリデン共重合体
樹脂製パイプは径1mのドラムに延べ6回巻取ら
れたが、何らの異常をも発生しなかつた。
而して得られた輸送管は500Kg/cm2のの内圧破
壊特性を保持していた。
比較例
弗化ビニリデンモノマーのみを反応させて得た
ポリ弗化ビニリデン(熱プレスシート法によるア
イゾツト衝撃強度7.2Kgcm/cm、見掛けのヤング
率88.2Kg/mm2)を用いて実施例1と同サイズのパ
イプを押出成形し、実施例1と同一の輸送管を作
ろうとしたが、工程中の1回目のドラム巻取り時
にパイプにクラツクが発生した。
実施例2〜4並びに比較例2
SUS304で作られた1インチのインタ−ロツク
管1の上に、実施例2〜4及び比較例2〜3に示
す樹脂及び樹脂組成物を押出機により3m/m厚
で押出被覆を行なつた(表参照)。この成形管つ
まり内管3を半径22cmに曲げ、ナイフにより長さ
約2cmのノツチを入れ、クラツクの伝播性を調べ
た。その結果を表に示す。クラツクが入らない場
合は直線状に伸ばして、再び曲げR22cmに曲げる
ことを最高20回迄繰返した。そのの結果を、別に
熱プレスにより作つた6mm厚のシートによつて測
定したアイゾツト衝撃試験値及び1mm厚シートで
測定した引張ヤング率を併わせて示す。クラツク
のデーターは5本を試験し最低値で示す。
The present invention relates to a transport pipe used for transporting high-temperature water, oil, gas, etc., and particularly relates to a high-temperature fluid transport pipe that is flexible, can withstand high pressure and high temperature, and can transport various desired fluids. It is something. Conventionally, iron pipes have been mainly used to transport oil, gas, etc. obtained from oil fields on the ocean floor, but in recent years, flexible composite pipes have been attracting attention because of their ease of construction. For example, this flexible composite tube is manufactured by the French company CoflexiP and has Z-shaped short pitch reinforcing strips and flat long pitch reinforcing strips wrapped around the inner tube made of nylon as necessary. Composite tubes are available that are rotated and have a plastic sheath. This composite pipe is used in many offshore oil fields.
It is used to transport crude oil and gas, but the temperature of the oil gushing out from oil wells can sometimes exceed 100 degrees Celsius, and if it is used in such places, it can cause an oil leak accident in a fairly short period of time. may occur. In other words, 100℃ is considered to be the maximum operating temperature for the conventionally used nylon resin inner tube.
At such temperatures, a long service life cannot be guaranteed. On the other hand, fluororesin and various engineering plastics are generally considered as heat-resistant resins to replace nylon resins, but they lack sufficient elongation and stress cracking to manufacture high-temperature, high-pressure transport pipes. Problems were expected to arise, and no progress had been made in its practical application. For example, polyvinylidene fluoride resin is known for its excellent extrusion processability, heat resistance, and chemical resistance, and has been put into practical use for pipe lining, solid pipes, etc.; No application to pipes was known, except for very thin pipes. The reason for this is that polyvinylidene fluoride resin has high rigidity, so even when used for applications such as the present invention, it is difficult to cut it with a saw, etc. while it is bent, or after stretching it, due to its low temperature, especially in winter. Then,
Cracks often propagate over tens of meters, making them unusable. The cause of this is not only the high rigidity of the polyvinylidene fluoride resin, but also the high molding shrinkage rate of the resin itself, and the problem is considered to be the large residual strain of the molded product. That is, a flexible interlocking metal tube made by winding metal tapes while interlocking with each other is directly extruded and coated with polyvinylidene fluoride resin, and then bent and notched. When observing the propagation, it was found that the cracks originated from the recesses (protrusions of the resin molded product) in the metal tube meshing part. The present invention takes advantage of the characteristics of polyvinylidene fluoride, which has excellent heat resistance, and also provides a high-temperature fluid transport pipe that can be used at high temperatures and high pressures and has excellent flexibility, while improving the above-mentioned drawbacks. That is. That is, the present invention has been achieved as a result of various research studies conducted by the inventors as described above, and as can be seen in the drawings, an embodiment of the present invention is a system for transmitting a desired high-temperature and high-pressure fluid through the interior. , a flexible interlock metal tube formed by molding metal tapes and interlocking with each other, an inner tube covering the outer periphery of the interlock metal tube, a reinforcing layer provided on the outside of the inner tube, and a reinforcing layer provided on the outside of the inner tube. In a fluid transport pipe composed of a protective sheath layer covering the outer periphery of a reinforcing layer, the inner pipe has a sheet made by heat pressing that has an Izot impact strength of 10 Kgcm/cm or more and an apparent Young's modulus of 10 Kgcm/cm or more.
