JPH0555503A - Memory device - Google Patents

Memory device

Info

Publication number
JPH0555503A
JPH0555503A JP3218767A JP21876791A JPH0555503A JP H0555503 A JPH0555503 A JP H0555503A JP 3218767 A JP3218767 A JP 3218767A JP 21876791 A JP21876791 A JP 21876791A JP H0555503 A JPH0555503 A JP H0555503A
Authority
JP
Japan
Prior art keywords
capacitor
electron
transistor
read
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3218767A
Other languages
Japanese (ja)
Other versions
JP2712917B2 (en
Inventor
Kunikazu Ota
太田邦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3218767A priority Critical patent/JP2712917B2/en
Publication of JPH0555503A publication Critical patent/JPH0555503A/en
Application granted granted Critical
Publication of JP2712917B2 publication Critical patent/JP2712917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a memory device which employs one electron as a unit of storage. CONSTITUTION:A title device composed of fine junction area tunneling capacitors J1 and J2 (whose capacitances are C1 and C2, respectively) and a resistor R is known to operate as a triode amplifier (transistor) in an one electron unit on the conditions of e<2>/C1, e<2>/C2>>kBT (e: electron charge, kB: Boltzmann's constant, T: absolute temperature). The transistor and a capacitor are interconnected with each other. Charging and discharging on and from the capacitor C are controlled by controlling biasses U and V in a good timing, and also electric charges on the capacitor are kept at their held state. Thus, a high density memory is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微小なトンネル素子を用
いた三端子増幅器とキャパシタからなる記憶装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a memory device including a three-terminal amplifier using a minute tunnel element and a capacitor.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】一電子を
記憶の単位とする記憶素子は考えうる最小のメモリであ
るがコンセプトとしては語られることがあっても、具体
的構成と動作を記述したものはなかった。一電子を単位
とする記憶装置が実現できれば極めて小さくしかも極め
て低消費電力の記憶動作を実現できる。
2. Description of the Related Art Although a storage element having one electron as a unit of storage is the smallest possible memory, it may be described as a concept, but a specific configuration and operation will be described. There was nothing I did. If a storage device with one electron as a unit can be realized, an extremely small storage operation with extremely low power consumption can be realized.

【0003】[0003]

【課題を解決するための手段】本発明によれば、微小な
面積と微小な容量をもつトンネル接合を二個直列に接続
し、その接続点に抵抗素子の一端を接続して三端子素子
となし、一方のトンネル接合にキャパシタの一端を接続
し、このキャパシタの他端を接地し、もう一方のトンネ
ル接合の前記キャパシタと反対側の端子を読み書き用電
極とし、前記抵抗素子の他端を制御電極とすることを特
徴とする記憶装置である。抵抗素子はキャパシタにかえ
てもよい。
According to the present invention, two tunnel junctions having a minute area and a minute capacitance are connected in series, and one end of a resistance element is connected to the connection point to form a three-terminal element. None, one end of the capacitor is connected to one tunnel junction, the other end of this capacitor is grounded, the other end of the tunnel junction opposite to the capacitor is used as a read / write electrode, and the other end of the resistance element is controlled. It is a storage device characterized by using an electrode. The resistance element may be replaced with a capacitor.

【0004】[0004]

【実施例】図1は本発明の実施例を示す回路図(a)と
動作原理を示すための図(b)である。
FIG. 1 is a circuit diagram (a) showing an embodiment of the present invention and a diagram (b) showing the operating principle.

【0005】(a)図で、極微小面積のトンネルキャパ
シタJ1 とJ2 (その容量をそれぞれC1 、C2 とす
る)と抵抗Rはリカレフ(K.K.Likharev)
によって提案された三端子の一電子トランジスタである
(IE3 Trans.on Mag.volMAG−2
3,No.2,March,1987,p1142〜1
145)。三端子をそれぞれT1 、T2 、T3 とする。
この素子はe2 /C1 、e2 /C2 >>kB T(e:電
子の電荷、kB :ボルツマン定数、T:絶対温度)のと
き一電子単位で三端子増幅器(トランジスタ)として動
作する。端子T2 にはキャパシタCが接続され、キャパ
シタの他端子は接地されている。
In FIG. 1A, tunnel capacitors J 1 and J 2 having extremely small areas (capacitances thereof are C 1 and C 2 respectively) and a resistance R are Rikarev (KK).
Is a three-terminal one-electron transistor proposed by (IE 3 Trans. On Mag. VolMAG-2.
3, No. 2, March, 1987, p1142-1.
145). Let the three terminals be T 1 , T 2 and T 3 , respectively.
This element is e 2 / C 1, e 2 / C 2 >> k B T (e: electron charge, k B: Boltzmann constant, T: absolute temperature) as a three-terminal amplifier in one electronic unit when the (transistor) Operate. A capacitor C is connected to the terminal T 2, and the other terminal of the capacitor is grounded.

