JPH0554856B2 - - Google Patents

Info

Publication number
JPH0554856B2
JPH0554856B2 JP60220758A JP22075885A JPH0554856B2 JP H0554856 B2 JPH0554856 B2 JP H0554856B2 JP 60220758 A JP60220758 A JP 60220758A JP 22075885 A JP22075885 A JP 22075885A JP H0554856 B2 JPH0554856 B2 JP H0554856B2
Authority
JP
Japan
Prior art keywords
resin
molded article
resin molded
molded product
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60220758A
Other languages
Japanese (ja)
Other versions
JPS6281431A (en
Inventor
Toshiaki Nakamaru
Keinosuke Isono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSOZAI SOGO KENKYUSHO KK
Original Assignee
SHINSOZAI SOGO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSOZAI SOGO KENKYUSHO KK filed Critical SHINSOZAI SOGO KENKYUSHO KK
Priority to JP22075885A priority Critical patent/JPS6281431A/en
Publication of JPS6281431A publication Critical patent/JPS6281431A/en
Publication of JPH0554856B2 publication Critical patent/JPH0554856B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は透過性を有する樹脂成形物及びその製
造方法に関する。更に詳しくは結晶性熱可塑性樹
脂(A)と無機繊維状充填剤(B)と液状有機化合物(C)と
を均一に混練した樹脂組成物を射出成形法もしく
は押出成形法にて成形し、しかる後、該成形物を
(C)の良溶媒で、(A)に対して貧溶媒である溶媒で(C)
を抽出除去することにより該成形物に微細な連通
空孔を形成させる事を特徴とする樹脂成形物およ
びその製造方法に関するものであり、得られた製
品は発水性であり、水溶液には液密性でありなが
ら、通気性を有し、一部に有機溶媒には浸透性を
有しながら、通気性を有する。 [従来の技術] 近年生活環境の改善を目的として、各種包装形
態及び包装資材の改良が成されている。例えば、
除湿剤、芳香剤、防虫剤、脱臭剤、消臭剤、乾燥
剤等の包剤には、従来から和紙あるいは不織布、
多孔質膜、開口部を有するガラスまたはプラスチ
ツク容器、一部を通気性部材に置き換えたガラス
またはプラスチツク容器等が使用されており、生
活環境の改善に役立てられている。 特開昭59−232127号公報には、微多孔質壁を有
する容器及びその製造方法が開示されている。前
記容器は、溶媒に難溶性の熱可塑性樹脂と溶媒に
易溶性の熱可塑性樹脂または化合物と更に必要に
応じて適宜の無機物とを含む樹脂組成物を成形
し、その後、熱可塑性樹脂又は化合物を溶媒抽出
除去してなる微多孔質壁を有する容器である。し
かし、抽出除去される物質は熱可塑性樹脂又は化
合物等の高分子物質であり、また明細書中にはこ
の抽出除去される物質が、溶媒により少なくとも
一部が溶出され得る成分と明記されている。 さらに抽出溶媒は高沸点の溶媒であり、また抽
出時には、その溶媒を60〜80℃に加温することが
記載されている。 また、特開昭59−64640号公報には、多孔性シ
ートの製造方法として結晶性で熱可塑性であるポ
リマーと、鉱油、ジオクチルフタレート、ミネラ
ルスピリツトなどの化合物とを溶融ブレンドし、
溶液からシートを成形して冷却し、相分離を起こ
させた後、延伸し、前記化合物を除去する微孔質
シートの製造方法が開示されている。 また、特公昭58−32171号公報には、多孔膜の
製造方法として、無機微粉体、SP値8.42〜9.9の
有機液状体およびポリオレフイン樹脂を混合した
後溶融成形し、その後、有機液状体を抽出する微
孔性の多孔膜の製造方法が開示されている。 [発明が解決しようとする問題点] 従来の除湿剤、芳香剤、防虫剤、脱臭剤、消臭
剤、乾燥剤等の包材又は容器は、形状が複雑なた
め高価であり又薬剤の寿命を制御する事が困難で
あるという欠点を有していた。 例えば、黴の発生を防ぐ事を目的とした除湿剤
容器は、潮解性薬剤を容器開口部近傍に底上げし
た容器と、吸収した水分を受ける容器との二重構
造と成つている物とか、潮解性薬剤を多孔質シ
ートで包装し、網目状開口部を有する成形物に納
める等がある。しかし、については転倒によ
り薬剤もしくは吸収した水分がこぼれ出すという
欠点があり、二重構造である為に高価な物となる
欠点があつた。については多孔質シートは耐水
性が低く、強度が弱い為に吸収した水分が漏れ出
す危険性があり、また二重構造である為に高価な
物となる欠点があつた。 また芳香剤容器は、香料を寒天又はワセリン等
で固体化し、部分的に開口部を有するガラスまた
はプラスチツク容器に入れた物とか香料を揮発
性溶媒と混合して、部分的に開口部を有するガラ
スまたはプラスチツク容器に入れた物等があ
る。については固体化の為の工程が煩雑であり
高価な物となり、また薬剤の寿命を制御する事が
困難であるという欠点があつた。については転
倒により容器内の薬剤がこぼれる欠点があり、ま
た芳香剤の適度の揮散を行わせる為に開口部の形
状が複雑であり高価な物となる欠点があつた。 上記のような製品の包材又は容器としては適度
の通気性と強い耐水性と形状保持性とを兼ね備え
る多孔質体が要望されている。 このような要望に対し従来の多孔質体には下記
のごどく重大の欠点があつた。 通気性、形状保持性を有する多孔質体として燒
結体が挙げられるが、孔径の半緒が0.5〜50μmと
大きく気体はほとんど抵抗なく通過するが、液体
用容器としては漏れがおき使用不能であり、内容
物は固体あるいは粒径が大きな顆粒に限られまた
製造上の欠点として形状の自由度が狭く、コスト
が高いという欠点があつた。 一方、上記特開昭59−232127号公報に示された
方法により作成した容器は被抽出物が常温で固体
の高分子物質であるための孔の形状が不確実であ
り、高い通過能を有する程度に抽出するには、高
温、長時間等工程的にきびしい条件が必要であ
り、通過能を有する製品を連続して得ることは非
常に困難であつた。 一方、上記特開昭59−64640号公報には、ポリ
マーにブレンドした特定の化合物を除去する微孔
質シートの製造方法が開示されているが、射出成
形、ブロー成形による成形物に関する開示がな
く、また延伸工程により微孔を存在させることを
特徴とする等、製法に大きな限定があつた。 一方、特公昭58−32171号公報に示された方法
で作成された多孔質膜は水湿潤性であり耐水圧が
低いという欠点があつた。 多孔質成形物の抽出処理後における寸法収縮は
無機微粉体の添加では、10%以上起きるという問
題があつた。 このため本発明の、溶媒の処理による寸法収縮
が少ない、適度の通過性、浸透性、又は、除菌性
と液密性とを兼ね備えた樹脂成形物を提供するこ
とを目的としている。 [課題を解決するための手段] 本発明によれば、除湿剤、芳香剤、防虫剤、脱
臭剤、消臭剤、乾燥剤等の活性薬剤の包装形態を
安価にかつ簡便にできる。さらに、連通空孔の最
大径及び空孔率を調整することにより、活性薬剤
の寿命が制御できる。さらに気体は通過するが液
体及び固体を密封状態に保つことができる。 本発明の樹脂成形物は、結晶性熱可塑性樹脂(A)
100重量部、長さをL、直径をDとしたときL/
Dが15以上である無機繊維状充填剤(B)50〜200重
量部、及び(A)の溶融温度以上で(A)に相溶し、かつ
成形工程で実質的に揮散しない、常温から成形温
度の範囲で実質的に流動性を有する液状有機化合
物(C)を(A)と(B)の和を100重量部としたとき20〜150
重量部からなる均一な樹脂組成物を射出成形法も
しくは押出成形法にて成形し、しかる後、該成形
物を(C)の良溶媒でありかつ(A)に対して貧溶媒であ
る溶媒で(C)を抽出除去することにより該成形物に
微細な連通空孔を形成させる事を特徴とする樹脂
成形物である。 また、本発明の樹脂成形物の製造方法は、結晶
性熱可塑性樹脂(A)100重量部、長さをL、直径を
DとしたときL/Dが15以上である無機繊維状充
填剤(B)50〜200重量部、及び(A)の溶融温度以上で
(A)に相溶し、かつ成形工程で実質的に揮散しな