Any of a polyvinylidene fluoride copolymer resin having a weight of 90 Kg/mm 2 or less, a blend of a polyvinylidene fluoride resin and the above copolymer resin, or a composition based on the above polyvinylidene fluoride copolymer resin It is characterized by using an extrusion-molded pipe. In the present invention, the reason why the constituent material of the inner tube is specified as described above is that it is impossible to use such a material with an Izot impact strength of less than 10 Kgcm/cm because the impact strength is too low. This is because if the apparent Young's modulus exceeds 90 kg/mm 2 , cracks and tears may easily occur. In addition, the polyvinylidene fluoride copolymer resin referred to in the present invention includes vinylidene fluoride monomer as a main component, 4-ethylene fluoride monomer, 3-fluoride 1
- A resin obtained by copolymerizing one or more comonomers such as ethylene chloride monomer and 6-fluorinated propylene. In addition, in the present invention, the reason why the measurement of impact strength for specifying the inner pipe constituent material is limited to test pieces from sheets made by heat pressing is that the heat press method allows easy preparation of test pieces, and the measured values are This is because it can be obtained with a low value. In the present invention, it is preferable to use an interlock metal tube with a plastic tape wrap layer provided on its outer circumferential surface. The reason for this is that the interlocking metal tape of the interlock metal tube has a concave shape, and when the inner tube is directly extruded onto this, the tube material bites into the concave portion.
This is because it is possible to suppress the occurrence of the phenomenon that, depending on the type of material resin or the wall thickness of the inner tube, that part often becomes a source of cracks in subsequent processes. Further, in the present invention, the reinforcing layer provided on the outside of the inner tube has the function of withstanding internal pressure, and is usually made of metal or reinforced plastic such as bands, strips, or wires. Furthermore, if the reinforcing layer is composed of short pitch strips with irregular cross-sections and at least two layers of reinforcing strips wound in long pitches with mutually different winding directions, the former reinforcing strips are mainly affected by the internal pressure acting on the pipe. It can serve to withstand circumferential stresses, or the latter can serve to withstand axial stresses due to internal pressures acting on the tube. In addition, if fiber-reinforced plastic strips with a multi-projection cross-section are used as the reinforcing layer material, an appropriate amount of space can be provided between the reinforcing layer strips, resulting in the effect of preventing cooling from the outside. It will be done. The present invention will be explained below with reference to Examples and Comparative Examples. Example 1 Polyvinylidene fluoride copolymer resin obtained by reacting vinylidene fluoride monomer and 3-fluoride-1-ethylene chloride monomer at a molar ratio of 9:1 (Izot impact strength of sheet made by hot pressing) is 11.6
A pipe having a wall thickness of 4 mm/mm and an inner diameter of 2 inches was extruded using an apparent Young's modulus of 56.8 kg/mm/mm 2 ). Next, add 0.6mm/mm to the outside of the pipe.
