JPH0554891B2 - - Google Patents

Info

Publication number
JPH0554891B2
JPH0554891B2 JP28755285A JP28755285A JPH0554891B2 JP H0554891 B2 JPH0554891 B2 JP H0554891B2 JP 28755285 A JP28755285 A JP 28755285A JP 28755285 A JP28755285 A JP 28755285A JP H0554891 B2 JPH0554891 B2 JP H0554891B2
Authority
JP
Japan
Prior art keywords
curved
sides
coriolis force
pipes
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28755285A
Other languages
Japanese (ja)
Other versions
JPS62147320A (en
Inventor
Jinichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada Corp
Original Assignee
Yamada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Corp filed Critical Yamada Corp
Priority to JP60287552A priority Critical patent/JPS62147320A/en
Publication of JPS62147320A publication Critical patent/JPS62147320A/en
Publication of JPH0554891B2 publication Critical patent/JPH0554891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコリオリの力を利用して流体の質量流
量を測定するコリオリ力質量流量計に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Coriolis force mass flowmeter that measures the mass flow rate of a fluid using the Coriolis force.

〔従来の技術〕[Conventional technology]

従来、特開昭59−92314号公報に示されるよう
に、コリオリの力を利用した質量流量計が知られ
ている。
BACKGROUND ART Conventionally, a mass flowmeter using the Coriolis force is known, as shown in Japanese Patent Application Laid-Open No. 59-92314.

この種の質量流量計の測定原理は、流体を回転
または振動する曲管を通して流すと、この曲管内
を運動する流体質量の速度と曲管の回転または振
動の角速度ベクトルとの双方に対して垂直なコリ
オリの力(曲管にねじれを起す力)が生成され、
またこのコリオリの力に基づくたわみの量または
力は前記曲管内の質量流量と一定の関係にあるの
で、前記コリオリの力を何等かの手段によつて検
出することにより前記質量流量を測定することが
できる。
The measurement principle of this type of mass flow meter is that when a fluid is passed through a rotating or vibrating curved tube, the velocity of the fluid mass moving in this curved tube and the angular velocity vector of the rotation or vibration of the curved tube are both perpendicular to each other. A Coriolis force (a force that causes twisting in a curved pipe) is generated,
Furthermore, since the amount of deflection or force based on this Coriolis force has a certain relationship with the mass flow rate in the curved pipe, the mass flow rate can be measured by detecting the Coriolis force by some means. I can do it.

このコリオリ力質量流量計は、回転羽根等の流
体に対する障害物がないため、高粘度材の流速測
定に対応できるなどの利点を有する。
This Coriolis force mass flowmeter has the advantage of being able to measure the flow velocity of high-viscosity materials because there are no obstacles to the fluid such as rotating blades.

そして前記公報に記載の質量流量計は、平行に
配設された一側U型曲管および他側U型曲管の自
由端間に設けた電磁駆動機構によりコリオリ力発
生に必要な振動変位を両側のU型曲管の自由端に
与えながらこの各曲管の一端から他端に流体を通
し、発生するコリオリの力を測定する手段として
曲管のたわみの量を検出している。
The mass flowmeter described in the above publication uses an electromagnetic drive mechanism provided between the free ends of a U-shaped curved tube on one side and a U-shaped curved tube on the other side, which are arranged in parallel, to generate the vibration displacement necessary for generating the Coriolis force. Fluid is applied to the free ends of the U-shaped curved tubes on both sides while passing fluid from one end to the other, and the amount of deflection of the curved tubes is detected as a means of measuring the Coriolis force generated.

そしてこのたわみの量を検出するために、両側
のU型曲管の電磁駆動部の側部すなわち前記曲管
が自由に運動できる自由端の近傍部にコイルおよ
びマグネツトからなる電磁センサを設け、この曲
管の柔構造部分の振動変位すなわち振幅をコリオ
リ力の測定信号として取出すようにしている。
In order to detect the amount of this deflection, electromagnetic sensors consisting of coils and magnets are provided on the sides of the electromagnetic drive parts of the U-shaped curved tubes on both sides, that is, in the vicinity of the free ends where the curved tubes can move freely. The vibration displacement or amplitude of the flexible structure of the curved pipe is extracted as a Coriolis force measurement signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような振動変位を出力として取出
す場合は、電磁駆動部に大きな振動変位を入力と
して与える必要があり、また柔構造にして振動変
位(振幅)を出力として取出すことは構造簡単で
あるが曲管振動系が連成振動を起しやすいととも
に信号処理にも工夫を要する問題がある。
However, in order to extract such vibration displacement as output, it is necessary to give a large vibration displacement as input to the electromagnetic drive unit, and it is simple to use a flexible structure and extract vibration displacement (amplitude) as output. There is a problem in that the curved pipe vibration system is prone to coupled vibrations and also requires ingenuity in signal processing.