【0006】図1(b)でトランジスタの動作を説明す
る。ただしキャパシターの電荷Qs =0とする。端子T
3 にバイアスUを印加し、端子T1 にバイアスVを印加
した時、トンネルキャパシタJ1 を矢印の方向に通過し
た電子数をn1 、トンネルキャパシタJ2 を同じ方向に
通過した電子数をn2 とする。この時、系の自由エネル
ギーFを以下に示す。
The operation of the transistor will be described with reference to FIG. However, the charge Q s of the capacitor is set to 0. Terminal T
When bias U is applied to 3 and bias V is applied to terminal T 1 , the number of electrons passing through tunnel capacitor J 1 in the direction of the arrow is n 1 , and the number of electrons passing through tunnel capacitor J 2 in the same direction is n. Set to 2 . At this time, the free energy F of the system is shown below.

【0007】[0007]

【数1】 [Equation 1]

【0008】上記式より以下の式を得る。From the above equation, the following equation is obtained.

【0009】[0009]

【数2】 [Equation 2]

【0010】式(9)(10)の領域をU−V面に図示
したのが図1(b)の四辺形である。図1(b)の四辺
形はU=±1/2・e/CεとV=U±e/2Cεを四
辺としている。但し、Cε=C1 +C2 でC1、C2
それぞれトンネル接合J1 、J2 の容量、eは電子の電
荷(e>0)である。この四辺形の内部では(n1 、n
2 )(但しn1 =n2 )の状態が保持され、トランジス
タに電流が流れない。この四辺形の内部Iが(n1 、n
2 )の状態にあるとすると上下の両辺を横切るとn1
±1変化し、左右の二辺を横切るとn2 が±1変化す
る。図には四辺及びその延長線で区切られた領域におけ
るn1 、n2 の値を示してある。例えば領域II即ちU
>e/2Cε、V>U+e/2Cεでは(n1 +1、n
2 +1)となっており、J1 、J2 を一電子が通過し、
電荷eの電流が流れる。ここでキャパシターCは絶縁膜
厚d、電極面積S、絶縁膜の誘電率Eによって次式で与
えられる。
The region of equations (9) and (10) is shown in the UV plane in the quadrangle of FIG. 1 (b). The quadrilateral of FIG. 1B has U = ± 1/2 · e / Cε and V = U ± e / 2Cε as quadrilaterals. However, when Cε = C 1 + C 2 , C 1 and C 2 are the capacities of the tunnel junctions J 1 and J 2 , respectively, and e is the electron charge (e> 0). Inside this quadrilateral (n 1 , n
2 ) (however, n 1 = n 2 ) is maintained and no current flows through the transistor. The internal I of this quadrilateral is (n 1 , n
2) state and in the transverse the upper and lower sides when n 1 is ± 1 changes of, n 2 varies ± 1 crosses the left and right two sides. In the figure, the values of n 1 and n 2 in the area divided by the four sides and their extension lines are shown. For example region II or U
> E / 2Cε, V> U + e / 2Cε (n 1 +1, n
2 +1), one electron passes through J 1 and J 2 ,
A current of electric charge e flows. Here, the capacitor C is given by the following equation by the insulating film thickness d, the electrode area S, and the dielectric constant E of the insulating film.

【0011】 C=S/Ed ・・・(11) 具体的数値としてはd=1nm、S=(10nm)2
比誘電率Er =8とするとC=5.5×10- 1 8 Fと
なる。またキャパシターには、トンネル電流が流れるの
で低電圧ではトンネル抵抗で代表されるが、この値とし
ては5×106 〜9×108 Ωの程度となる。C=5×
10- 1 8 Fとした場合の電圧V、温度Tのスケールを
示すと以下のようになる。
C = S / Ed (11) As specific numerical values, d = 1 nm, S = (10 nm) 2 ,
When the relative dielectric constant E r = 8 C = 5.5 × 10 - a 1 8 F. Further, since a tunnel current flows through the capacitor, it is represented by a tunnel resistance at a low voltage, but this value is about 5 × 10 6 to 9 × 10 8 Ω. C = 5x
The scale of voltage V and temperature T when 10 −18 F is shown below.