い、常温から成形温度の範囲で実質的に流動性を
有する液状有機化合物(C)を(A)と(B)の和を100重量
部としたとき20〜150重量部からなる均一な樹脂
組成物を射出成形法もしくは押出成形法にて成形
し、しかる後、該成形物を(C)の良溶媒でありかつ
(A)に対して貧溶媒である溶媒で(C)を抽出除去する
ことにより該成形物に微細な連通空孔を形成させ
る事を特徴とする。 上記した本発明の製造方法を詳述すれば、次の
とおりである。 (1) 結晶性熱可塑性樹脂(A)100重量部、長さをL、
直径をDとしたときL/Dが15以上である無機
繊維状充填剤(B)50〜200重量部及び(A)の溶融温
度以上で(A)に相溶し、かつ成形工程で実質的に
揮散しない、常温から成形温度の範囲で実質的
に流動性を有する液状有機化合物(C)を(A)と(B)の
和を100重量部としたとき20〜150重量部からな
る均一な溶融体を作る。その際、必要に応じ0
〜1重量部のカツプリング剤を添加してもよ
い。 (2) 溶融体を冷却し既知の方法によりペレツトと
し、射出成形法もしくは押出成形法により任意
の形状に成形する。この時樹脂の組成及び冷却
温度を調節することにより、溶融体の中で結晶
性熱可塑性樹脂の球晶が無機繊維状充填剤をと
りこみながら生成し、その進行に伴い液状有機
化合物が球晶よりはじき出され、固液分離が起
き結晶性熱可塑性樹脂の球晶が無機繊維状充填
剤をとりこんで連結され、その間〓に液状有機
化合物が存在する構造が発現する。 (3) 液状有機化合物を間〓に含む無機繊維状充填
剤と結晶性可塑性樹脂の微細な球晶とからなる
集合体は、さらに冷却されることにより構造が
強固に固定される。 (4) この構造が固定された成形物は、結晶性熱可
塑性樹脂及び無機繊維状充填剤に対し難溶でか
つ液状有機化合物の良溶媒を用いて抽出処理を
施すことにより、液状有機化合物を除去し、さ
らに乾燥して無機繊維状充填剤と結晶性熱可塑
性樹脂の微細な球晶との集合体によりなる微多
孔質樹脂成形物となる。 (5) 結晶性熱可塑性樹脂の球晶は外周部に非晶部
を伴つており、溶媒を乾燥で除去する過程で非
晶部が変形しながら球晶の中心間距離が接近す
るのを防ぐ為に、無機繊維状充填剤が球晶間距
離を維持することにより、(4)で出来た間〓及び
成形物の寸法を維持する。 本発明において使用することのできる結晶性熱
可塑性樹脂の好ましい例はポリエチレン、ポリプ
ロピレン;好ましくはアイソタクチツクポリプロ
ピレンのホモ重合体、ポリ4−メチルヘンテン−
1、ポリブテン−1、ポリアミド;好ましくはナ
イロン6又はナイロン66、ポリエステル;好まし
くはポリエチレンテレフタレート、ポリ塩化ビニ
リデン、ポリマーボネート、ポリアセタール、ポ
リスルホン、テトラフルオロエチレン−エチレン
共重合体である。 以上に例示したような結晶性熱可塑性樹脂の2
種以上の混合物も使用できる。 本発明において使用することのできる無機繊維
状充填剤は長さが直径15倍以上である。具体的に
は、チタン酸カリウム繊維(テイスモ、大塚化学
製)、メタケイ酸カルシウム針状結晶(NYAD、
NYCO社製)、酸化マグネシウム繊維(OMS、
宇部興産製)である。しかしながら、アスベス
ト、アタパルジヤイト、ガラス繊維、カーボン繊
維も使用に適する。 次表に上記の無機繊維状充填剤の一般的性状の
1例を示す。
[Industrial Application Field] The present invention relates to a transparent resin molded product and a method for producing the same. More specifically, a resin composition in which a crystalline thermoplastic resin (A), an inorganic fibrous filler (B), and a liquid organic compound (C) are uniformly kneaded is molded by an injection molding method or an extrusion molding method, and then After that, the molded product
A solvent that is a good solvent for (C) and a poor solvent for (A)
This invention relates to a resin molded product and its manufacturing method, which is characterized by forming fine communicating pores in the molded product by extraction and removal of It has air permeability even though it is transparent, and it has air permeability while being partially permeable to organic solvents. [Prior Art] In recent years, various packaging forms and packaging materials have been improved for the purpose of improving the living environment. for example,
Packaging materials for dehumidifiers, air fresheners, insect repellents, deodorizers, deodorants, desiccants, etc. have traditionally been made using Japanese paper, non-woven fabrics,
Porous membranes, glass or plastic containers with openings, glass or plastic containers partially replaced with breathable materials, and the like are used to improve the living environment. JP-A-59-232127 discloses a container having a microporous wall and a method for manufacturing the same. The container is made by molding a resin composition containing a thermoplastic resin that is poorly soluble in a solvent, a thermoplastic resin or compound that is easily soluble in a solvent, and further an appropriate inorganic substance as necessary, and then molding the thermoplastic resin or compound. It is a container with a microporous wall obtained by solvent extraction. However, the substance to be extracted and removed is a polymeric substance such as a thermoplastic resin or a compound, and the specification clearly states that the substance to be extracted and removed is a component that can be at least partially eluted by a solvent. . Furthermore, it is described that the extraction solvent is a high boiling point solvent, and that the solvent is heated to 60 to 80°C during extraction. Furthermore, Japanese Patent Application Laid-Open No. 59-64640 describes a method for producing a porous sheet by melt-blending a crystalline, thermoplastic polymer with a compound such as mineral oil, dioctyl phthalate, or mineral spirits.