Then, two layers of 1 mm/mm thick and 50 mm wide iron strips were wound each with a gap of 5 m/m between adjacent layers, and two layers of 6 m/mm iron wire were wound at a winding angle of 15° so that the winding direction was mutually changed. The tube was wound in different directions, and a 4 mm/mm thick polyethylene was extrusion coated on top of the tube to produce a transport tube. In the above manufacturing process, the polyvinylidene fluoride copolymer resin pipe was wound around a drum with a diameter of 1 m six times in total, but no abnormality occurred. The thus obtained transport pipe maintained an internal pressure rupture property of 500 kg/cm 2 . Comparative Example The same size as in Example 1 was prepared using polyvinylidene fluoride obtained by reacting only vinylidene fluoride monomer (Izot impact strength 7.2 Kgcm/cm by hot press sheet method, apparent Young's modulus 88.2 Kg/mm 2 ). An attempt was made to make the same transport pipe as in Example 1 by extrusion molding, but a crack occurred in the pipe during the first drum winding during the process. Examples 2 to 4 and Comparative Example 2 The resins and resin compositions shown in Examples 2 to 4 and Comparative Examples 2 to 3 were placed on a 1-inch interlock pipe 1 made of SUS304 using an extruder for 3 m/min. Extrusion coatings were carried out with a thickness of m (see table). This formed tube, that is, the inner tube 3, was bent to a radius of 22 cm, a notch with a length of about 2 cm was made with a knife, and the propagation of cracks was examined. The results are shown in the table. If the crack did not form, the process of stretching it into a straight line and bending it again to a radius of 22 cm was repeated up to 20 times. The results are shown together with the Izod impact test value measured using a 6 mm thick sheet made by hot pressing and the tensile Young's modulus measured using a 1 mm thick sheet. The crack data is shown as the lowest value after testing 5 pieces.
【表】
上表に関しアイゾツト衝撃試験は6mm厚の試料
による。
ヤング率は1mm厚のシートから2号ダンベルを
打抜き、50mm/minで引張り得られた歪−強度曲
線の初期勾配より求める(23℃)。
実施例 5
前記実施例2において、1インチのインターロ
ツク管1に、ポリエステルテープを0.5m/m厚
になるよう複数層を巻回してインターロツク管1
の噛み合い部の凹部を包みプラスチツクテープ層
2を形成し、その上にポリ弗化ビニリデン共重合
体樹脂(商品名フオラクロン650HD、アイソツ
ト衝撃強度11Kgcm/cm、見掛けのヤング率88Kg/
mm2)を3m/m厚に押出被覆して管、つまり内管
3を得た。この管について実施例2〜4と同様の
評価を行なつたところ、繰返し回数20回迄、クラ
ツクを発生することはなかつた。
尚、比較例2の樹脂を同様に成型しても、繰返
し回数6回でクラツクを生起した。
なお、前記のポリエステルフイルム等を可撓性
金属管すなわちインターロツク管1上に巻くテー
プ2の効果は、その外側のポリ弗化ビニリデン共
重合体樹脂が前記可撓性金属管1のくい込み部に
入り込むのを防ぐと共に、複数枚積層することに
より、ある程度のクツシヨンを持たせるために、
曲げた時の樹脂の局部歪の発生を小さくすると共
に、成形歪の解放をはかる効果があるものと考え
られる。
実施例 6
実施例2において、インターロツク管1を3イ
ンチとし、その上にポリエステルテープ2を厚さ
0.5mmになるように複数層巻回してから肉厚6
m/mの内管3を設け、その上に凹状断面形状
(コの字型条)を有する鋼条4を2層、その開口
部と脚部とが相互に噛み合うように(噛み合つた
2層の厚み6mm)、巻付け、さらに厚み3mmの平
型の鋼条5を角度40゜で巻き、さらに外側に低密
度ポリエチレンから成る樹脂層6を被覆した。
こうして出来上つた輸送管に、120℃に加熱し
た油を循環した後、平衡に達せしめ、内圧破壊試
験を行つたところ、950Kg/cm2で破壊した。なお、
この時の表面温度は50℃であつた。
一方、比較例2の樹脂を用いて同様の輸送管の
製造を試みたが、凹型条4を巻く前に鋸で切断し
ようとしたところ、パイプの長手方向にクラツク
が伝播してしまつた。
実施例 7
実施例6において、使用する内管3の樹脂を実
施例3(表参照)と同じものとし、厚み3mmの平
型の鋼条4の代わりに、繊維強化プラスチツクか
ら成る断面積が同じで断面十字形状を有する条を
用い他は、実施例6と同じように構成した輸送管
を得た。これに対して同一の評価を行なつたとこ
ろ、内圧破壊強度が850Kg/cm2であつた。又、こ
のときの管の表面温度は38℃であり、実施例6の
管に比べ高度の保温性を備えていた。
本発明の奏する効果は次の如くである。すなわ
ち、その自体耐熱性に特に優れたポリ弗化ビニリ
デン樹脂の特性の限られた範囲のものを特別に選
択し、従来の主としてナイロンに代えて内管とし
てうまく応用したことによつて、特に耐熱特性を
大幅に向上することができる高温流体用輸送管を
提供することができる。[Table] Regarding the above table, the Izot impact test is based on a 6mm thick sample. Young's modulus is determined from the initial slope of the strain-strength curve obtained by punching out a No. 2 dumbbell from a 1 mm thick sheet and pulling it at 50 mm/min (23°C). Example 5 In Example 2, the interlock tube 1 was made by wrapping multiple layers of polyester tape to a thickness of 0.5 m/m around the 1-inch interlock tube 1.