【0012】 V=e/C=1.6×10- 1 9 /5×10- 1 8 =0.03V=30mV T<<eV/kB =30×10- 3 /8.617×10- 5 =350K これらの値は現状の値を必ずしも代表していないので、
現状における通常の値を示すと、C=5×10- 1 5
として、次の程度となる。 V=30μV、T<<0.35K 図2にキャパシタの電荷Q=0及びQ=eの時の四辺形
の図を重ねて描いてある。ここでキャパシタCの容量C
S =2Cεとする。従ってQ=eの時のキャパシタ間の
バイアスはVs =Q/CS =e/2Cεとなる。このた
めQ=eの時の四辺形はU方向及びV方向にVS だけ平
行移動している。これらの図を用いて以下にメモリーの
動作を説明する。
[0012] V = e / C = 1.6 × 10 - 1 9/5 × 10 - 1 8 = 0.03V = 30mV T << eV / k B = 30 × 10 - 3 /8.617×10 - 5 = 350K Since these values do not always represent the current values,
When indicating the normal value in the current, C = 5 × 10 - 1 5 F
As a result, V = 30 μV, T << 0.35K In FIG. 2, a diagram of a quadrangle when the charge Q = 0 and Q = e of the capacitor is overlaid. Here, the capacitance C of the capacitor C
Let S = 2Cε. Therefore, the bias between the capacitors when Q = e is V s = Q / C S = e / 2Cε. Therefore, the quadrangle when Q = e is translated by V S in the U direction and the V direction. The operation of the memory will be described below with reference to these figures.

【0013】保持状態:これは図2における動作点Sの
状態である。この時キャパシターCに電荷QがQ=0又
はQ=eの状態に保持される。
Holding state : This is the state of the operating point S in FIG. At this time, the charge Q is held in the capacitor C in the state of Q = 0 or Q = e.

【0014】リードサイクル:動作点を図に示すように
S→Rに点線に沿って移動する。Q=0の時はQ=0の
四辺形の外に出て、n1 →n1 +1、n2 →n2 +1の
ように変化し、一電子分に相当する電流がJ1 、J2
流れ、外部回線にこの電流が検出される。又この時キャ
パシタの電荷はQ=eに変化する。
Read cycle : The operating point moves from S to R along the dotted line as shown in the figure. When Q = 0, it goes out of the quadrangle of Q = 0 and changes like n 1 → n 1 +1 and n 2 → n 2 +1 and the current corresponding to one electron is J 1 , J 2 This current is detected in the external line. At this time, the charge of the capacitor changes to Q = e.

【0015】一方Q=eの場合にはRはQ=eの四辺形
の内部にあるので外部電流は検出されない。(U、V)
をS→Rと操作することによりメモリセルのデータ読み
出し後、セルのデータは最初のデータにかかわらず
“1”になっている。次に(U、V)をR→Sともどし
ても“1”状態の四辺形内部の移動なのでこの状態は保
持される。この読み出しは破壊読み出しであるから、書
き戻さなければならないが、これについては後述する。
On the other hand, when Q = e, since R is inside the quadrangle of Q = e, no external current is detected. (U, V)
After reading the data of the memory cell by operating S → R, the data of the cell is “1” regardless of the initial data. Next, even if (U, V) is returned from R to S, this state is maintained because the movement is inside the quadrangle in the "1" state. Since this read is destructive read, it must be written back, which will be described later.

【0016】“1”書き込みサイクル (U、V)をリ
ードサイクルと同じくS→R→Sと操作すれば0→1、
1→1と書き込みが行われる。
If a “1” write cycle (U, V) is operated as S → R → S as in the read cycle, 0 → 1,
Writing is performed as 1 → 1.

【0017】“0”書き込みサイクル (U、V)をS
→W→Sと動かす。S→Wによってセルの内容にかかわ
らず“0”が書き込まれる。W→Sの移動は“0”の四
辺形内であるから“0”の状態は保持され“0”書き込
みサイクルが終了する。
“0” write cycle (U, V) is S
→ W → S "0" is written by S → W regardless of the contents of the cell. Since the movement from W to S is within the "0" quadrilateral, the state of "0" is held and the "0" write cycle is completed.

【0018】以上まとめると次の表1のようになる。The above is summarized in Table 1 below.