A method for producing a microporous sheet is disclosed in which a sheet is formed from a solution, cooled, phase separation is caused, and then stretched to remove the compound. In addition, Japanese Patent Publication No. 58-32171 describes a method for producing a porous membrane by mixing an inorganic fine powder, an organic liquid with an SP value of 8.42 to 9.9, and a polyolefin resin, followed by melt molding, and then extracting the organic liquid. A method for producing a microporous membrane is disclosed. [Problems to be solved by the invention] Conventional packaging materials or containers for dehumidifiers, fragrances, insect repellents, deodorizers, deodorants, desiccants, etc. are expensive due to their complicated shapes, and the lifespan of the drugs is limited. The disadvantage was that it was difficult to control. For example, dehumidifier containers intended to prevent the growth of mold have a double structure: a container with a raised bottom near the opening of the container containing the deliquescent agent, and a container that receives absorbed moisture; For example, sexual drugs are packaged in a porous sheet and placed in a molded product having mesh-like openings. However, it has the disadvantage that the medicine or absorbed moisture spills out when it falls over, and its double structure makes it expensive. As for porous sheets, they have low water resistance and low strength, so there is a risk that absorbed water will leak out, and because they have a double structure, they are expensive. In addition, fragrance containers are those in which fragrance is solidified with agar or petrolatum, etc., and placed in a glass or plastic container with a partially opening, or a container in which the fragrance is mixed with a volatile solvent and placed in a glass or plastic container with a partially opening. Or there are items placed in plastic containers. However, the solidification process is complicated and expensive, and it is difficult to control the lifespan of the drug. However, there is a drawback that the medicine inside the container spills when the container is tipped over, and the shape of the opening is complicated in order to properly volatilize the aromatic agent, resulting in an expensive product. As packaging materials or containers for the above-mentioned products, there is a demand for porous bodies that have appropriate air permeability, strong water resistance, and shape retention. In response to such demands, conventional porous materials have the following serious drawbacks. Sintered bodies are examples of porous bodies that have air permeability and shape retention properties, but they have large pore diameters of 0.5 to 50 μm, allowing gas to pass through them with almost no resistance, but they leak and cannot be used as containers for liquids. However, the content is limited to solids or granules with a large particle size, and manufacturing disadvantages include a narrow degree of freedom in shape and high cost. On the other hand, the container prepared by the method disclosed in JP-A No. 59-232127 has an uncertain pore shape because the material to be extracted is a polymeric substance that is solid at room temperature, and has a high passage capacity. In order to extract to a certain degree, severe process conditions such as high temperature and long time are required, and it has been extremely difficult to continuously obtain a product with passing ability. On the other hand, the above-mentioned Japanese Patent Application Laid-Open No. 59-64640 discloses a method for manufacturing a microporous sheet that removes a specific compound blended with a polymer, but does not disclose a molded product by injection molding or blow molding. In addition, there were major limitations on the manufacturing method, such as the fact that micropores were created through the stretching process. On the other hand, the porous membrane prepared by the method disclosed in Japanese Patent Publication No. 58-32171 had the disadvantage of being water-wettable and having low water pressure resistance. There was a problem in that dimensional shrinkage of porous molded articles after extraction treatment occurred by more than 10% when inorganic fine powder was added. Therefore, it is an object of the present invention to provide a resin molded article that exhibits little dimensional shrinkage due to solvent treatment, has appropriate permeability and permeability, or has both sterilization and liquid tightness. [Means for Solving the Problems] According to the present invention, active agents such as dehumidifiers, fragrances, insect repellents, deodorizers, deodorants, desiccants, etc. can be packaged inexpensively and easily. Furthermore, by adjusting the maximum diameter and porosity of the open pores, the lifetime of the active agent can be controlled. Furthermore, gases can pass through, but liquids and solids can remain sealed. The resin molded product of the present invention is made of crystalline thermoplastic resin (A)
When 100 parts by weight, length is L, and diameter is D, L/
50 to 200 parts by weight of an inorganic fibrous filler (B) with a D of 15 or more, which is compatible with (A) above the melting temperature of (A) and does not substantially volatilize during the molding process, and is molded from room temperature. 20 to 150 parts by weight of a liquid organic compound (C) that has substantial fluidity within a temperature range, when the sum of (A) and (B) is 100 parts by weight.
A homogeneous resin composition consisting of parts by weight is molded by injection molding or extrusion molding, and then the molded product is treated with a solvent that is a good solvent for (C) and a poor solvent for (A). This resin molded product is characterized by forming fine communicating pores in the molded product by extracting and removing (C). In addition, the method for producing a resin molded product of the present invention includes 100 parts by weight of a crystalline thermoplastic resin (A), an inorganic fibrous filler ( B) 50 to 200 parts by weight and above the melting temperature of (A)
A liquid organic compound (C) that is compatible with (A), does not substantially volatilize during the molding process, and has substantial fluidity in the range of room temperature to molding temperature is added to 100% of the sum of (A) and (B). A homogeneous resin composition consisting of 20 to 150 parts by weight is molded by injection molding or extrusion molding, and then the molded product is molded into a resin composition that is a good solvent for (C) and
It is characterized by forming fine communicating pores in the molded product by extracting and removing (C) with a solvent that is a poor solvent for (A). The manufacturing method of the present invention described above will be detailed as follows. (1) 100 parts by weight of crystalline thermoplastic resin (A), length L,
50 to 200 parts by weight of an inorganic fibrous filler (B) whose L/D is 15 or more when the diameter is D, and which is compatible with (A) at a temperature higher than the melting temperature of (A) and is substantially A uniform liquid organic compound (C) that does not volatilize and has substantially fluidity in the range of room temperature to molding temperature, consisting of 20 to 150 parts by weight when the sum of (A) and (B) is 100 parts by weight. Make a molten body. At that time, if necessary, 0
~1 part by weight of a coupling agent may be added. (2) The melt is cooled and made into pellets by a known method, and molded into any desired shape by injection molding or extrusion molding. At this time, by adjusting the composition of the resin and the cooling temperature, spherulites of the crystalline thermoplastic resin are formed in the melt while incorporating the inorganic fibrous filler, and as this progresses, the liquid organic compound is separated from the spherulites. It is expelled, solid-liquid separation occurs, and the spherulites of the crystalline thermoplastic resin take in the inorganic fibrous filler and are connected, creating a structure in which the liquid organic compound exists between them. (3) The structure of the aggregate consisting of the inorganic fibrous filler containing the liquid organic compound and the fine spherulites of the crystalline plastic resin is firmly fixed by further cooling. (4) Molded products with this fixed structure can be extracted with liquid organic compounds by extraction using a good solvent for liquid organic compounds that is poorly soluble in crystalline thermoplastic resins and inorganic fibrous fillers. It is removed and further dried to form a microporous resin molded product consisting of an aggregate of the inorganic fibrous filler and fine spherulites of the crystalline thermoplastic resin. (5) The spherulites of crystalline thermoplastic resins have an amorphous part on the outer periphery, and during the process of drying and removing the solvent, the amorphous part deforms and prevents the distance between the centers of the spherulites from becoming closer. Therefore, by maintaining the distance between the spherulites, the inorganic fibrous filler maintains the dimensions of the molded product made in (4). Preferred examples of crystalline thermoplastic resins that can be used in the present invention are polyethylene, polypropylene; preferably homopolymers of isotactic polypropylene, poly(4-methylhentene)
1. Polybutene-1, polyamide; preferably nylon 6 or nylon 66, polyester; preferably polyethylene terephthalate, polyvinylidene chloride, polymer bonate, polyacetal, polysulfone, tetrafluoroethylene-ethylene copolymer. 2 of the crystalline thermoplastic resins as exemplified above.
Mixtures of more than one species can also be used. The length of the inorganic fibrous filler that can be used in the present invention is 15 times or more the diameter. Specifically, potassium titanate fiber (Teismo, manufactured by Otsuka Chemical), calcium metasilicate needle crystal (NYAD,
manufactured by NYCO), magnesium oxide fiber (OMS,
(manufactured by Ube Industries). However, asbestos, attapulgite, glass fibers, carbon fibers are also suitable for use. The following table shows an example of the general properties of the above inorganic fibrous filler.