A plastic tape layer 2 is formed to wrap around the concave part of the interlocking part, and a polyvinylidene fluoride copolymer resin (trade name: Folaclone 650HD, isometric impact strength: 11 Kgcm/cm, apparent Young's modulus: 88 Kg/cm) is formed on top of the plastic tape layer 2.
mm 2 ) to a thickness of 3 m/m to obtain a tube, that is, an inner tube 3. When this tube was evaluated in the same manner as in Examples 2 to 4, no cracks occurred up to 20 times. Incidentally, even when the resin of Comparative Example 2 was molded in the same manner, cracks occurred after 6 repetitions. Note that the effect of the tape 2 that wraps the polyester film or the like on the flexible metal tube, that is, the interlock tube 1, is that the polyvinylidene fluoride copolymer resin on the outside of the tape 2 wraps around the flexible metal tube 1 at the biting part. In order to prevent it from getting in, and to provide a certain degree of cushioning by laminating multiple layers,
It is thought that this has the effect of reducing the occurrence of local strain in the resin when bent, as well as releasing molding strain. Example 6 In Example 2, the interlock tube 1 was made 3 inches, and the polyester tape 2 was placed on it to a thickness of 3 inches.
After winding multiple layers so that the thickness is 0.5 mm, the wall thickness is 6.
An inner tube 3 of m/m is provided, and two layers of steel strips 4 having a concave cross-sectional shape (U-shaped strips) are provided on top of the inner tube 3, so that the openings and legs of the tubes interlock with each other. A flat steel strip 5 having a thickness of 3 mm was further wound at an angle of 40°, and a resin layer 6 made of low-density polyethylene was further coated on the outside. After oil heated to 120°C was circulated through the thus completed transport pipe, equilibrium was reached and an internal pressure failure test was conducted, resulting in failure at 950 kg/cm 2 . In addition,
The surface temperature at this time was 50°C. On the other hand, an attempt was made to manufacture a similar transport pipe using the resin of Comparative Example 2, but when attempting to cut the recessed strip 4 with a saw before winding it, cracks propagated in the longitudinal direction of the pipe. Example 7 In Example 6, the resin of the inner tube 3 used was the same as in Example 3 (see table), and instead of the flat steel strip 4 with a thickness of 3 mm, a tube made of fiber-reinforced plastic with the same cross-sectional area was used. A transport pipe was obtained in the same manner as in Example 6, except that a strip having a cruciform cross section was used. When the same evaluation was performed on this, the internal pressure burst strength was 850 Kg/cm 2 . Further, the surface temperature of the tube at this time was 38° C., and it had a higher heat retention property than the tube of Example 6. The effects of the present invention are as follows. In other words, by specially selecting a polyvinylidene fluoride resin with a limited range of properties, which itself has particularly excellent heat resistance, and successfully applying it as an inner tube instead of conventional nylon, we have achieved particularly high heat resistance. A high-temperature fluid transport pipe whose properties can be significantly improved can be provided.