本発明の目的は、曲管の形状を変えて確実な測
定に必要な大きなコリオリの力を得られるように
するとともに、そのコリオリ力を曲管振動系の硬
構造部分に設けた圧力感応型センサにより従来の
ように変位でなく力で検出することにより前記連
成振動等の問題を解決することにある。
The purpose of the present invention is to change the shape of a curved pipe to obtain a large Coriolis force necessary for reliable measurement, and to provide a pressure-sensitive sensor that uses the Coriolis force in a hard structure part of a vibration system of a curved pipe. The object of this invention is to solve problems such as the above-mentioned coupled vibration by detecting force rather than displacement as in the conventional method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、装置本体11に平行に設けられた一
側の曲管14および他側の曲管15の自由端17
に振動を与えながらこの各曲管14,15の一端
から他端に流体を通したときに両側の曲管14,
15に生ずるコリオリの力に基づく変化を検出し
て前記流体の流量を測定するコリオリ力質量流量
計に関するものである。
The present invention provides free ends 17 of the bent pipe 14 on one side and the bent pipe 15 on the other side, which are provided parallel to the main body 11 of the device.
When fluid is passed from one end of each curved tube 14, 15 to the other end while applying vibration to the curved tubes 14, 15 on both sides,
The present invention relates to a Coriolis force mass flow meter that measures the flow rate of the fluid by detecting changes caused by the Coriolis force occurring in the Coriolis force.

すなわち前記一側の曲管14および他側の曲管
15がそれぞれ環状に形成され、この両側の曲管
14,15における前記自由端17とは反対側に
位置する一端および他端の固定接続部16が相互
に接近されて前記装置本体11に固定接続され、
この両側の曲管14,15の固定接続部16の近
傍部間に両側の曲管14,15間に生ずるコリオ
リの力を検出するための圧力感応型センサ45が
設けられている。
That is, the curved tube 14 on one side and the curved tube 15 on the other side are each formed into an annular shape, and the fixed connection portions at one end and the other end of the curved tubes 14 and 15 on both sides are located on the opposite side from the free end 17. 16 are brought close to each other and fixedly connected to the device main body 11,
A pressure sensitive sensor 45 for detecting the Coriolis force generated between the curved tubes 14 and 15 on both sides is provided between the curved tubes 14 and 15 on both sides near the fixed connection portion 16.

〔作用〕[Effect]

本発明は、両側の曲管振動系において十分変位
を取れる比較的柔らかい曲管自由端17に振動入
力を与え、そして流体流量に関係するコリオリの
力はこの曲管振動系の固い部分である装置本体1
1に対する固定接続部16の近傍部間にて圧力感
応型センサ45によつて検出する。
The present invention provides a device in which a vibration input is applied to a relatively soft free end 17 of the curved tube that can be sufficiently displaced in the curved tube vibration system on both sides, and the Coriolis force related to the fluid flow rate is a hard part of the curved tube vibration system. Main body 1
The pressure sensitive sensor 45 detects the pressure between the fixed connection portion 16 and the vicinity of the fixed connection portion 16 relative to the pressure sensitive sensor 45 .

〔実施例〕〔Example〕

以下、本発明を図面に示される各実施例を参照
して詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.

第1図乃至第4図は本発明の第1実施例を示
し、装置本体11にボルト12により曲管接続部
13が一体に設けられ、この装置本体11の曲管
接続部13に一側の曲管14および他側の曲管1
5の一端および他端の固定接続部16が相互に接
近されて固定接続され、この固定接続部16の反
対側が自由端17として自由に動き得る構造に構
成されている。
1 to 4 show a first embodiment of the present invention, in which a bent pipe connecting portion 13 is integrally provided on the device main body 11 with a bolt 12, and one side of the bent pipe connecting portion 13 of the device main body 11 is provided. Bent pipe 14 and curved pipe 1 on the other side
Fixed connection parts 16 at one end and the other end of 5 are brought close to each other and fixedly connected, and the opposite side of the fixed connection part 16 is configured to be freely movable as a free end 17.