【表】 一般的無機充填剤には使用目的によりその形態
が大きく分けて、繊維状、板状、針状、薄片状、
球状および不定形がある。本発明者らは樹脂成形
物の寸法収縮を少なくする目的で比較検討を重ね
た結果、板状、薄片状、球状、不定形では寸法収
縮を少なくする効果が比較的に乏しいことがわか
つた。一方、繊維状、針状の場合は寸法収縮を少
なくする効果が顕著であり、更に強度、透気度及
び透湿度の向上も併せて達せられる。 無機繊維状充填剤の使用割合は、結晶性熱可塑
性樹脂100重量部に対して、50〜200重量部であ
り、好ましくは、70〜180重量部である。無機繊
維状充填剤の割合が50重量部の下回ると寸法収縮
の防止効果及び補強効果が乏しく、200重量部を
越えると混練及び成形が困難になる。 本発明において使用することのできる液状有機
化合物は、常温から成形温度の範囲において実質
的に流動性を示し、成形時に実質的に揮発しない
ことが必要であり、かつ使用する結晶性熱可塑性
樹脂の融点以上において、結晶性熱可塑性樹脂と
相溶することが必要である。具体的には沸点が
180℃以上、混合物の場合は初留点が180℃以上で
あることが好ましく、更に好ましくは沸点又は初
留点が200℃である。上記の特性を示す液状有機
化合物としては、炭素数が11〜80の範囲の単一物
質又は混合物である炭化水素が挙げられ、中でも
流動パラフイン、ポリブテン、ナフテン系オイル
が好ましいものである。しかしながら、フタル酸
エステル、リン酸エステル、脂肪酸エステル、ア
ルキルエポキシステアレイト、エポキシ化大豆
油、4,5エポキシテトラヒドロフタル酸ジイソ
デシル、塩素化パラフイン、ポリエステル系可塑
剤、パーフロロカーボン、ポリエチレングリコー
ルも使用に適する。 しなしながら、上に例示した結晶性熱可塑性樹
脂及び液状有機化合物のすべてを任意に組合せて
用いることができるのではなく、液状有機化合物
は、結晶性熱可塑性樹脂とその樹脂の溶融温度以
上で相溶するものから選ばれる必要がある。 本発明において使用に適する結晶性熱可塑性樹
脂と液状有機化合物との組合せの例、及び使用に
適する溶媒の例を表1に示す。
[Table] General inorganic fillers are roughly divided into forms depending on the purpose of use: fibrous, plate-like, needle-like, flaky,
There are spherical and irregular shapes. As a result of repeated comparative studies aimed at reducing dimensional shrinkage of resin molded products, the present inventors found that plate-like, flaky, spherical, and amorphous shapes are relatively less effective in reducing dimensional shrinkage. On the other hand, in the case of fibrous or acicular shapes, the effect of reducing dimensional shrinkage is remarkable, and furthermore, the strength, air permeability, and moisture permeability can also be improved. The proportion of the inorganic fibrous filler used is 50 to 200 parts by weight, preferably 70 to 180 parts by weight, based on 100 parts by weight of the crystalline thermoplastic resin. If the proportion of the inorganic fibrous filler is less than 50 parts by weight, the effect of preventing dimensional shrinkage and reinforcing effect will be poor, and if it exceeds 200 parts by weight, kneading and molding will become difficult. The liquid organic compound that can be used in the present invention must exhibit substantial fluidity in the range from room temperature to molding temperature, must not be substantially volatile during molding, and must be compatible with the crystalline thermoplastic resin used. It is necessary to be compatible with the crystalline thermoplastic resin above the melting point. Specifically, the boiling point
The initial boiling point is preferably 180°C or higher, and in the case of a mixture, the initial boiling point is preferably 180°C or higher, and more preferably the boiling point or initial boiling point is 200°C. Liquid organic compounds exhibiting the above characteristics include hydrocarbons having a carbon number of 11 to 80, either as a single substance or as a mixture, and among them liquid paraffin, polybutene, and naphthenic oil are preferred. However, phthalates, phosphates, fatty acid esters, alkyl epoxy stearates, epoxidized soybean oil, diisodecyl 4,5 epoxytetrahydrophthalate, chlorinated paraffins, polyester plasticizers, perfluorocarbons, polyethylene glycols are also suitable for use. . However, not all of the crystalline thermoplastic resins and liquid organic compounds exemplified above can be used in any combination, and the liquid organic compound can be used in combination with the crystalline thermoplastic resin and the liquid organic compound at a temperature equal to or higher than the melting temperature of the crystalline thermoplastic resin and the liquid organic compound. It is necessary to choose from compatible ones. Table 1 shows examples of combinations of crystalline thermoplastic resins and liquid organic compounds suitable for use in the present invention, and examples of solvents suitable for use.

【表】 液状有機化合物の使用割合は、結晶性熱可塑性
樹脂と無機繊維状充填剤とを加えた重量を100重
量部としたとき20〜150重量部であり、好ましく
は、25〜100重量部である。液状有機化合物の割
合が20重量部以下であると、成形物が実質的に気
体もしくは液体を透過しないものになり、150重
量部以上であると、任意の形状に射出成形もしく
は押出成形が困難であり、成形出来たとしても強
度が極端に弱いものしか得られない。 結晶性熱可塑性樹脂、無機繊維状充填剤および
液状有機化合物の溶融混合体の調製にあたつて
は、既知の混練機、例えば単軸押出機、2軸押出
機、バンバリーミキサー、ニーダー等が用いられ
る。溶融混合体は既知の装置を用いて一旦冷却し
ペレツト状の樹脂成形物としたのち調製するのが
一般的である。但し、押出成形法においては混練
機からダイス等をへて直接シート又はチユーブ等
に成形できる場合がある。 射出成形法もしくは押出成形法は、それぞれの
成形法に適する流動性を有する樹脂成形物を用意
し、シリンダー温度を樹脂成形物の可塑化温度に
保つことが好ましい。樹脂成形物の可塑化温度は
結晶性熱可塑性樹脂単体の可塑化温度より低くな
る傾向があり、成形機のシリンダーを加温する電
力の軽減になることも本発明の特徴である。 一定品質の微多孔質成形物を得るには、冷却の
条件が非常に重要になる。すなわち、本発明では
結晶性熱可塑性樹脂の球晶を形成させ、その間〓
を連通空孔とするものであるから、最も結晶化速
度が大きい条件で冷却することが重要である。本
発明に適する冷却温度は無機繊維状充填剤及び液
状有機化合物の含有量、目的とする空孔率、最大
孔径等により調節しなければならないが、樹脂組
成物の融点からそれよりも150℃低い温度の間で
調節することが好ましい。冷却温度が低すぎる
と、成形物が実質的に気体もしくは液体を透過し
ないものになつてしまい、また高すぎると成形が
困難となる。 成形後、液状有機化合物の良溶媒で結晶性熱可
塑性樹脂に対して難溶性の溶媒を用いて結晶性熱
可塑性樹脂の球晶と無機繊維状充填剤の間〓に存
在する液状有機化合物を抽出除去し微多孔質成形
物を得る。上記の性質を満足する溶媒としては、
種々のものが考えられるが、液状有機化合物の抽
出力、毒性、引火性、回収の容易さ、樹脂成形物
からの除去の容易さ等を考慮して決定すべきであ
る。上記の性質を満足する溶媒としては、ハロゲ
ン化炭化水素、例えば、塩化メチレン、ジクロル
メタン、パークロルエチレン、1,1,1−トリ
クロルエタン、等の塩素化炭化水素、又はトリク
ロロフルオロメタン(フレオン−11)、トリクロ
ロトリフルオロエタン(フレオン−113)等のフ
ツ化炭化水素がある。好ましくは、フツ化炭化水
素であり、さらに好ましくは、トリクロロトリフ
ルオロエタン(フレオン−113)である。またハ
ロゲン化炭化水素は常温においても、液状有機化
合物の溶解力が非常に高いので、抽出処理は加温
せずに行うことが可能であり、生産面において大
きな利点となる。しかしながら灯油、メチルエチ
ルエケトン、アセトン、シクロヘキサン、水も使
用することができる。 抽出に要する時間は液状有機化合物の含有量、
成形物の形状、樹脂成形物の空孔率により異なる
がその時間は30秒〜20分であり、好ましくは1〜
15分である。処理時間が短すぎると残留不純物が
多くなり空孔率が低くなり、長すぎると溶媒使用
量からみた経済性、及び生産面での問題が生じ
る。抽出の方法は、浸漬法、シヤワー法、蒸気洗
浄法、超音波洗浄法、煮沸洗浄法等があるが、溶
媒の蒸発によるロスを出来るだけ抑えかつ効率よ
く処理が行えるように決定すべきである。 樹脂成形物の形状は使用する用途によりいかよ