【0019】[0019]

【表1】 [Table 1]

【0020】読み出し回路(センス回路と書き戻し(リ
ストア)回路)。図3に読み出しのためのセンス回路を
示す。リードサイクルではリード操作と“1”ライト操
作の区別を(U、V)の移動だけで制御できないのでこ
れをセンス回路が行なう。またリード操作は破壊読出し
であるがセンス回路はリードサイクルでこれを書き戻す
リストア操作を行うのに用いられる。
Read circuit (sense circuit and write back (restore) circuit). FIG. 3 shows a sense circuit for reading. In the read cycle, it is not possible to control the distinction between the read operation and the "1" write operation only by moving (U, V), so the sense circuit performs this. The read operation is destructive read, but the sense circuit is used to perform a restore operation to write it back in the read cycle.

【0021】ライトの時は図3のスイッチSW が閉じ、
R 1が開いてセルはライト回路(図示せず)につなが
る。ライト回路は電圧Vのパルスを出力する回路であれ
ばよく特別の工夫はいらない。リード操作ではスイッチ
W が開き、SR が閉じてセルは読み出し回路と結合す
る。読み出しを行うにはSR 2 を開いた状態でSV とS
R 1 を閉じ、メモリセルの(U、V)を図3(b)でS
→S’に移動する。S’に“0”ステート内にあって
“1”ステートに非常に近い状態にあるとする。次にS
R 1 を開きキャパシタCD の電位をV’とする。CD
非常に小さな容量であり、トンネルキャパシタC1 、C
2 よりも小さいとする。ただし、このキャパシタを構成
する絶縁膜は十分に厚く、トンネル電流は流れないもの
とする。このキャパシタを電位V’に充電した後、スイ
ッチSV を開きSR 1 を閉じるとキャパシタCD とセル
の電極T1 の電位が同じになって、図3(b)のR’に
移動する。この時メモリーセルの保持状態が“0”か
“1”かによってセルから電子が放出されるかされない
かが決まる。この電子による電流をキャパシタCD の電
位変化で検知する。このときの“0”、“1”レベルに
対応するR’の点のそれぞれの電位Vの中間の値に設定
されたしきい値をもつ高感度なアンプ30によってセル
からの出力信号を増幅する。そのあとスイッチSR 1
R 2 を開く。アンプ30の出力を通常のラッチ回路例
えばフリップフロップ回路にストアする。リストアサイ
クル 以上で読み出しが完了する。次にリストアを行う
ために、スイッチSR を開き、SW を閉じて書き込み動
作に移る。読み出したラッチ回の信号に従ってセルに書
き込みを行なえばリストアが完了する。
[0021] The closed switch S W in FIG. 3 when the light,
S R 1 opens and the cell connects to a write circuit (not shown). The write circuit may be any circuit that outputs a pulse of voltage V, and no special device is required. Switch S W is opened in read operation, the cell closes S R is coupled with read circuit. To read, S V and S with S R 2 open
R1 is closed, and (U, V) of the memory cell is S in FIG. 3 (b).
→ Move to S '. It is assumed that S'is in the "0" state and is very close to the "1" state. Then S
R 1 is opened and the potential of the capacitor C D is set to V ′. C D is a very small capacitance, and tunnel capacitors C 1 and C
Suppose it is less than 2 . However, it is assumed that the insulating film forming this capacitor is sufficiently thick so that no tunnel current flows. After this capacitor is charged to the potential V ′ and the switch S V is opened and S R 1 is closed, the potentials of the capacitor C D and the cell electrode T 1 become the same, and the capacitor moves to R ′ in FIG. 3B. .. At this time, it is determined whether or not electrons are emitted from the cell depending on whether the holding state of the memory cell is "0" or "1". The current caused by the electrons is detected by the potential change of the capacitor C D. At this time, the output signal from the cell is amplified by the high-sensitivity amplifier 30 having the threshold value set to the intermediate value of the respective potentials V at the points R'corresponding to the "0" and "1" levels. .. Then switch S R 1 ,
Open S R 2 . The output of the amplifier 30 is stored in a normal latch circuit such as a flip-flop circuit. Restore size
The reading is completed when the clock is over. Next, in order to perform restoration, the switch S R is opened, S W is closed, and the write operation is started. Restoration is completed by writing to the cell in accordance with the read latched signal.