前記装置本体11の両側面にはねじ穴21が設
けられ、この両側のねじ穴21に流入口部22と
流出口部23とがそれぞれ設けられている。さら
に前記口部22,23は装置本体11内の通孔2
4および前記曲管接続部13内の通孔25を介し
て前記両側の曲管14,15の両端の固定接続部
16に連通接続されている。前記管接続部13内
の通孔25の開口部は盲ねじ26により塞がれて
いる。
Screw holes 21 are provided on both sides of the device main body 11, and an inlet port 22 and an outlet port 23 are provided in the screw holes 21 on both sides, respectively. Furthermore, the openings 22 and 23 are connected to the through holes 2 in the device main body 11.
4 and the through hole 25 in the bent pipe connecting part 13 to the fixed connecting parts 16 at both ends of the bent pipes 14 and 15 on both sides. The opening of the through hole 25 in the pipe connection part 13 is closed by a blind screw 26.

さらに前記両側の曲管14,15の前記自由端
17に振動入力を与える電磁駆動機構30が設け
られている。すなわち前記装置本体11にねじ3
1により第4図に示されるマグネツト本体32が
固定され、このマグネツト本体32の両側面にド
ーナツツ状マグネツト33が一体に固着され、ま
た前記装置本体11の一側面および他側面にねじ
34により前記曲管14,15の第1図左右方向
の揺れを防止する機能も有する板ばね35の一端
が固定され、この両側の板ばね35の他端部は溶
接部36を介して前記各曲管14,15の自由端
17に固着されている。この板ばね35の内側面
にはコイル37が固着され、このコイル37が前
記マグネツト本体32の凸部32aと前記ドーナ
ツツ状マグネツト33との間に形成された間隙3
8に進退自在に嵌入されている。この構造の電磁
駆動機構30によると前記コイル37が小形軽量
となるため、曲管14,15の固有振動数を高め
十分な変位が得られる。
Furthermore, an electromagnetic drive mechanism 30 is provided that applies vibration input to the free ends 17 of the curved pipes 14 and 15 on both sides. That is, the screw 3 is attached to the device main body 11.
1, a magnet main body 32 shown in FIG. One end of a leaf spring 35, which also has the function of preventing the pipes 14, 15 from swinging in the left-right direction in FIG. 15 at the free end 17 thereof. A coil 37 is fixed to the inner surface of this leaf spring 35, and this coil 37 is attached to the gap 3 formed between the convex portion 32a of the magnet body 32 and the donut-shaped magnet 33.
8, it is fitted in so that it can move forward and backward. According to the electromagnetic drive mechanism 30 having this structure, the coil 37 is small and lightweight, so that the natural frequency of the bent pipes 14 and 15 can be increased and sufficient displacement can be obtained.

また前記一側の曲管14および他側の曲管15
において前記自由端17の反対側の固定接続部1
6の近傍には平行部41とこの平行部41に対し
直角の開き部42とが形成されている。その両側
の曲管14,15の第1図左右の開き部42には
それぞれセンサ取付部43が溶接付けされ内側に
突設されており、この左右部において上下のセン
サ取付部43間にボルトおよびナツト44により
圧力感応型センサとしての圧電子(セラミツク)
45が狭圧保持されている。この圧電子45は、
圧電子本体46の両側に設けた押圧板部47から
の押圧力に応じた電圧を出力するものであり、4
8は出力信号取付部である。
Moreover, the bent pipe 14 on one side and the bent pipe 15 on the other side
fixed connection 1 opposite said free end 17 at
A parallel portion 41 and an opening portion 42 perpendicular to the parallel portion 41 are formed near 6. Sensor mounting parts 43 are welded to the left and right opening parts 42 in FIG. Piezoelectric (ceramic) as a pressure sensitive sensor with nut 44
45 is maintained at a narrow pressure. This piezoelectric 45 is
It outputs a voltage according to the pressing force from the pressing plate parts 47 provided on both sides of the piezoelectric body 46,
8 is an output signal attachment part.

そうして、両側の曲管振動系において前記電磁
駆動機構30のコイル37に通電を行うことによ
り、十分変位を取れる比較的柔らかい曲管自由端
17にこの自由端17が開閉運動を繰返すように
振動入力を与える。
Then, by energizing the coils 37 of the electromagnetic drive mechanism 30 in the curved tube vibration systems on both sides, the free end 17 is made to repeatedly open and close at the relatively soft curved tube free end 17 that can be sufficiently displaced. Give vibration input.