うにも選択できる。実質的に気体もしくは液体を
透過させる性能を有する部位の肉厚は0.05〜5mm
が好ましい。下式で定義される空孔率は5〜50%
であることが好ましい。樹脂成形物の多孔質性を
有する部位は成形物全体である必要はなく、少な
くとも一部が、その性質を有しておれば良い。 ここでいう空孔率とは、下式で定義されたもの
である。 空孔率(%)=樹脂組成物の密度−多孔質成
形物の密度/樹脂組成物の密度×100 成形物に付着した抽出溶媒は、低沸点溶媒の場
合、取り立てて乾燥工程を必要とせず、自然乾燥
で行うことができるが必要であれば、乾燥工程を
設け、乾燥処理を行つても良い。 なお、用途により該形成物表面を親水化する必
要がある時は、上記工程の後に、コロナ処理、プ
ラズマ処理、酸化剤処理、界面活性剤処理を施し
て表面を親水化することも可能である。 また上記成形物の最大孔径は15μm以下である
ことが好ましい。ここでいう最大孔径の測定方法
は粒径が均一なポリスチレンラテツクス[ユニホ
ーム ラテツクス パーテイクルズ ダウケミカ
ル社製]を固形分濃度0.1wt%に希釈した液を100
ml通過させ、下式により補足効率を求める。 補足効率(%)=CF−CP/CF×100 CF:原液のラテツクス濃度 CP:多孔質体を通過した液のラテツクス濃度 粒径の小さいラテツクスからこの補足効率を求
め、この値が初めて100%になつた時の粒径をも
つて成形物の最大孔径とする。 また本発明による成形物を走査電子顕微鏡で観
察したところ、表面には微細孔が存在しており、
断面には結晶製熱可塑性樹脂の球晶と無機繊維状
充填剤とがかみあつた集合体で構成され、あたか
も超微粒子からなる燒結体のような構造を呈して
おり、多くの曲路を有することが観察された。 前記した本発明の方法により得られ、上記した
微細孔を有する本発明の樹脂成形物は、一般的に
次のような製品物性を有するものであり、前記し
た多くの包材用として有用である。 すなわち、例えば内径14mm、肉厚1mmのパイプ
状に射出成形した成形物の軸と垂直方向の圧縮強
度は2Kg以上であり透気度は1ml/cm2・min以上
であり、耐水性は1Kg/cm2である。 [実施例] 以下に本発明を実施例及び比較例により更に詳
述する。 例中に示した樹脂成形物の物性は次の方法によ
つて測定したものである。 成形物の形状: 外径14mm、肉厚1mm、長さ26mmのパイプ状に射
出成形用金型を用いて成形した。これに抽出処理
を施して試料とした。 透気度: 上記試料の両端を閉じその一方より0.8Kg/cm2
の清浄圧縮空気を導入し側面肉厚部を透過した空
気を水中で補集しその体積を測定し下式により透
気度を求めた。 透気度=透過空気量(ml)/時間(min)×試料の
表面積(cm2) 耐水圧: 上記試料の両端を閉じ試料内部に水を満たし、
一方より1Kg/cm2の高圧エアーを送り成形物の側
面より漏れる水の有無を目視で確認した。 圧縮強度: 上記試料を軸と垂直に直径10mmの丸棒で押し漬
したときの破壊強度を測定した。 寸法収縮率: 上記試料の抽出処理前後の長さの変化を測定
し、下式より寸法収縮率を求めた。 寸法収縮率(%)=抽出前の長さ−抽出後の長さ
/抽出前の長さ×100 実施例 1 MI=20なるポリプロピレン(チツソ株式会社
製、「K−1800」)100重量部、アスペクト比:20
のメタケイ酸カルシウム針状結晶(NYCO社製
「NYAD−G)70重量部、初留点286℃の流動パ
ラフイン(出光興産株式会社製、「KP−15」)85
重量部とを2軸押出機にて混合混練し、水冷しペ
レツトを作成した。次いで射出成形機を用いてシ
リンダー温度を190℃に調節して成形した。この
際金型温度は温調機を用いて90℃±5℃に調節し
た。離型後、成形物をトリクロロトリフルオロエ
タン(旭硝子株式会社製「フロンソルブ」)に3
分間攪拌しながら浸漬し、更に新しいトリクロロ
トリフルオロエタンに移して同じ操作を3回繰り
返して流動パラフインを抽出除去した後、40℃の
オーブンで10分間乾燥した。 得られた成形物の物性を表3に示す。 比較例 1 MI=20なるポリプロピレン(チツソ株式会社
製、「K−1800」)100重量部、平均粒径5μmの炭
酸カルシウム(日東粉化株式会社製「NF−
400」)70重量部、初留点286℃の流動パラフイン
(出光興産株式会社製、「KP−15」)85重量部とを
実施例1と同様に成形、抽出、乾燥した。得られ
た成形内の物性を表3に示す。 比較例 2 MI=20なるポリプロピレン(チツソ株式会社
製、「K−1800」)100重量部、初留点286℃の流動
パラフイン(出光興産株式会社、「KP−15」)50
重量部とを実施例1と同様に成形、抽出、乾燥し
た。得られた成形物の物性を表3に示す。 比較例 3 MI=20なるポリプロピレン(チツソ株式会社
製、「K−1800J」)100重量部、長さ約1mmに切断
した20デニールのポリエステル繊維のモノフイラ
メント70重量部、初留点286℃の流動パラフイン
(出光興産株式会社製、「KP−15」)85重量部とを
実施例1と同様に混合混練し、成形、抽出、乾燥
した。得られた成形物の物性を表3に示す。 実施例 4 MI=20なるポリプロピレン(チツソ株式会社
製、「K−1800」)100重量部、アスペクト比:3
(L/D=3)のメタケイ酸カルシウム針状結晶
(NYCO社製「NYAD−1250」)70重量部、初留
点286℃の流動パラフイン(出光興産株式会社製、
「KP−15」)85重量部とを実施例1と同様に混合
混練し、成形、抽出、乾燥した。得られた成形物
の物性を表3に示す。
[Table] The proportion of the liquid organic compound used is 20 to 150 parts by weight, preferably 25 to 100 parts by weight, based on 100 parts by weight of the crystalline thermoplastic resin and inorganic fibrous filler. It is. If the proportion of the liquid organic compound is less than 20 parts by weight, the molded product will be substantially impermeable to gas or liquid, and if it is more than 150 parts by weight, it will be difficult to injection mold or extrude into any shape. Even if it could be molded, the strength would be extremely weak. In preparing the molten mixture of the crystalline thermoplastic resin, inorganic fibrous filler, and liquid organic compound, a known kneader such as a single screw extruder, twin screw extruder, Banbury mixer, kneader, etc. is used. It will be done. Generally, the molten mixture is once cooled to form a pellet-like resin molded product using a known device and then prepared. However, in the extrusion molding method, it may be possible to directly mold the material into a sheet or tube through a die or the like from a kneader. In the injection molding method or the extrusion molding method, it is preferable to prepare a resin molded product having fluidity suitable for each molding method and maintain the cylinder temperature at the plasticization temperature of the resin molded product. The plasticizing temperature of the resin molded product tends to be lower than that of the crystalline thermoplastic resin itself, and another feature of the present invention is that the electric power required to heat the cylinder of the molding machine can be reduced. Cooling conditions are very important in order to obtain a microporous molded product of constant quality. That is, in the present invention, spherulites of crystalline thermoplastic resin are formed, and during the
Since these are interconnected pores, it is important to cool the crystallization under conditions that give the highest crystallization rate. The cooling temperature suitable for the present invention must be adjusted depending on the content of the inorganic fibrous filler and liquid organic compound, the desired porosity, the maximum pore diameter, etc., but it is 150°C lower than the melting point of the resin composition. It is preferred to adjust between temperatures. If the cooling temperature is too low, the molded product becomes substantially impermeable to gas or liquid, and if the cooling temperature is too high, molding becomes difficult. After molding, extract the liquid organic compound present between the spherulites of the crystalline thermoplastic resin and the inorganic fibrous filler using a good solvent for the liquid organic compound and a solvent that is poorly soluble in the crystalline thermoplastic resin. It is removed to obtain a microporous molded product. As a solvent that satisfies the above properties,
