JPH0556309B2 - - Google Patents

Info

Publication number
JPH0556309B2
JPH0556309B2 JP62141449A JP14144987A JPH0556309B2 JP H0556309 B2 JPH0556309 B2 JP H0556309B2 JP 62141449 A JP62141449 A JP 62141449A JP 14144987 A JP14144987 A JP 14144987A JP H0556309 B2 JPH0556309 B2 JP H0556309B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
crystal
sio
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62141449A
Other languages
Japanese (ja)
Other versions
JPS63307166A (en
Inventor
Seiji Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62141449A priority Critical patent/JPS63307166A/en
Publication of JPS63307166A publication Critical patent/JPS63307166A/en
Publication of JPH0556309B2 publication Critical patent/JPH0556309B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は窒化ケイ素焼結体に係りに、特に高温
強度を向上させた窒化ケイ素焼結体に関する。 〔従来の技術〕 自動車用エンジン部品その他の高温構造用セラ
ミツクスとして窒化ケイ素焼結体が注目され、実
際に、広く使用されまた開発が進められている。 代表的な窒化ケイ素焼結体の製造方法は、窒化
ケイ素粉末にアルミナ、イツトリア、マグネシア
などの適当な焼結助剤を添加したものを加圧成
形、射出成形、押出成形、鋳込成形などの手法で
成形した後、非酸化性雰囲気、典型的には窒素雰
囲気中で焼成して焼結体とするものである。 焼結助剤添加物の使用が高温での強度低下の要
因となり、より高い温度での使用を確実にするた
めには窒化ケイ素(Si3N4)結晶の粒界相制御が
問題となつている。 そこで、本出願人は特願昭61−125906号(昭和
61年6月2日出願)および特願昭62−169号(昭
和62年1月6日出願、特開昭63−100066号)に
て、高温強度を高めるために、窒化ケイ素焼結体
の粒界相にXSiO2N,X4Si2O7N2、およびX10
(SiO46N2〔これらの式中、Xは長周期型周期律
表における第3A族元素(ランタニド系列の元素
を含む)を示す。〕のいずれか1種以上の結晶を
析出させてなることを特徴とする窒化ケイ素焼結
体を提案した。この結晶にはXがイツトリウムで
あるY5N(SiO43,Y10N2(SiO46およびY20N4
(SiO412がある。 〔発明が解決すべき問題点〕 上述した本出願人提案の窒化ケイ素焼結体では
1000℃での強度は粒界に非晶質(ガラス質)のも
のが析出している場合よりもかなり向上したが、
1200℃での強度は非晶質物析出の場合よりも高い
とはいえ低下している。そこで、本発明は1200℃
での強度低下を抑えてより高い高温強度を有する
窒化ケイ素焼結体を提供することを目的とする。 〔問題点を解決するための手段〕 本発明は、上記問題点を解決するために、窒化
ケイ素原料粉末にアルミニウム化合物粉末および
イツトリウム化合物粉末を添加焼結した窒化ケイ
素焼結体において、焼結体粒界に六方晶形結晶で
あるY5N(SiO43,Y10N2(SiO46およびY20N4
(SiO412のうち少なくとも1種と、YAG
(5Al2O3・3Y2O3)結晶とが析出していることを
特徴とする窒化ケイ素焼結体を提供する。 上述の六方晶形結晶およびYAG結晶のX線回
折による最高強度回折線のβ−窒化ケイ素
(Si3N4)結晶の最高強度回折線に対する強度化
が0.02〜0.3であることが好ましく、強度比が0.02
より小さいと粒界結晶相析出による強度向上効果
がなく、一方、強度比が0.3より大きいと、この
場合には多量の焼結助剤が必要となり、この多量
添加は高温での強度を低下させる。 典型的な最高強度回折線(回折ピーク)は上述
のY−N−Si−O系六方晶形結晶では211面、
YAG(5Al2O3・3Y2O3)では420面そしてβ−
Si3N4では101面または210面の回折線であ
る。 〔作用〕 窒化ケイ素原料粉末に添加した焼結助剤である
アルミナ(Al2O3)、スピネル(MgAl2O4)、イツ
トリア(Y2O3)などのアルミニウム化合物およ
びイツトリウム化合物が焼結温度で液相となり、
これからゆつくり冷却すること(コントロールさ
れた冷却)によつて本発明のように結晶を析出さ
せるか、あるいは、焼成後の後熱処理によつて非
結晶質(ガラス質)粒界物を結晶化させる。この
ような結晶化によるY−N−Si−O系の六方晶形
結晶とYAG結晶とを粒界相とするので高温強度
が向上する。 〔実施例〕 以下、添付図面を参照して本発明の実施態様例
によつて本発明を詳しく説明する。 実施例 1 窒化ケイ素粉末(α−Si3N4含有率……95体積
%、平均粒径……0.9μm)90wt%、アルミナ
(Al2O3)粉末5wt%およびイツトリア(Y2O3
粉末5wt%の組成の粉末混合物を熱可塑性樹脂と
混合し、混練したものを5×5×50mmの棒状体に
射出成形した。焼結前に脱脂し(樹脂を除去し)、
第1表の焼結条件で焼結してSi3N4焼結体サンプ
ル1〜5を得た。これら焼結体を3×4×40mmに
研削し、特に、サンプル2,4および5について
は第1表の熱処理条件で後熱処理を施こした。な
お、後熱処理は窒化ケイ素焼結体の粒界相を非晶
質(ガラス質)のものから結晶とするために行な
うものである。得られたサンプルについて表面を
X線回折して結晶相の同定を行ない、その結果を
第2表に示す。
[Industrial Application Field] The present invention relates to a silicon nitride sintered body, and particularly to a silicon nitride sintered body with improved high-temperature strength. [Prior Art] Silicon nitride sintered bodies have attracted attention as ceramics for automobile engine parts and other high-temperature structures, and are in fact widely used and under development. A typical manufacturing method for silicon nitride sintered bodies is to add appropriate sintering