【0022】図4に本発明の第2の実施例を示す。この
例では、(a)図に示すように第1の実施例でトランジ
スタの信号入力端子に抵抗素子Rを用いるかわりにキャ
パシタC3 を用いたものである。他の構成は全て第1の
実施例と類似のものである。図4(b)にトランジスタ
の動作領域を示す。図でCε=C1 +C2 +C3 であ
る。図に実線で示した四辺形の内部を(n1 、n2 )の
領域とすると図1(b)と同様に、左上りの方向の辺を
横切るとn1 →n1 +1に、右下りの方向の辺を横切る
とn1 →n1 −1に、右上りの方向の辺を横切るとn2
→n2 +1に、左下り方向の辺を横切るとn2 →n2
1に変化する。
FIG. 4 shows a second embodiment of the present invention. In this example, as shown in FIG. 7A, a capacitor C 3 is used instead of using the resistance element R for the signal input terminal of the transistor in the first embodiment. All other configurations are similar to those of the first embodiment. FIG. 4B shows an operating region of the transistor. In the figure, Cε = C 1 + C 2 + C 3 . Like the inside of the quadrilateral shown in solid lines in FIG When (n 1, n 2) in area and FIG. 1 (b), n 1 → n 1 +1 crosses the left upstream side, downhill N 1 → n 1 −1 when crossing the side in the direction of, and n 2 when crossing the side in the upper right direction
→ n 2 +1 and n 2 → n 2
Change to 1.

【0023】図5はメモリの動作を示す状態領域図であ
る。キャパシタの電荷Q=0及びQ=eの時の四辺形の
図を重ねて描いてある。ここでキャパシタCの容量CS
をQ=eの時の四辺形の左下の項点がQ=0の四辺形の
重心に来るように選んである。RとWの動作点の意味は
第1の実施例と同じとすれば、動作とライト回路とセン
ス回路は基本的に同じものが使え、動作も同様である。
この回路のメリットは一電子トランジスタへの入力が容
量C3 であるために早いパルス応答が可能なことであ
る。
FIG. 5 is a state area diagram showing the operation of the memory. The figures of the quadrangle when the charge Q = 0 and Q = e of the capacitor are overlaid. Here, the capacitance C S of the capacitor C
Is selected so that the lower left corner point of the quadrangle when Q = e comes to the center of gravity of the quadrangle at Q = 0. If the meanings of the operating points of R and W are the same as in the first embodiment, basically the same operation, write circuit and sense circuit can be used, and the operation is also the same.
The merit of this circuit is that a fast pulse response is possible because the input to the one-electron transistor is the capacitance C 3 .

【0024】図6にこの回路の一電子トランジスタの接
点Nにリセットのためのスイッチ60を備えた例を示
す。これによって接点Nの初期電荷Q0 =0に設定する
ことができる。図3の実施例ではQ0 =0が仮定されて
いたので、実際上はこのリセットスイッチ60が必要と
なる。
FIG. 6 shows an example in which the contact N of the one-electron transistor of this circuit is provided with a switch 60 for resetting. Thereby, the initial charge Q 0 of the contact N can be set to 0. Since Q 0 = 0 was assumed in the embodiment of FIG. 3, this reset switch 60 is actually required.

【0025】図7にメモリセルのキャパシタに貯える電
荷の初期値をリセットするためのスイッチ70をセルキ
ャパシタC7 と並列に設けた例を示す。これによってセ
ルキャパシタの初期値を迅速に“0”値にそろえること
ができる。
FIG. 7 shows an example in which a switch 70 for resetting the initial value of the charge stored in the capacitor of the memory cell is provided in parallel with the cell capacitor C 7 . As a result, the initial value of the cell capacitor can be quickly adjusted to the "0" value.

【0026】[0026]

【発明の効果】本発明によって一電子を記憶媒体とする
メモリを実現できる。
According to the present invention, a memory having one electron as a storage medium can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示すメモリの構成図と
動作を説明する図である。
FIG. 1 is a configuration diagram of a memory showing a first embodiment of the present invention and a diagram for explaining the operation thereof.

【図2】本発明のメモリの動作を説明する図である。FIG. 2 is a diagram illustrating the operation of the memory of the present invention.

【図3】センス回路を示す図である。FIG. 3 is a diagram showing a sense circuit.

【図4】本発明の第二の実施例を示す図である。FIG. 4 is a diagram showing a second embodiment of the present invention.

【図5】メモリの動作を示す状態領域図である。FIG. 5 is a state region diagram showing the operation of the memory.

【図6】リセットスイッチを備えた例を示す図である。FIG. 6 is a diagram showing an example including a reset switch.