このとき曲管14,15内に流動流体がない場
合は、第2図にてこの曲管14,15の左右部は
左右対称に開閉振動する。このとき曲管振動系の
固い部分である装置本体11に対する固定接続部
16の近傍部間に設けられた両側の圧電子45か
ら曲管14,15の振動による曲げおよびねじり
応力の変化に対応する出力が得られるが、前記振
動が左右対称であるため左右両側の圧電子45の
出力の差を取出すと左右の圧電子出力が相殺し合
つて0になる。
At this time, if there is no flowing fluid in the curved tubes 14, 15, the left and right portions of the curved tubes 14, 15 vibrate symmetrically in opening and closing as shown in FIG. At this time, the piezoelectric elements 45 on both sides provided between the fixed connection part 16 and the vicinity of the device main body 11, which is a hard part of the curved tube vibration system, respond to changes in bending and torsional stress caused by the vibration of the curved tubes 14 and 15. An output is obtained, but since the vibration is symmetrical, when the difference between the outputs of the left and right piezoelectric elements 45 is extracted, the left and right piezoelectric outputs cancel each other out and become 0.

また前記振動中の曲管14,15内に流体が流
れると、その流体の流量に関係するコリオリの力
が発生し、このコリオリの力により第2図に示さ
れるように前記曲管14,15には左右で反対方
向のねじれ現象が生ずる。この現象は前記曲管1
4,15内流体の流量が大きい程顕著に現れ、両
側の圧電子45の出力の差も前記流量に応じて現
れる。したがつてこの差の信号波形の振幅を検出
することにより、コリオリの力と一定の関係にあ
る流体流量を測定できる。
Further, when fluid flows into the vibrating bent pipes 14 and 15, a Coriolis force related to the flow rate of the fluid is generated, and as shown in FIG. A twisting phenomenon occurs in opposite directions on the left and right sides. This phenomenon is caused by the curved pipe 1
The larger the flow rate of the fluid in the fluids 4 and 15, the more noticeable the difference is, and the difference in the outputs of the piezoelectric elements 45 on both sides also appears in accordance with the flow rate. Therefore, by detecting the amplitude of the signal waveform of this difference, the fluid flow rate, which has a constant relationship with the Coriolis force, can be measured.

なおこの第1実施例において前記圧力感応型セ
ンサとして前記センサ取付部43間に圧電子45
を挟着したが、本発明はこれに限定されるもので
はなく、例えば前記一対のセンサ取付部43間に
彎曲した薄板を取付け、この薄板に圧力感応型セ
ンサとしてストレンゲージを張設するようにして
もよい。
In this first embodiment, a piezoelectric element 45 is provided between the sensor mounting portion 43 as the pressure sensitive sensor.
However, the present invention is not limited to this. For example, a curved thin plate may be attached between the pair of sensor attachment portions 43, and a strain gauge may be stretched over this thin plate as a pressure-sensitive sensor. It's okay.

次に第5図乃至第7図は本発明の第2実施例を
示し、前記両側の曲管14,15の前記平行部4
1に前記センサ取付部43が溶接付けされて第5
図左右方向に突設され、この左右部における上下
のセンサ取付部43間に前記圧電子45が挟着さ
れている。この場合はコリオリの力が生じたとき
前記圧電子45にねじりおよび曲げ応力がともに
作用されるが、さらに平行部41を十分長くする
とともに、圧電子45をこの平行部41であつて
開き部42に近い位置に取付けると、本発明の趣
旨である曲管14,15の振動系を十分ソフトに
かつ出力センサ部分を十分ハードにすることが達
成され、SN比が改善される。他の構造および作
用は前記第1実施例と同様であるからその説明を
省略する。
Next, FIGS. 5 to 7 show a second embodiment of the present invention, in which the parallel portions 4 of the curved pipes 14 and 15 on both sides
The sensor mounting part 43 is welded to the fifth part.
The piezoelectric element 45 is protruded in the left-right direction in the figure, and the piezoelectric element 45 is sandwiched between upper and lower sensor mounting parts 43 on the left and right sides. In this case, when the Coriolis force is generated, both torsional and bending stress are applied to the piezoelectric element 45. Furthermore, the parallel part 41 is made sufficiently long, and the piezoelectric element 45 is connected to the parallel part 41 and the opening part 42. If it is installed at a position close to , the gist of the present invention, which is to make the vibration system of the curved pipes 14 and 15 sufficiently soft and the output sensor portion sufficiently hard, is achieved, and the S/N ratio is improved. The other structures and operations are the same as those of the first embodiment, so their explanation will be omitted.