aids such as alumina, yttria, and magnesia to silicon nitride powder, and then process it by pressure molding, injection molding, extrusion molding, casting molding, etc. After being shaped by this method, it is fired to form a sintered body in a non-oxidizing atmosphere, typically a nitrogen atmosphere. The use of sintering aid additives is a factor in strength reduction at high temperatures, and grain boundary phase control of silicon nitride (Si 3 N 4 ) crystals has become an issue to ensure use at higher temperatures. There is. Therefore, the present applicant filed Japanese Patent Application No. 61-125906 (Showa
(filed on June 2, 1981) and Japanese Patent Application No. 1982-169 (filed on January 6, 1988, Japanese Patent Application Laid-Open No. 1983-100066), in order to increase the high-temperature strength, a silicon nitride sintered body was proposed. XSiO 2 N, X 4 Si 2 O 7 N 2 and X 10 in the grain boundary phase
(SiO 4 ) 6 N 2 [In these formulas, X represents a Group 3A element (including lanthanide series elements) in the long period periodic table. We have proposed a silicon nitride sintered body characterized by precipitating any one or more crystals. This crystal contains Y 5 N (SiO 4 ) 3 , Y 10 N 2 (SiO 4 ) 6 and Y 20 N 4 where X is yttrium.
(SiO 4 ) 12 . [Problems to be solved by the invention] In the silicon nitride sintered body proposed by the applicant mentioned above,
The strength at 1000℃ was considerably improved compared to the case where amorphous (glassy) material precipitated at the grain boundaries, but
Although the strength at 1200°C is higher than in the case of amorphous precipitation, it is lower. Therefore, the present invention
An object of the present invention is to provide a silicon nitride sintered body having higher high-temperature strength while suppressing a decrease in strength at 100° C. [Means for Solving the Problems] In order to solve the above problems, the present invention provides a silicon nitride sintered body in which aluminum compound powder and yttrium compound powder are added and sintered to silicon nitride raw material powder. Hexagonal crystals Y 5 N (SiO 4 ) 3 , Y 10 N 2 (SiO 4 ) 6 and Y 20 N 4 are present at grain boundaries.
(SiO 4 ) At least one of 12 and YAG
(5Al 2 O 3 .3Y 2 O 3 ) crystals are precipitated therein. It is preferable that the intensity of the highest intensity diffraction line of the above-mentioned hexagonal crystal and YAG crystal by X-ray diffraction with respect to the highest intensity diffraction line of the β-silicon nitride (Si 3 N 4 ) crystal is 0.02 to 0.3, and the intensity ratio is 0.02
If it is smaller, there is no strength improvement effect due to grain boundary crystal phase precipitation, while if the strength ratio is larger than 0.3, a large amount of sintering aid is required in this case, and this large addition reduces the strength at high temperatures. . Typical highest intensity diffraction lines (diffraction peaks) are 211 planes in the above-mentioned Y-N-Si-O hexagonal crystal,
YAG (5Al 2 O 3・3Y 2 O 3 ) has 420 planes and β-