Although various options are possible, it should be determined in consideration of the extraction power, toxicity, flammability, ease of recovery, ease of removal from resin moldings, etc. of the liquid organic compound. Solvents that satisfy the above properties include halogenated hydrocarbons, such as methylene chloride, dichloromethane, perchlorethylene, 1,1,1-trichloroethane, and trichlorofluoromethane (Freon-11 ), trichlorotrifluoroethane (Freon-113), and other fluorinated hydrocarbons. Fluorinated hydrocarbons are preferred, and trichlorotrifluoroethane (Freon-113) is more preferred. Further, since halogenated hydrocarbons have a very high ability to dissolve liquid organic compounds even at room temperature, the extraction process can be performed without heating, which is a great advantage in terms of production. However, kerosene, methylethyleketone, acetone, cyclohexane and water can also be used. The time required for extraction depends on the content of liquid organic compounds,
Although it varies depending on the shape of the molded product and the porosity of the resin molded product, the time is 30 seconds to 20 minutes, preferably 1 to 20 minutes.
It's 15 minutes. If the treatment time is too short, residual impurities will increase and the porosity will be low; if the treatment time is too long, problems will arise in terms of economy in terms of the amount of solvent used and production. Extraction methods include immersion, showering, steam cleaning, ultrasonic cleaning, boiling, etc., but the method should be determined to minimize loss due to solvent evaporation and ensure efficient processing. . The shape of the resin molded product can be selected in any way depending on the intended use. The wall thickness of the part that has the ability to substantially permeate gas or liquid is 0.05 to 5 mm.
is preferred. The porosity defined by the formula below is 5 to 50%
It is preferable that The portion of the resin molded product that has porosity does not need to be the entire molded product, as long as at least a portion thereof has this property. The porosity here is defined by the following formula. Porosity (%) = Density of resin composition - Density of porous molded material / Density of resin composition x 100 If the extraction solvent attached to the molded material is a low boiling point solvent, no special drying process is required. This can be carried out by natural drying, but if necessary, a drying step may be provided to perform the drying treatment. If it is necessary to make the surface of the formed product hydrophilic depending on the application, it is also possible to make the surface hydrophilic by performing corona treatment, plasma treatment, oxidizing agent treatment, or surfactant treatment after the above steps. . Further, the maximum pore diameter of the molded product is preferably 15 μm or less. The maximum pore size is measured by diluting a solution of polystyrene latex with uniform particle size [Uniform Latex Particles, manufactured by Dow Chemical Company] to a solid content of 0.1wt%.
ml is passed through and the capture efficiency is determined by the formula below. Capture efficiency (%) = C F - C P / C F × 100 C F : Latex concentration of the stock solution C P : Latex concentration of the liquid that has passed through the porous body Find the capture efficiency from latex with a small particle size and calculate this value. The particle size when it reaches 100% for the first time is the maximum pore size of the molded product. Furthermore, when the molded product according to the present invention was observed using a scanning electron microscope, it was found that micropores were present on the surface.
The cross section is composed of an aggregate of crystalline thermoplastic resin spherulites and inorganic fibrous fillers, and has a structure similar to a sintered body made of ultrafine particles, with many curved paths. It was observed that The resin molded product of the present invention obtained by the above-described method of the present invention and having the above-described micropores generally has the following product properties, and is useful for many of the above-mentioned packaging materials. . That is, for example, a molded product injection molded into a pipe shape with an inner diameter of 14 mm and a wall thickness of 1 mm has a compressive strength of 2 kg or more in the direction perpendicular to the axis, an air permeability of 1 ml/cm 2 ·min or more, and a water resistance of 1 kg/cm 2 min. cm2 . [Examples] The present invention will be explained in more detail below using Examples and Comparative Examples. The physical properties of the resin molded products shown in the examples were measured by the following method. Shape of molded product: A pipe shape with an outer diameter of 14 mm, wall thickness of 1 mm, and length of 26 mm was molded using an injection mold. This was extracted and used as a sample. Air permeability: 0.8Kg/cm 2 from one side when both ends of the above sample are closed.
Clean compressed air was introduced, the air that permeated through the thick side wall was collected in water, its volume was measured, and the air permeability was determined using the formula below. Air permeability = permeated air volume (ml) / time (min) x surface area of sample (cm 2 ) Water pressure resistance: Close both ends of the sample above and fill the inside of the sample with water.