次に第8図乃至第10図は本発明の第3実施例
を示し、装置本体51の2箇所にスリーブ52が
嵌着され、この各スリーブ52に一対のカラー5
3,54が嵌着され、このカラー53,54に接
続された一側の曲管55および他側の曲管56の
一端および他端の固定接続部57が相互に接近さ
れた状態で前記装置本体51に対し固定され、こ
の固定接続部57の反対側が自由端58として自
由に動き得る構造に構成されている。
Next, FIGS. 8 to 10 show a third embodiment of the present invention, in which sleeves 52 are fitted in two places on the device main body 51, and each sleeve 52 has a pair of collars 5.
3 and 54 are fitted, and the bent pipe 55 on one side and the bent pipe 56 on the other side connected to the collars 53 and 54 are connected to one end and the fixed connection portion 57 at the other end of the device. It is fixed to the main body 51, and the opposite side of the fixed connection part 57 is configured to be freely movable as a free end 58.

前記2箇所のスリーブ52の一端開口には流入
口部61と流出口部62とがそれぞれ設けられて
いる。そしてこの口部61,62は前記スリーブ
52内の内孔を介して前記両側の曲管55,56
の固定接続部57に連通接続されている。前記ス
リーブ52の他端開口は盲ねじ63により塞がれ
ている。
An inlet portion 61 and an outlet portion 62 are provided at one end openings of the two sleeves 52, respectively. The openings 61 and 62 are connected to the curved pipes 55 and 56 on both sides through the inner holes in the sleeve 52.
It is communicatively connected to the fixed connection part 57 of. The opening at the other end of the sleeve 52 is closed by a blind screw 63.

さらに前記両側の曲管55,56の前記自由端
58に振動入力を与えると電磁駆動機構64が設
けられている。すなわち前記一側の曲管55にマ
グネツト取付板65が溶接付けされ、この取付板
65にマグネツト66が固着され、また前記他側
の曲管56にコイル取付板67が溶接付けされ、
この取付板67に前記マグネツト66と嵌合する
コイル68が取付けられている。また前記装置本
体51の一側面および他側面にねじ69により前
記曲管55,56の第8図左右方向の揺れを防止
するための板ばね70の一端が固定され、この両
側の板ばね70の他端は溶接部71を介して前記
各曲管55,56の自由端58に固着されてい
る。
Further, an electromagnetic drive mechanism 64 is provided for applying a vibration input to the free ends 58 of the curved pipes 55 and 56 on both sides. That is, a magnet mounting plate 65 is welded to the curved pipe 55 on one side, a magnet 66 is fixed to this mounting plate 65, and a coil mounting plate 67 is welded to the curved pipe 56 on the other side.
A coil 68 that fits into the magnet 66 is attached to this mounting plate 67. Further, one end of a leaf spring 70 for preventing the bent pipes 55 and 56 from swinging in the left-right direction in FIG. The other end is fixed to the free end 58 of each of the curved pipes 55 and 56 via a weld 71.

また前記一側の曲管55および他側の曲管56
において前記自由端58の反対側の固定接続部5
7の近傍には平行部75が形成されている。この
両側の曲管55,56の平行部75には第9図に
示されるように左右部でそれぞれ一対のトルクア
ーム76が溶接付けされ、この左右部で上下のト
ルクアーム76間にそれぞれ板ばね77が固定さ
れ、この左右の板ばね77がセンサ取付ロツド7
8によつて接続され、さらにこのロツド78の両
側軸部78aに圧受けカラー79が嵌着され、こ
の圧受けカラー79の外周面に圧力感応型センサ
としての圧電子(セラミツク)80が嵌着されて
いる。この圧電子80は前記圧電子45と同一構
造のものであり、前記カラー79のフランジ部8
1と前記装置本体51にねじ82により取付けら
れたセンサ取付部83とにより前記軸部78aと
螺合するナツト84の所定の締付力により挟圧保
持されている。
Moreover, the bent pipe 55 on one side and the bent pipe 56 on the other side
fixed connection 5 opposite said free end 58 at
A parallel portion 75 is formed near 7. As shown in FIG. 9, a pair of torque arms 76 are welded to the parallel portions 75 of the bent pipes 55 and 56 on both sides, respectively. 77 is fixed, and these left and right leaf springs 77 are attached to the sensor mounting rod 7.
Further, a pressure receiving collar 79 is fitted on both side shaft portions 78a of this rod 78, and a piezoelectric (ceramic) 80 as a pressure sensitive sensor is fitted on the outer peripheral surface of this pressure receiving collar 79. has been done. This piezoelectric element 80 has the same structure as the piezoelectric element 45, and the flange portion 8 of the collar 79
1 and a sensor attachment part 83 attached to the device main body 51 with a screw 82, and are held under pressure by a predetermined tightening force of a nut 84 screwed into the shaft part 78a.