In Si 3 N 4 , the diffraction lines are 101 plane or 210 plane. [Function] Aluminum compounds and yttrium compounds such as alumina (Al 2 O 3 ), spinel (MgAl 2 O 4 ), and yttrium (Y 2 O 3 ), which are sintering aids added to silicon nitride raw material powder, lower the sintering temperature. It becomes a liquid phase at
Then, by cooling slowly (controlled cooling), crystals are precipitated as in the present invention, or amorphous (vitreous) grain boundaries are crystallized by post-firing heat treatment. . Since the Y-N-Si-O based hexagonal crystal and YAG crystal formed by such crystallization form a grain boundary phase, high-temperature strength is improved. [Example] Hereinafter, the present invention will be described in detail by way of embodiment examples with reference to the accompanying drawings. Example 1 Silicon nitride powder (α- Si3N4 content...95% by volume, average particle size ... 0.9μm ) 90wt%, alumina ( Al2O3 ) powder 5wt%, and ittria ( Y2O3 )
A powder mixture having a powder composition of 5 wt % was mixed with a thermoplastic resin, and the kneaded mixture was injection molded into a rod-shaped body of 5 x 5 x 50 mm. Degrease (remove resin) before sintering,
Si 3 N 4 sintered body samples 1 to 5 were obtained by sintering under the sintering conditions shown in Table 1. These sintered bodies were ground to a size of 3×4×40 mm, and in particular, samples 2, 4, and 5 were subjected to post-heat treatment under the heat treatment conditions shown in Table 1. Note that the post-heat treatment is performed to change the grain boundary phase of the silicon nitride sintered body from an amorphous (glassy) phase to a crystalline phase. The surface of the obtained sample was subjected to X-ray diffraction to identify the crystal phase, and the results are shown in Table 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、窒化ケイ素焼結体においてβ
−Si3N4結晶粒の粒界にY20N4(SiO412のような
Y−N−Si−O系六方晶形結晶とYAG結晶とを
析出させることによつて焼結体の高温強度(1000
℃以上での強度)を向上させることができる。
According to the present invention, in the silicon nitride sintered body, β
-By precipitating Y - N- Si - O hexagonal crystals such as Y20N4 ( SiO4 ) 12 and YAG crystals at the grain boundaries of Si3N4 grains, the high temperature of the sintered body can be reduced. Strength (1000
℃ or higher).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、窒化ケイ素焼結体の試験温度と4点
曲げ強度との関係を示すグラフであり、第2図
は、本発明に係る窒化ケイ素焼結体のX線回折パ
ターンのグラフであり、第3A図は、1000℃にお
けるY20N4Si12O48のX線回折強度と4点曲げ強
度との関係を示す図であり、第3B図は、1000℃
におけるYAGのX線回折強度と4点曲げ強度と
の関係を示す図であり、第4A図は、1200℃にお
けるY20N4Si12O48のX線回折強度と4点曲げ強
度との関係を示す図であり、第4B図は、1200℃
におけるYAGのX線回折強度と4点曲げ強度と
の関係を示す図である。
FIG. 1 is a graph showing the relationship between test temperature and four-point bending strength of a silicon nitride sintered body, and FIG. 2 is a graph of an X-ray diffraction pattern of a silicon nitride sintered body according to the present invention. , FIG. 3A is a diagram showing the relationship between the X-ray diffraction intensity and four-point bending strength of Y 20 N 4 Si 12 O 48 at 1000°C, and FIG.
FIG. 4A is a diagram showing the relationship between the X - ray diffraction intensity and the four - point bending strength of YAG at 1200°C. FIG. 4B is a diagram showing 1200℃
FIG. 3 is a diagram showing the relationship between the X-ray diffraction intensity and the four-point bending strength of YAG.