第1図は本発明の一実施例品の一部断面側面略
図である。
1…インターロツク管、2…プラスチツク(ポ
リエステル等)フイルムもしくはテープ、3…ポ
リ弗化ビニリデン共重合体樹脂、4…コの字型条
(凹状断面を有する鋼条)、5…平型条、6…ポリ
エチレン。
FIG. 1 is a partially cross-sectional schematic side view of an embodiment of the present invention. 1... Interlock pipe, 2... Plastic (polyester, etc.) film or tape, 3... Polyvinylidene fluoride copolymer resin, 4... U-shaped strip (steel strip with a concave cross section), 5... Flat strip, 6...Polyethylene.
Claims (1)
めの、金属テープを成形して相互に噛み合わせて
成る可撓性のインタロツク金属管と、該インタロ
ツク金属管の外周を被覆した内管と、該内管の外
側上に設けた補強層と、さらに該補強層の外周を
被覆した保護シース層とから構成した高温流体用
輸送管において、 前記内管に、熱プレスにより作成したシートの
アイゾツト衝撃強度が10Kgcm/cm以上、且つ見掛
のヤング率が90Kg/mm2以下のポリ弗化ビニリデン
共重合体樹脂、又はポリ弗化ビニリデン樹脂と前
記共重合体樹脂とのブレンド物、又は前記ポリ弗
化ビニリデン共重合体樹脂をベースとする組成物
のいずれかを用いて押出成形したパイプを用いた
ことを特徴とする高温流体用輸送管。 2 前記内管の外側上に設けた補強層が金属又は
繊維強化プラスチツクから成る補強条を巻回して
構成されていることを特徴とする特許請求の範囲
第1項記載の高温流体用輸送管。 3 前記補強層を、短ピツチに巻回して成る異形
断面形状の補強条と、相互に巻方向の異なる少な
くとも二層の長ピツチに巻回して成る補強条とで
構成したことを特徴とする特許請求の範囲第2項
記載の高温流体用輸送管。 4 前記補強層を繊維強化プラスチツク製補強条
で構成し、かつ長ピツチに巻回して成る補強条が
多突起形状の断面を持つたものであることを特徴
とする特許請求の範囲第3項記載の高温流体用輸
送管。[Scope of Claims] 1. A flexible interlocking metal tube formed by molding metal tapes and interlocking with each other, and an outer periphery of the interlocking metal tube for conveying a desired high-temperature, high-pressure fluid inside the tube. A high-temperature fluid transport pipe comprising a coated inner pipe, a reinforcing layer provided on the outside of the inner pipe, and a protective sheath layer covering the outer periphery of the reinforcing layer, wherein the inner pipe is heated by heat pressing. A polyvinylidene fluoride copolymer resin, or a blend of a polyvinylidene fluoride resin and the copolymer resin, in which the produced sheet has an Izot impact strength of 10 Kgcm/cm or more and an apparent Young's modulus of 90 Kg/mm 2 or less. 1. A high-temperature fluid transport pipe, characterized in that the pipe is extrusion-molded using either a polyvinylidene fluoride copolymer resin or a composition based on the polyvinylidene fluoride copolymer resin. 2. The high-temperature fluid transport pipe according to claim 1, wherein the reinforcing layer provided on the outside of the inner pipe is constructed by winding reinforcing strips made of metal or fiber-reinforced plastic. 3. A patent characterized in that the reinforcing layer is composed of a reinforcing strip having an irregular cross-sectional shape, which is wound in short pitches, and a reinforcing strip, which is wound in long pitches in at least two layers with mutually different winding directions. A high-temperature fluid transport pipe according to claim 2. 4. Claim 3, characterized in that the reinforcing layer is composed of reinforcing strips made of fiber-reinforced plastic, and the reinforcing strips wound in long pitches have a multi-projection cross section. transport pipes for high-temperature fluids.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12501584A JPS616485A (en) | 1984-06-20 | 1984-06-20 | Transport pipe for high-temperature fluid |
NO852479A NO165612C (en) | 1984-06-20 | 1985-06-19 | FLEXIBLE COMPOSITION ROOM FOR TRANSPORTING A HIGH-TEMPERATURE FLUID. |
EP85107659A EP0166385B1 (en) | 1984-06-20 | 1985-06-20 | Flexible composite pipe for high-temperature fluids |
DE8585107659T DE3581438D1 (en) | 1984-06-20 | 1985-06-20 | BENDING COMPOSITE TUBE FOR HOT FLUIDS. |