そうして、両側の曲管振動系において前記電磁
駆動機構64のコイル68に通電を行うことによ
り、十分変位を取れる比較的柔らかい曲管自由端
58にこの自由端58が開閉運動を繰返すように
振動入力を与える。この曲管55,56の自由端
58の開閉振動は前記平行部75ではねじり運動
に変換されて作用される。
Then, by energizing the coils 68 of the electromagnetic drive mechanism 64 in the curved tube vibration systems on both sides, the free end 58 is made to repeatedly open and close at the relatively soft curved tube free end 58 that can be sufficiently displaced. Give vibration input. This opening/closing vibration of the free ends 58 of the curved pipes 55, 56 is converted into a twisting motion and acts on the parallel portion 75.

このとき曲管55,56内に流動流体がない場
合は、前記左右の平行部75のねじり運動が第9
図にて左右対称に起こる。したがつて左右のねじ
り運動が前記板ばね77およびロツド78を介し
相互に相殺し合つて、左右両側の圧電子80から
の出力には変化がない。
At this time, if there is no flowing fluid in the curved pipes 55 and 56, the torsional movement of the left and right parallel parts 75
This occurs symmetrically in the figure. Therefore, the left and right torsional movements cancel each other out through the leaf spring 77 and the rod 78, and there is no change in the output from the left and right piezoelectric elements 80.

また前記振動中の曲管55,56内に流体が流
れると、その流体の流量に関係するコリオリの力
が発生し、このコリオリの力により第9図に示さ
れるように前記曲管55,56には左右で反対方
向のねじれ現象が生じ左右の板ばね77が鎖線で
示されるように同一方向に変形するため、一方の
圧電子80には加圧作用がかかるとともに他方の
圧電子には減圧作用がかかり、両側の圧電子80
の出力に差が生ずる。この現象は前記曲管55,
56内流体の流量が大きい程顕著に現れ、両側の
圧電子80の出力の差も前記流量に応じて現れ
る。したがつてこの両側圧電子の出力差波形の振
幅を検出することにより、コリオリの力と一定の
関係にある流体流量を測定できる。
Further, when fluid flows into the vibrating bent pipes 55, 56, a Coriolis force related to the flow rate of the fluid is generated, and as shown in FIG. Since a torsion phenomenon occurs in opposite directions on the left and right sides, and the left and right leaf springs 77 are deformed in the same direction as shown by the chain lines, pressure is applied to one piezoelectric element 80 while depressurization is applied to the other piezoelectric element 80. The action is applied, and the piezoelectric elements 80 on both sides
There will be a difference in the output. This phenomenon is caused by the bent pipe 55,
The larger the flow rate of the fluid in the fluid 56, the more noticeable it becomes, and the difference in the outputs of the piezoelectric elements 80 on both sides also appears depending on the flow rate. Therefore, by detecting the amplitude of the output difference waveform of the piezoelectric elements on both sides, the fluid flow rate, which has a constant relationship with the Coriolis force, can be measured.

この第3実施例では前記圧力感応型センサとし
て圧電子80を用いたが、本発明はこれに限定さ
れるものではなく、例えば前記一対の板ばね77
に圧力感応型センサとしてストレンゲージを張設
するようにしてもよい。
In this third embodiment, the piezoelectric sensor 80 is used as the pressure sensitive sensor, but the present invention is not limited to this. For example, the pair of leaf springs 77
A strain gauge may be installed as a pressure sensitive sensor in the tube.