Claims (1)

【特許請求の範囲】 1 窒化ケイ素原料粉末にアルミニウム化合物粉
末およびイツトリウム化合物粉末を添加焼結した
窒化ケイ素焼結体において、焼結体粒界に六方晶
形結晶であるY5N(SiO43,Y10N2(SiO46および
Y20N4(SiO412のうち少なくとも1種と、YAG
(5Al2O3・3Y2O3)結晶とが析出していることを
特徴とする窒化ケイ素焼結体。 2 前記六方晶形結晶およびYAG結晶のX線回
折による最高強度回折線のβ−窒化ケイ素
(Si3N4)結晶の最高強度回折線に対する強度化
が0.02〜0.3であることを特徴とする特許請求の
範囲第1項記載の窒化ケイ素焼結体。
[Claims] 1. In a silicon nitride sintered body obtained by adding and sintering aluminum compound powder and yttrium compound powder to silicon nitride raw material powder, hexagonal crystals Y 5 N (SiO 4 ) 3 are present at the sintered body grain boundaries. , Y 10 N 2 (SiO 4 ) 6 and
Y 20 N 4 (SiO 4 ) At least one of 12 and YAG
(5Al 2 O 3・3Y 2 O 3 ) crystal is precipitated. 2. A patent claim characterized in that the intensity of the highest intensity diffraction line of the hexagonal crystal and YAG crystal in X-ray diffraction with respect to the highest intensity diffraction line of the β-silicon nitride (Si 3 N 4 ) crystal is 0.02 to 0.3. The silicon nitride sintered body according to item 1.
JP62141449A 1987-06-08 1987-06-08 Sintered silicon carbide Granted JPS63307166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141449A JPS63307166A (en) 1987-06-08 1987-06-08 Sintered silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141449A JPS63307166A (en) 1987-06-08 1987-06-08 Sintered silicon carbide

Publications (2)

Publication Number Publication Date
JPS63307166A JPS63307166A (en) 1988-12-14
JPH0556309B2 true JPH0556309B2 (en) 1993-08-19

Family

ID=15292178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141449A Granted JPS63307166A (en) 1987-06-08 1987-06-08 Sintered silicon carbide

Country Status (1)

Country Link
JP (1) JPS63307166A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671524B2 (en) * 2001-03-29 2011-04-20 京セラ株式会社 Method for producing silicon nitride sintered body

Also Published As

Publication number Publication date
JPS63307166A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
Hirao et al. High thermal conductivity silicon nitride ceramic
Chan et al. Physical stabilization of the β→ γ transformation in dicalcium silicate
JPS64349B2 (en)
JPH09165265A (en) Silicon nitride ceramic having high heat conduction and its production
JPH0256311B2 (en)
JPH0511066B2 (en)
JPH0556309B2 (en)
JPH07115931B2 (en) Method for manufacturing silicon nitride sintered body
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
US5177033A (en) Sintered body of light transmitting cordierite and a method of preparing the same
JP3810183B2 (en) Silicon nitride sintered body
JP3078462B2 (en) Alumina sintered body and method for producing the same
JP3106208B2 (en) Silicon nitride sintered body and method for producing the same
JPH04305057A (en) Method for strengthening piezoelectric ceramics
JPS60186462A (en) Thermal impact-resistant refractories
JPH08198664A (en) Alumina-base sintered body and its production
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JPH0688851B2 (en) Ceramic porous molding
JPH11349375A (en) Cordierite-based aggregate and cordierite-based ceramic
JPH0556308B2 (en)
JPH02233560A (en) High-strength calcined sialon-based compact
JPH05178668A (en) Silicon nitride-titanium nitride composite sintered body and its production
JPS6184036A (en) Heat-conductive aln ceramics substrate
JPH0321500B2 (en)
JPS63134551A (en) Alumina base sintered body and manufacture