US06/935,125 US4706713A (en) | 1984-06-20 | 1986-11-26 | Flexible composite pipe for high-temperature fluids |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12501584A JPS616485A (en) | 1984-06-20 | 1984-06-20 | Transport pipe for high-temperature fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS616485A JPS616485A (en) | 1986-01-13 |
JPH0556437B2 true JPH0556437B2 (en) | 1993-08-19 |
Family
ID=14899747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12501584A Granted JPS616485A (en) | 1984-06-20 | 1984-06-20 | Transport pipe for high-temperature fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS616485A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0540389Y2 (en) * | 1987-06-30 | 1993-10-13 | ||
BE1006614A3 (en) * | 1993-01-25 | 1994-11-03 | Solvay | Polymer compositions intended for the manufacture of pipes for the transportation of hydrocarbons and products containing same. |
BE1006615A3 (en) * | 1993-01-25 | 1994-11-03 | Solvay | Polymer compositions intended for the cables manufacturing and pipes flexible and articles made therefrom. |
CA2313539C (en) * | 1997-12-19 | 2011-05-31 | Keith Dixon-Roche | Hoses or flexible pipes |
DK2412735T3 (en) | 2009-03-23 | 2014-05-19 | Daikin Ind Ltd | Fluorine resin and riser |
KR102199117B1 (en) * | 2016-05-02 | 2021-01-06 | 다이킨 고교 가부시키가이샤 | Fiber-reinforced composite materials, laminates, pipes, riser tubes and flow lines |
BR112019019919B1 (en) | 2017-05-10 | 2023-10-17 | Daikin Industries, Ltd | SHEET, LAMINATE, TUBE, RISER TUBE, AND FLOW LINE |
-
1984
- 1984-06-20 JP JP12501584A patent/JPS616485A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS616485A (en) | 1986-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0166385B1 (en) | Flexible composite pipe for high-temperature fluids | |
US11820101B2 (en) | Underwater pipe comprising a sheath made of a polypropylene homopolymer | |
US6843278B2 (en) | Flexible duct with shrinkage-proof film | |
US5647400A (en) | Polyfluorocarbon/elastomer laminates | |
US3400737A (en) | Composite tubing product and apparatus for manufacturing the same | |
US20060191311A1 (en) | Flexible pipe and method of manufacturing same | |
US7445030B2 (en) | Flexible tubular pipe, especially for oil production, having a PTFE winding | |
US4013100A (en) | Flexible elongated member comprising a reinforcing armouring | |
JPH0151717B2 (en) | ||
JP2659277B2 (en) | Flexible tubular conduit including interlocking outer layer | |
FR2802608B1 (en) | LONG LENGTH UNDERWATER FLEXIBLE PIPE WITH SCALE STRUCTURE | |
CA2755289A1 (en) | Metal cord reinforced flexible pipe | |
EP1234134B1 (en) | Flexible pipe and method of manufacturing same | |
JPH0556437B2 (en) | ||
US3506040A (en) | Armored hose | |
US20040226624A1 (en) | Fiber reinforced hose | |
US6227250B1 (en) | Lagged pipe for transporting fluids | |
DK178345B1 (en) | A flexible tubular structure and a method of manufacturing a flexible tubular structure | |
JP3228386B2 (en) | Flexible fluid transport pipe | |
US10890275B2 (en) | Underwater pipe comprising a sheath comprising a polypropylene block copolymer | |
GB2366345A (en) | Hose incorporating an improved sealing layer | |
EP1740869B1 (en) | A tube reinforced with a polymer and steel cord strip | |
RU168691U1 (en) | Insulated pipe with multilayer working pipes | |
JPH0432548Y2 (en) | ||
RU167304U1 (en) | INSULATED MULTILAYER PIPE |