第11図は前記第1、第2および第3実施例に
おける一側および他側の曲管と圧力感応型センサ
との関係を略図的に示したものであるが、本発明
はこの形に限定されるものではなく、第12に示
されるように曲管本体Aに対し外側に折曲された
平行部Bを装置本体に固定接続するようにしても
よいし、第13図および第14図に示されるよう
に楕円型の曲管Cにしてもよく、このようにする
とコリオリの力の影響が圧力感応型センサDに顕
著に現れるし、さらに第15図に示されるように
円弧状に折曲された部分Eを装置本体に対する固
定接続部およびその近傍部とするものでもよい。
Although FIG. 11 schematically shows the relationship between the curved pipes on one side and the other side and the pressure sensitive sensor in the first, second and third embodiments, the present invention is limited to this form. Instead, as shown in Fig. 12, the parallel part B bent outward from the bent pipe main body A may be fixedly connected to the device main body, or as shown in Figs. 13 and 14. As shown in FIG. 15, the tube C may be bent into an elliptical shape, and in this case, the influence of the Coriolis force will be noticeable on the pressure sensitive sensor D. Furthermore, the tube C may be bent into an arc shape as shown in FIG. The portion E may be used as a fixed connection portion to the main body of the device and a portion in the vicinity thereof.

また前記一側および他側の曲管の断面は真円に
限定されるものではなく、前記曲管として長円断
面、長方形断面等のパイプを使用してもよい。
Further, the cross sections of the curved pipes on one side and the other side are not limited to perfect circles, and pipes having an oval cross section, a rectangular cross section, or the like may be used as the curved pipes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、一側の曲管および他側の曲管
がそれぞれ環状に形成され、この両側の曲管にお
ける自由端とは反対側に位置する一端および他端
の固定接続部が相互に接近されて装置本体に固定
接続され、この両側の曲管の固定接続部の近傍部
間に両側の曲管間に生ずるコリオリの力を検出す
るための圧力感応型センサが設けられたから、環
状曲管の付根部分に近い前記センサによりコリオ
リの力の影響を感度良く取出すことができ確実な
測定ができる。またこの曲管振動系の硬構造部分
に設けた圧力感応型センサでコリオリの力を直接
的に検出できるから、従来のように振動変位を検
出する場合に有している大きな振動変位を入力と
して与える必要性、曲管振動系が連成振動を起し
やすい、信号処理に工夫を要する等の問題を一挙
に解決できる。
According to the present invention, the bent pipe on one side and the bent pipe on the other side are each formed in an annular shape, and the fixed connection portions at the one end and the other end located on the opposite side of the free end of the bent pipes on both sides are mutually connected. A pressure-sensitive sensor is installed near the fixed connection part of the curved pipes on both sides to detect the Coriolis force generated between the curved pipes on both sides. The sensor near the base of the pipe allows the influence of Coriolis force to be detected with high sensitivity, allowing reliable measurement. In addition, since the Coriolis force can be directly detected using a pressure-sensitive sensor installed in the hard structure of this curved pipe vibration system, the large vibration displacement that is present when detecting vibration displacement as in the conventional method can be used as an input. Problems such as the need to provide a signal, the tendency of a curved pipe vibration system to cause coupled vibration, and the need for ingenuity in signal processing can all be solved in one fell swoop.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のコリオリ力質量流量計の第1
実施例を示す平面図、第2図はその正面図、第3
図はその側面図、第4図はその電磁駆動機構の分
解図、第5図は本発明の第2実施例を示す一部の
平面図、第6図はその正面図、第7図はその側面
図、第8図は本発明の第3実施例を示す平面図、
第9図は第8図の−線断面図、第10図は第
8図のX−X線断面図、第11図、第12図、第
13図、第14図および第15図はそれぞれ曲管
の変形例を示す略図である。 11……装置本体、14,15……曲管、16
……固定接続部、17……自由端、45……圧力
感応型センサ。
Figure 1 shows the first diagram of the Coriolis force mass flowmeter of the present invention.
A plan view showing the embodiment, FIG. 2 is a front view thereof, and FIG.
The figure is a side view, FIG. 4 is an exploded view of the electromagnetic drive mechanism, FIG. 5 is a partial plan view showing the second embodiment of the present invention, FIG. 6 is a front view thereof, and FIG. A side view, FIG. 8 is a plan view showing a third embodiment of the present invention,
9 is a sectional view taken along the line -- in FIG. 8, FIG. 10 is a sectional view taken along the line X--X in FIG. 8, and FIGS. It is a schematic diagram showing a modification of the tube. 11... Device body, 14, 15... Bent pipe, 16
... fixed connection part, 17 ... free end, 45 ... pressure sensitive sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 装置本体に平行に設けられた一側の曲管およ
び他側の曲管の自由端に振動を与えながらこの各
曲管の一端から他端に流体を通したときに両側の
曲管間に生ずるコリオリの力に基づく変化を検出
して前記流体の流量を測定するコリオリ力質量流
量計において、前記一側の曲管および他側の曲管
がそれぞれ環状に形成され、この両側の曲管にお
ける前記自由端とは反対側に位置する一端および
他端の固定接続部が相互に接近されて前記装置本
体に固定接続され、この両側の曲管の固定接続部
の近傍部間に両側の曲管間に生ずるコリオリの力
を検出するための圧力感応型センサが設けられた
ことを特徴とするコリオリ力質量流量計。
1. When fluid is passed from one end of each curved tube to the other end while applying vibration to the free ends of the curved tubes on one side and the curved tubes on the other side, which are installed parallel to the main body of the device, the difference between the curved tubes on both sides In a Coriolis force mass flowmeter that measures the flow rate of the fluid by detecting changes based on the Coriolis force that occurs, the curved pipe on one side and the curved pipe on the other side are each formed in an annular shape, and the curved pipes on both sides The fixed connection parts of one end and the other end located on the opposite side of the free end are brought close to each other and fixedly connected to the device main body, and the bent pipes on both sides are connected between the parts near the fixed connection parts of the bent pipes on both sides. A Coriolis force mass flowmeter characterized in that a pressure sensitive sensor is provided for detecting a Coriolis force generated between the two.
JP60287552A 1985-12-20 1985-12-20 Coriolis force mass flowmeter Granted JPS62147320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60287552A JPS62147320A (en) 1985-12-20 1985-12-20 Coriolis force mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60287552A JPS62147320A (en) 1985-12-20 1985-12-20 Coriolis force mass flowmeter