High-pressure air of 1 kg/cm 2 was applied from one side, and the presence or absence of water leaking from the side of the molded product was visually confirmed. Compressive strength: The breaking strength was measured when the above sample was pressed perpendicularly to the axis with a round rod having a diameter of 10 mm. Dimensional shrinkage rate: The change in length of the sample before and after the extraction process was measured, and the dimensional shrinkage rate was determined from the following formula. Dimensional shrinkage rate (%) = Length before extraction - Length after extraction / Length before extraction x 100 Example 1 100 parts by weight of polypropylene with MI = 20 (manufactured by Chitsuso Corporation, "K-1800"), Aspect ratio: 20
70 parts by weight of calcium metasilicate needle crystals (“NYAD-G” manufactured by NYCO), liquid paraffin with an initial boiling point of 286°C (“KP-15” manufactured by Idemitsu Kosan Co., Ltd.) 85
Parts by weight were mixed and kneaded in a twin-screw extruder, cooled in water, and pellets were prepared. Next, molding was performed using an injection molding machine with the cylinder temperature adjusted to 190°C. At this time, the mold temperature was adjusted to 90°C±5°C using a temperature controller. After releasing the mold, the molded product was soaked in trichlorotrifluoroethane (“Fronsolve” manufactured by Asahi Glass Co., Ltd.) for 3
The sample was immersed with stirring for a minute, then transferred to fresh trichlorotrifluoroethane, and the same operation was repeated three times to extract and remove liquid paraffin, followed by drying in an oven at 40°C for 10 minutes. Table 3 shows the physical properties of the obtained molded product. Comparative Example 1 100 parts by weight of polypropylene with MI = 20 (manufactured by Chitsuso Corporation, "K-1800"), calcium carbonate with an average particle size of 5 μm (manufactured by Nitto Funka Co., Ltd., "NF-
In the same manner as in Example 1, 70 parts by weight of liquid paraffin (manufactured by Idemitsu Kosan Co., Ltd., "KP-15") having an initial boiling point of 286° C., 70 parts by weight of "KP-15") were molded, extracted and dried. Table 3 shows the physical properties of the molded product obtained. Comparative Example 2 100 parts by weight of polypropylene (manufactured by Chitsuso Corporation, "K-1800") with MI = 20, 50 parts by weight of liquid paraffin with an initial boiling point of 286°C ("KP-15", manufactured by Idemitsu Kosan Co., Ltd.)
parts by weight were molded, extracted and dried in the same manner as in Example 1. Table 3 shows the physical properties of the obtained molded product. Comparative Example 3 100 parts by weight of polypropylene (manufactured by Chitsuso Corporation, "K-1800J") with MI = 20, 70 parts by weight of 20 denier polyester fiber monofilament cut into approximately 1 mm length, fluidity with an initial boiling point of 286°C 85 parts by weight of paraffin (manufactured by Idemitsu Kosan Co., Ltd., "KP-15") were mixed and kneaded in the same manner as in Example 1, molded, extracted and dried. Table 3 shows the physical properties of the obtained molded product. Example 4 100 parts by weight of polypropylene with MI=20 (manufactured by Chitsuso Corporation, "K-1800"), aspect ratio: 3
(L/D=3) 70 parts by weight of calcium metasilicate needle crystals (NYAD-1250 manufactured by NYCO), liquid paraffin with an initial boiling point of 286°C (manufactured by Idemitsu Kosan Co., Ltd.,
85 parts by weight of "KP-15") were mixed and kneaded in the same manner as in Example 1, molded, extracted and dried. Table 3 shows the physical properties of the obtained molded product.

【表】【table】

【表】 実施例 2〜8 表4に示す成分及び割合の樹脂組成物を2軸押
出機にて混合混練し、水冷しペレツトを作成し
た。然るのち表5に示す成形条件及び抽出条件で
行う以外は、実施例1と同様にして成形物を得
た。得られた成形物の物性を表6に示す。
[Table] Examples 2 to 8 Resin compositions having the components and proportions shown in Table 4 were mixed and kneaded using a twin-screw extruder and cooled with water to produce pellets. Thereafter, a molded product was obtained in the same manner as in Example 1 except that the molding conditions and extraction conditions shown in Table 5 were used. Table 6 shows the physical properties of the molded product obtained.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 [発明の効果] 上記のように本発明は、結晶製熱可塑性樹脂、
無機繊維状充填剤および液状有機化合物とを溶融
混合した後、射出成形法もしくは押出成形法にて
任意の形状に成形するものであつて、その際の冷
却温度を制御することにより、発現する結晶性熱
可塑性樹脂の球晶の大きさを決定し、その後液状
有機化合物の良溶媒で処理して、結晶性熱可塑性
樹脂の球晶と無機繊維状充填剤との間〓に存在す
る液状有機化合物を抽出除去し、結晶性熱可塑性
樹脂の球晶と無機繊維状充填剤との間〓に空間を
存在させ、その連通空孔を用いて気体もしくは液
体を通過させるものであるから、通過性能が良好
な微多孔質結晶性熱可塑性樹脂成形物である。ま
た成形物は無機繊維状充填剤が結晶性熱可塑性樹
脂の球晶とからみあつているため、抽出工程にお
いて収縮率が小さい成形物を得ることができる。 それゆえ得られた製品は、気化性の芳香剤、防
虫剤、防錆剤、防黴剤、消臭剤当の気化性薬剤や
防湿剤、防臭剤の包装、現在各種の燒結体を用い
て液体を移動させている物等に応用することが可
能である。
[Table] [Effects of the invention] As described above, the present invention provides crystalline thermoplastic resins,
After melt-mixing an inorganic fibrous filler and a liquid organic compound, it is molded into an arbitrary shape by injection molding or extrusion molding, and by controlling the cooling temperature at that time, the crystals that appear can be reduced. The size of the spherulites of the crystalline thermoplastic resin is determined, and then treated with a good solvent of a liquid organic compound to remove the liquid organic compound present between the spherulites of the crystalline thermoplastic resin and the inorganic fibrous filler. This method extracts and removes the spherulites of the crystalline thermoplastic resin and creates a space between the spherulites and the inorganic fibrous filler, and uses the communicating pores to allow gas or liquid to pass through. It is a good microporous crystalline thermoplastic resin molded product. Furthermore, since the inorganic fibrous filler is entangled with the spherulites of the crystalline thermoplastic resin, it is possible to obtain a molded product with a small shrinkage rate during the extraction process. Therefore, the resulting products are used to package vaporizable air fresheners, insect repellents, rust preventives, antifungal agents, deodorizers, moisture repellents, deodorants, and other products using various sintered bodies. It can be applied to things that move liquid.

