JPH0555452U - Deterioration determination method for lead-acid batteries - Google Patents

Deterioration determination method for lead-acid batteries

Info

Publication number
JPH0555452U
JPH0555452U JP11357991U JP11357991U JPH0555452U JP H0555452 U JPH0555452 U JP H0555452U JP 11357991 U JP11357991 U JP 11357991U JP 11357991 U JP11357991 U JP 11357991U JP H0555452 U JPH0555452 U JP H0555452U
Authority
JP
Japan
Prior art keywords
storage battery
deterioration
battery
lead
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11357991U
Other languages
Japanese (ja)
Inventor
武志 青戸
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP11357991U priority Critical patent/JPH0555452U/en
Publication of JPH0555452U publication Critical patent/JPH0555452U/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Secondary Cells (AREA)

Abstract

(57)【要約】 【目的】 回路から電池を抜き取る必要がなく、比較的
容易に、経済的で迅速に電池の劣化判定が可能な鉛蓄電
池の劣化判定法を提供する。 【構成】 浮動充電方式で使用する鉛蓄電池において、
定期的に行う均等充電の完了後、浮動充電に移行してか
ら少なくとも数日単位の一定期間にこの蓄電池に流れた
充電電流の平均値が、蓄電池設置時の値の一定倍数を越
えた時点をもって、この蓄電池が劣化したと判定する鉛
蓄電池の劣化判定法。
(57) [Abstract] [Purpose] To provide a deterioration determination method for a lead storage battery, which does not need to remove the battery from the circuit and can relatively easily, economically and rapidly determine the deterioration of the battery. [Constitution] In the lead-acid battery used in the floating charging system,
When the average value of the charging current that has flowed to this storage battery for at least a certain period of several days after the transition to floating charging after the completion of the periodical equalization is over a certain multiple of the value when the storage battery is installed. , A method for determining deterioration of a lead storage battery that determines that this storage battery has deteriorated.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial application]

本考案は、常時、充電装置と負荷と蓄電池とを並列に接続して使用する浮動充 電方式において蓄電池の劣化状態を容易に判定する方法に関するものである。 The present invention relates to a method for easily determining the deterioration state of a storage battery in a floating charging system in which a charging device, a load and a storage battery are always connected in parallel and used.

【0002】[0002]

【従来の技術とその課題】[Prior art and its problems]

従来、蓄電池の劣化の判定には浮動充電中の単電池の電圧のばらつきや、耐用 年数近くに達したものの中から、複数個の電池を抜き取り、製造工場などに持ち 帰り各種の特性を測定し劣化の判定を行っていた。 In the past, to determine the deterioration of a storage battery, multiple batteries were taken out from the variation in the voltage of a single battery during floating charging or those that had reached the end of their useful life, and they were taken back to the manufacturing plant and various characteristics were measured. Deterioration was judged.

【0003】 この方法は、調査のため抜き取る手間と代わりの電池費用、調査費用などの費 用がかさみ、大半の蓄電池は劣化状態の判定が実施されないケースが多い。この ため、蓄電池が劣化していることに気付かず、停電時など重要な電源のバックア ップができないことがある。[0003] This method requires a lot of labor for taking out for the investigation, cost of the substitute battery, cost for the investigation, and the like, and most of the storage batteries are often not judged the deterioration state. For this reason, it may not be possible to notice the deterioration of the storage battery, and it may not be possible to back up the important power source, such as during a power outage.

【0004】 鉛蓄電池の正極板には、鉛アンチモン合金格子が用いられており、使用中に正 極板中のアンチモンがわずかずつ溶出し、負極板表面上に析出していくとともに 、負極の水素過電圧が貴の方へ移行する。この負極へのアンチモンの析出が経年 劣化との間に相関性があることは良く知られており、一定の電流で充電するとそ の単電池の端子電圧は付着の状態に比例して低下する。図1は、温度25℃,印 加電圧2.18V/セルの一定条件において測定したときの鉛蓄電池の使用年数 と浮動充電電流の関係を示した図である。A lead antimony alloy grid is used for the positive electrode plate of the lead acid battery, and during use, antimony in the positive electrode plate is gradually eluted and deposited on the surface of the negative electrode plate. Overvoltage shifts to you. It is well known that the deposition of antimony on the negative electrode has a correlation with aging deterioration, and the terminal voltage of the unit cell decreases in proportion to the adhesion state when charged with a constant current. FIG. 1 is a diagram showing the relationship between the number of years of use of a lead storage battery and the floating charging current when measured under a constant condition of a temperature of 25 ° C. and an applied voltage of 2.18 V / cell.