Publications (2)

Publication Number Publication Date
JPS62147320A JPS62147320A (en) 1987-07-01
JPH0554891B2 true JPH0554891B2 (en) 1993-08-13

Family

ID=17718817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60287552A Granted JPS62147320A (en) 1985-12-20 1985-12-20 Coriolis force mass flowmeter

Country Status (1)

Country Link
JP (1) JPS62147320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008695A (en) * 2008-10-14 2009-01-15 Oval Corp Coriolis flow meter having vibration direction regulation means

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254966B2 (en) 2006-03-14 2009-04-15 株式会社オーバル Coriolis flowmeter with vibration direction regulating means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008695A (en) * 2008-10-14 2009-01-15 Oval Corp Coriolis flow meter having vibration direction regulation means

Also Published As

Publication number Publication date
JPS62147320A (en) 1987-07-01

Similar Documents

Publication Publication Date Title
AU593907B2 (en) Single tube parallel flow coriolis mass flow sensor
JPS61502704A (en) Flowmeter to measure mass flow rate in a flow of material
US4181020A (en) Vortex-shedding flowmeter having a sensing vane
US4986134A (en) Vortex flowmeter with inertially balanced vortex sensor
US7228749B2 (en) Coriolis mass flow pick-up
US4776220A (en) Dual S-loop single tube coriolis force flowmeter
US4829832A (en) Convective inertia force flowmeter
JPH04291119A (en) Colioris mass flowmeter
US5078014A (en) Convective inertia force flowmeter
JPH0554891B2 (en)
JPH02501090A (en) Convection inertia flow meter
WO1995004259A1 (en) Method and apparatus for measuring mass flow
US5090251A (en) Vortex flowmeter with torsional vortex sensor
JPS56125622A (en) Mass flowmeter
US6553845B2 (en) Coriolis flowmeter utilizing three-forked plate vibrator mode
JP3049176B2 (en) Vortex flowmeter and vortex sensor
JPH06174515A (en) Coriolis force flowmeter
JP2712684B2 (en) Coriolis mass flowmeter
JPH067325Y2 (en) Mass flow meter
JPH067324Y2 (en) Mass flow meter
JP2929731B2 (en) Karman vortex flowmeter and method of manufacturing the same
JPH08278181A (en) Coriolis mass flow meter
JPH06235652A (en) Mass flowmeter
JPH05157605A (en) Coriolis mass flowmeter
JPS5928342Y2 (en) force detector