【図7】メモリセルのキャパシタに貯える電荷の初期値
をリセットするためのリセットスイッチを設けた例を示
す図である。
FIG. 7 is a diagram showing an example in which a reset switch for resetting an initial value of an electric charge stored in a capacitor of a memory cell is provided.

【符号の説明】[Explanation of symbols]

1 、J2 トンネルキャパシタ R 抵抗 C、C3 、C7 キャパシタ T1 、T2 、T3 端子 30 アンプ 60、70 リセットスイッチJ 1 , J 2 tunnel capacitor R resistance C, C 3 , C 7 capacitors T 1 , T 2 , T 3 terminal 30 amplifier 60, 70 reset switch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 微小な面積と容量を有するトンネル接合
を二個直列に接続し、その接続点に抵抗素子の一端を接
続して三端素子となし、一方のトンネル接合にキャパシ
タの一端を接続し、このキャパシタの他端を接地し、も
う一方のトンネル接合の前記キャパシタと反対側の端子
を読み書き用電極とし、前記抵抗素子の他端を制御電極
とすることを特徴とする記憶装置。
1. A tunnel junction having a small area and a capacitance is connected in series, one end of a resistance element is connected to the connection point to form a three-end element, and one end of a capacitor is connected to one tunnel junction. Then, the other end of the capacitor is grounded, a terminal of the other tunnel junction opposite to the capacitor is used as a read / write electrode, and the other end of the resistance element is used as a control electrode.
【請求項2】 抵抗素子をキャパシタに変えた請求項1
に記載の記憶装置。
2. The resistance element is changed to a capacitor.
Storage device according to.
JP3218767A 1991-08-29 1991-08-29 Storage device Expired - Fee Related JP2712917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3218767A JP2712917B2 (en) 1991-08-29 1991-08-29 Storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3218767A JP2712917B2 (en) 1991-08-29 1991-08-29 Storage device

Publications (2)

Publication Number Publication Date
JPH0555503A true JPH0555503A (en) 1993-03-05
JP2712917B2 JP2712917B2 (en) 1998-02-16

Family

ID=16725080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3218767A Expired - Fee Related JP2712917B2 (en) 1991-08-29 1991-08-29 Storage device

Country Status (1)

Country Link
JP (1) JP2712917B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235196A (en) * 1994-02-22 1995-09-05 Nec Corp Sampling circuit using single electron charging effect
US6717568B1 (en) 1999-09-10 2004-04-06 Sony Computer Entertainment Inc. Method of controlling the movement of a position indicating item, storage medium on which a program implementing said method is stored, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235196A (en) * 1994-02-22 1995-09-05 Nec Corp Sampling circuit using single electron charging effect
US6717568B1 (en) 1999-09-10 2004-04-06 Sony Computer Entertainment Inc. Method of controlling the movement of a position indicating item, storage medium on which a program implementing said method is stored, and electronic device

Also Published As

Publication number Publication date
JP2712917B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
CN101010750B (en) MRAM sense amplifier having a precharge circuit and method for sensing
US7292471B2 (en) Semiconductor memory device having a voltage-controlled-oscillator-based readout circuit
US3949381A (en) Differential charge transfer sense amplifier
EP1126468A2 (en) MRAM device including differential sense amplifiers
JPS5812676B2 (en) sense amplifier
US4039861A (en) Cross-coupled charge transfer sense amplifier circuits
JP2003510752A (en) Method and circuit arrangement for evaluating the information content of memory cells
KR930008839A (en) Ferroelectric program cell for configurable logic
JP2002100181A (en) Magnetic ramdom access memory
US6611448B2 (en) Ferroelectric memory and method for reading the same
JPS5891594A (en) Dynamic semiconductor storage device
JPH0660635A (en) Ferroelectric storage device
JPH0555503A (en) Memory device
US3764906A (en) Stored charge detection by charge transfer
JPS6142352B2 (en)
JPH07302497A (en) Sense amplifier circuit of semiconductor storage device
JPS5877092A (en) Reading of memory
KR930015015A (en) Memory Cells with Ferroelectric Capacitors
JPH0453040B2 (en)
JP4702359B2 (en) Read circuit for semiconductor memory device
Venkatasubramanian et al. NEM relay based memory architectures for low power design
SU771716A1 (en) Reading-out amplifier based on cmds-transistors
JP3706220B2 (en) Information processing method and information processing apparatus
JPS5939836B2 (en) memory integrated circuit
JPH05135591A (en) Ram writing circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930

LAPS Cancellation because of no payment of annual fees