【0005】 通常、浮動充電方式で使用される場合は蓄電池端子には充電装置から一定の電 圧が印加されているため、図1に示す通り蓄電池に流れる充電電流は経年劣化に 比例して増加する。しかし、実際の電源装置で浮動充電時に蓄電池に流れる充電 電流は、劣化の状態以外に負荷の状態や、温度によっても変化するため、これま では、回路から電池を取り出して別の装置で温度を一定に保ち測定し、劣化故障 の領域では設置時の10倍を越えることが分かっている。この方法は前に述べた ように費用と時間がかかる。Normally, when a floating charging method is used, a constant voltage is applied to the storage battery terminal from the charging device, so that the charging current flowing in the storage battery increases in proportion to the aged deterioration as shown in FIG. To do. However, since the charging current that flows in the storage battery during floating charging in an actual power supply device changes depending on the load condition and temperature in addition to the deterioration condition, until now the battery is taken out of the circuit and the temperature is changed by another device. It was found that the measured value was kept constant and exceeded 10 times in the area of deterioration failure. This method is expensive and time consuming, as mentioned earlier.

【0006】 通常、非常用電源として使用されている蓄電池は、図2に示す通り、充電装置 と蓄電池と負荷とが並列に接続されている。ここで蓄電池に流れる充電電流値は 、時間の経過と共に負荷の変動等の要因によって図3に示す通り一定せず刻々と 変化している。このため、ある1点で測定してもその値を比較に用いることが困 難である。As shown in FIG. 2, a storage battery normally used as an emergency power source has a charging device, a storage battery, and a load connected in parallel. Here, the charging current value flowing through the storage battery is not constant as shown in FIG. 3 and is changing every moment due to factors such as load fluctuations with the passage of time. For this reason, it is difficult to use that value for comparison even if it is measured at one point.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、これらの問題点を解消し、容易に劣化判定を行う方法を提案するも のであり、その骨子とするところは、ある決められた一定期間において蓄電池に 流れる充電電流の平均値を検出し、この値が蓄電池設置時の値と比較して何倍に なっているかをみれば、電池をわざわざ回路から取り出し一定条件にして測定す ることなしに、劣化の判定ができることを見い出したことに基づくものである。 The present invention proposes a method of solving these problems and easily performing deterioration determination.The main point is to detect the average value of the charging current flowing in the storage battery during a certain fixed period. However, by looking at how many times this value was compared with the value when the storage battery was installed, we found that deterioration can be determined without taking the battery out of the circuit and measuring it under certain conditions. It is based on.

【0008】[0008]

【実施例】【Example】

非常用電源装置に内蔵したペースト式鉛蓄電池HS−200形(1時間率容量 120Ah)について、使用開始から6カ月ごとに定期的に行う均等充電が完了 し、浮動充電に移行してから、Aは1日間,Bは7日間,Cは14日間のそれぞ れについて、浮動充電中に蓄電池に流れる充電電流を積算し得られた電気量を、 積算した時間で除して平均充電電流を求めることを7年間にわたって続けた。こ の関係を図4に示す。 For the pasted lead-acid battery HS-200 type (1 hour rate capacity: 120 Ah) built in the emergency power supply unit, the equal charge that is regularly performed every 6 months from the start of use is completed, and after shifting to floating charge, A For 1 day, B for 7 days, and C for 14 days, calculate the average charging current by dividing the amount of electricity obtained by integrating the charging current flowing in the storage battery during floating charging by the integrated time. This was continued for 7 years. This relationship is shown in FIG.

【0009】 図4からわかるように、浮動充電に移行してからAの1日間をもとに積算した ものは十分に電流が安定していないことから、平均充電電流が前回測定時の値よ り少ない場合もあり、電池劣化による充電電流の変化の検出法としては精度が劣 り、正確な劣化判定は困難である。As can be seen from FIG. 4, since the current accumulated in one day of A after the shift to floating charging is not sufficiently stable, the average charging current is different from the value at the previous measurement. In some cases, the accuracy is inferior as a method for detecting changes in charging current due to battery deterioration, and accurate deterioration determination is difficult.

【0010】 これに対し、Cの14日間積算して求めたものは、一定の比率で増加していっ ており、その傾向が図1に示す負荷などの影響を除いたものと傾向がよく一致し ている。また、Bの7日間のそれはCに比べれば精度がやや劣るものの、一定の 傾向がでている。On the other hand, the value obtained by accumulating C for 14 days is increasing at a constant rate, and the tendency is similar to that excluding the influence of the load shown in FIG. I am doing it. In addition, although the accuracy of B for 7 days is slightly inferior to that of C, it shows a certain tendency.

【0011】 このことから、14日間またはそれ以上の期間充電電流を収集し、その値を電 池設置時と比較して急速に増加し始めた時、あるいは約10倍の値になった時を もって劣化とする判定方法が比較的容易に実施でき、かつ精度の優れた劣化判定 ができる。例えば、積算電気量(Ah)は電池回路へ設けたシャントから得られ る電圧を電流に変換し固体電解質を用いた電量計で積算することができる。From this, when the charging current is collected for 14 days or more and the value of the charging current starts to increase rapidly as compared with the time when the battery is installed, or when the value reaches about 10 times. Therefore, the method of determining deterioration can be implemented relatively easily, and the deterioration can be determined with high accuracy. For example, the integrated quantity of electricity (Ah) can be integrated by a coulometer using a solid electrolyte by converting a voltage obtained from a shunt provided in a battery circuit into a current.

【0012】 また、均等充電の周期は一般に6カ月ごとに実施されており、図1では4月と 10月に実施した例で、周囲温度がよく似ていることから、温度の影響が出てい ないが、例えば、2月と8月のように大きく周囲温度の影響がでるおそれのある 時に実施するときは、前年度の同時期同志と比較するか、温度の補正を行うこと で可能である。In addition, the equal charging cycle is generally performed every 6 months, and in the example of FIG. 1 performed in April and October, the ambient temperature is very similar, so that the influence of temperature appears. However, if it is carried out when there is a possibility that the ambient temperature may have a large influence, such as in February and August, it is possible to compare with the same period of the previous year or to correct the temperature. ..

【0013】 充電電流積算期間が一週間あるいは数日間と短くなれば精度が多少悪くなる傾 向を示すが、その分電流増加倍率を10倍より下げた倍率を設定して劣化判定を 行うように工夫すれば電池の劣化をほぼ判定することができる。If the charging current integration period is shortened to one week or several days, the accuracy tends to be deteriorated, but the deterioration factor is determined by setting the current increase factor lower than 10 times. If devised, the deterioration of the battery can be almost determined.

【0014】[0014]

【考案の効果】[Effect of the device]

以上のように、本願考案鉛蓄電池の劣化判定法は、比較的容易に電池の劣化判 定が可能で、回路から電池を抜き取る必要がないことから、経済的で迅速に判定 でき、その工業的価値は大である。 As described above, the deterioration determination method for lead-acid batteries proposed by the present invention makes it possible to determine the deterioration of the battery relatively easily, and it is not necessary to remove the battery from the circuit. The value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】鉛蓄電池の使用年数と浮動充電電流の関係を示
した図
[Figure 1] Diagram showing the relationship between the number of years of use of lead acid batteries and floating charging current

【図2】浮動充電方式のブロック図FIG. 2 is a block diagram of a floating charging method.

【図3】浮動充電中の充電電流の時間変化を示した図FIG. 3 is a diagram showing a time change of a charging current during floating charging.

【図4】鉛蓄電池の使用年数と平均浮動充電電流の関係
を示した図
FIG. 4 is a diagram showing the relationship between the number of years of use of a lead storage battery and the average floating charging current.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 浮動充電方式で使用する鉛蓄電池におい
て、定期的に行う均等充電の完了後浮動充電に移行して
から少なくとも数日単位の一定期間に該蓄電池に流れた
充電電流の平均値が蓄電池設置時の値の一定倍数を越え
た時点をもって該蓄電池が劣化したと判定する鉛蓄電池
の劣化判定法。
1. In a lead storage battery used in a floating charging system, an average value of a charging current flowing through the storage battery in a constant period of at least several days after a shift to floating charging after the completion of the periodical equalization is performed. A method for determining deterioration of a lead storage battery, which determines that the storage battery has deteriorated when it exceeds a certain multiple of the value when the storage battery is installed.
JP11357991U 1991-12-27 1991-12-27 Deterioration determination method for lead-acid batteries Pending JPH0555452U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11357991U JPH0555452U (en) 1991-12-27 1991-12-27 Deterioration determination method for lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11357991U JPH0555452U (en) 1991-12-27 1991-12-27 Deterioration determination method for lead-acid batteries

Publications (1)

Publication Number Publication Date
JPH0555452U true JPH0555452U (en) 1993-07-23

Family

ID=14615810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11357991U Pending JPH0555452U (en) 1991-12-27 1991-12-27 Deterioration determination method for lead-acid batteries

Country Status (1)

Country Link
JP (1) JPH0555452U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295046A (en) * 1997-04-17 1998-11-04 Matsushita Electric Ind Co Ltd Power supply and method for detecting deterioration of power supply

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114472A (en) * 1982-12-21 1984-07-02 Matsushita Electric Ind Co Ltd Apparatus for judging life of hermetically closed lead battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114472A (en) * 1982-12-21 1984-07-02 Matsushita Electric Ind Co Ltd Apparatus for judging life of hermetically closed lead battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295046A (en) * 1997-04-17 1998-11-04 Matsushita Electric Ind Co Ltd Power supply and method for detecting deterioration of power supply

Similar Documents

Publication Publication Date Title
US4876513A (en) Dynamic state-of-charge indicator for a battery and method thereof
CN107991623B (en) Battery ampere-hour integral SOC estimation method considering temperature and aging degree
CN108375739B (en) State of charge estimation method and state of charge estimation system for lithium battery of electric vehicle
US9121909B2 (en) Method for estimating state-of-charge of lithium ion battery
CN108663621B (en) Charge state calculation method and system for power battery pack
WO2018126901A1 (en) Method and device for testing health status of battery
CN102016617B (en) Method of estimation of the state of charge of a battery
CN107664751A (en) The measuring method and measuring and calculating device of a kind of real-time state-of-charge of battery
JP2011220900A (en) Battery deterioration estimation method, battery capacity estimation method, battery capacity equalization method and battery deterioration estimation device
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
WO2002027343A1 (en) Method of detecting residual capacity of secondary battery
US8823326B2 (en) Method for determining the state of charge of a battery in charging or discharging phase
CN105353316B (en) SOC variable quantities and charge capacity conversion factor measuring method during power battery charging
CN105116350B (en) SOC variable quantities and discharge electricity amount conversion factor measuring method when power battery discharges
CN110061531A (en) The equalization methods of energy-storage battery
CN112104046B (en) Method and system for controlling balanced charging and discharging of parallel battery pack
CN110596604B (en) Lithium battery SOC estimation method based on ampere-hour integration method
JP3371588B2 (en) Remaining battery capacity display
CN116203428A (en) Self-discharge detection method for calculating equivalent model parameters of lithium battery based on constant-voltage charging and discharging
CN109669138B (en) Method for accurately measuring residual capacity of power lead storage battery pack
CN113125978B (en) Lithium battery SOC measurement method for electric bicycle
JP3495139B2 (en) Battery remaining capacity measurement device
CN113671393A (en) Current acquisition and detection method, battery pack and electric device
CN113075558A (en) Battery SOC estimation method, device and system
JPH0555452U (en) Deterioration determination method for lead-acid batteries