Claims (1)

【特許請求の範囲】 1 結晶性熱可塑性樹脂(A)100重量部、長さをL、
直径をDとしたときL/Dが15以上である無機繊
維状充填剤(B)50〜200重量部、及び(A)の溶融温度
以上で(A)に相溶し、かつ成形工程で実質的に揮散
しない、常温から成形温度の範囲で実質的に流動
性を有する液状有機化合物(C)を(A)と(B)の和を100
重量部としたとき20〜150重量部からなる均一な
樹脂組成物を射出成形法もしくは押出成形法にて
成形し、しかる後、該成形物を(C)の良溶媒であり
かつ(A)に対して貧溶媒である溶媒で(C)を抽出除去
することにより該成形物に微細な連通空孔を形成
させる事を特徴とする樹脂成形物。 2 結晶性熱可塑性樹脂が、ポリエチレン、ポリ
プロピレン、ポリ4−メチルペンテン−1、ポリ
ブテン−1、ポリアミド、ポリエステル、ポリ塩
化ビニリデン、ポリカーボネート、ポリアセター
ル、ポリスルホン、テトラフルオロエチレン−エ
チレン共重合体は群から選ばれた少なくとも1種
の物質又は2種以上の混合物である特許請求の範
囲第1項記載の樹脂成形物。 3 無機繊維状充填剤がチタン酸カリウム、メタ
ケイ酸カリウム、酸化マグネシウムの群から選ば
れた少なくとも1種の物質又は2種以上の混合物
である特許請求の範囲第1項または第2項記載の
樹脂成形物。 4 液状有機化合物の初留点又は沸点が180℃以
上である事を特徴とする特許請求の範囲第1項〜
第3項のいずれか1項に記載の樹脂成形物。 5 液状有機化合物が流動パラフイン、液状ポリ
ブテン、ナフテン系オイル、フタル酸エステル、
リン酸エステル、脂肪酸エステル、アルキルエポ
キシステアレート、エポキシ化大豆油、4・5エ
ポキシテトラヒドロキシフタル酸ジイソデシル、
塩素化パラフイン、ポリエステル系可塑剤、ポリ
エチレングリコール、パーフロロカーボンの群か
ら選ばれた少なくとも1種又は2種以上である特
許請求の範囲第1項〜第4項のいずれか1項に記
載の樹脂成形物。 6 溶媒がハロゲン化炭化水素、ケトン、シクロ
ヘキサノン、水、灯油の群から選ばれた少なくと
も1種又は2種以上である特許請求の範囲第1項
〜第5項のいずれか1項に記載の樹脂成形物。 7 成形物の肉厚が0.05〜0.5mmであり、かつ空
孔率が5〜50%である特許請求の範囲第1項〜第
6項のいずれか1項に記載の樹脂成形物。 8 連通空孔の最大孔径が15μm以下である特許
請求の範囲第1項〜第7項のいずれかに記載の樹
脂成形物。 9 液状有機化合物を抽出除去した際の樹脂成形
物の寸法収縮率が5%以内である特許請求の範囲
第1項〜第9項のいずれか1項に記載の樹脂成形
物。 10 結晶性熱可塑性樹脂(A)100重量部、長さを
L、直径をDとしたときL/Dが15以上である無
機繊維状充填剤(B)50〜200重量部、及び(A)の溶融
温度以上で(A)に相溶し、かつ成形工程で実質的に
揮散しない、常温から成形温度の範囲で実質的に
流動性を有する液状有機化合物(C)を(A)と(B)の和を
100重量部としたとき20〜150重量部からなる均一
な樹脂組成物を射出成形法もしくは押出成形法に
て成形し、しかる後、該成形物を(C)の良溶媒であ
りかつ(A)に対して貧溶媒である溶媒で(C)を抽出除
去することにより該成形物に微細な連通空孔を形
成させる事を特徴とする樹脂成形物の製造方法。 11 射出成形工程もしくは押出成形工程におい
て金型温度及び又は溶融樹脂が通過する雰囲気の
温度を制御することにより均一な樹脂組成物から
固液分離によつて形成される連通空孔の孔径の大
きさを制御する事を特徴とする特許請求の範囲第
10項記載の樹脂成形物の製造方法。 12 結晶性熱可塑性樹脂が、ポリエチレン、ポ
リプロピレン、ポリ4−メチルペンテン−1、ポ
リブテン−1、ポリアミド、ポリエステル、ポリ
塩化ビニリデン、ポリカーボネート、ポリアセタ
ール、ポリスルホン、テトラフルオロエチレン−
エチレン共重合体の群から選ばれた少なくとも1
種又は2種以上である特許請求の範囲第10項〜
第11項のいずれか1項に記載の樹脂成形物の製
造方法。 13 無機繊維状充填剤がチタン酸カリウム、メ
タケイ酸カリウム、酸化マグネシウムの群から選
ばれた少なくとも1種又は2種以上である特許請
求の範囲第10項〜第12項のいずれか1項に記
載の樹脂成形物の製造方法。 14 液状有機化合物の初留点又は沸点が180℃
以上である事を特徴とする特許請求の範囲第10
項〜第13項のいずれか1項に記載の樹脂成形物
の製造方法。 15 液状有機化合物が流動パラフイン、液状ポ
リブテン、ナフテン系オイル、フタル酸エステ
ル、リン酸エステル、脂肪酸エステル、アルキル
エポキシステアレート、エポキシ化大豆油、4・
5エポキシテトラヒドロキシフタル酸ジイソデシ
ル、塩素化パラフイン、ポリエステル系可塑剤、
ポリエチレングリコール、パーフロロカーボンの
群から選ばれた少なくとも1種又は2種以上であ
る特許請求の範囲第10項〜第14項のいずれか
1項に記載の樹脂成形物の製造方法。 16 溶媒がハロゲン化炭化水素、ケトン、シク
ロヘキサノン、水、灯油の群から選ばれた少なく
とも1種又は2種以上である特許請求の範囲第1
0項〜第15項のいずれか1項に記載の樹脂成形
物の製造方法。 17 成形物の肉厚が0.05〜0.5mmであり、かつ
空孔率が5〜50%である特許請求の範囲第10項
〜第16項のいずれかに記載の樹脂成形物の製造
方法。 18 連通空孔の最大孔径が15μm以下である特
許請求の範囲第10項〜第17項いずれか1項に
記載の樹脂成形物の製造方法。 19 樹脂成形物から有機化合物を抽出除去した
際の寸法収縮率が5%以内である特許請求の範囲
第10項〜第18項のいずれか1項に記載の樹脂
成形物の製造方法。
[Claims] 1. 100 parts by weight of crystalline thermoplastic resin (A), length L,
50 to 200 parts by weight of an inorganic fibrous filler (B) whose L/D is 15 or more when the diameter is D, and which is compatible with (A) at a temperature higher than the melting temperature of (A) and which is substantially A liquid organic compound (C) that does not volatilize and has substantial fluidity in the range from room temperature to molding temperature is added to the sum of (A) and (B) by 100%.
A homogeneous resin composition consisting of 20 to 150 parts by weight is molded by injection molding or extrusion molding, and then the molded product is used as a good solvent for (C) and for (A). A resin molded product characterized in that fine communicating pores are formed in the molded product by extracting and removing (C) with a solvent that is a poor solvent. 2. The crystalline thermoplastic resin is selected from the group consisting of polyethylene, polypropylene, poly4-methylpentene-1, polybutene-1, polyamide, polyester, polyvinylidene chloride, polycarbonate, polyacetal, polysulfone, and tetrafluoroethylene-ethylene copolymer. The resin molded article according to claim 1, which is at least one substance or a mixture of two or more substances. 3. The resin according to claim 1 or 2, wherein the inorganic fibrous filler is at least one substance or a mixture of two or more selected from the group of potassium titanate, potassium metasilicate, and magnesium oxide. Molded object. 4 Claims 1 to 4, characterized in that the liquid organic compound has an initial boiling point or boiling point of 180°C or higher
The resin molded article according to any one of Item 3. 5 The liquid organic compound is liquid paraffin, liquid polybutene, naphthenic oil, phthalate ester,
Phosphate ester, fatty acid ester, alkyl epoxy stearate, epoxidized soybean oil, diisodecyl 4/5 epoxytetrahydroxyphthalate,
The resin molding according to any one of claims 1 to 4, which is at least one or two or more selected from the group of chlorinated paraffin, polyester plasticizer, polyethylene glycol, and perfluorocarbon. thing. 6. The resin according to any one of claims 1 to 5, wherein the solvent is at least one or two or more selected from the group of halogenated hydrocarbons, ketones, cyclohexanone, water, and kerosene. Molded object. 7. The resin molded article according to any one of claims 1 to 6, wherein the molded article has a wall thickness of 0.05 to 0.5 mm and a porosity of 5 to 50%. 8. The resin molded article according to any one of claims 1 to 7, wherein the maximum pore diameter of the communicating pores is 15 μm or less. 9. The resin molded article according to any one of claims 1 to 9, wherein the resin molded article has a dimensional shrinkage rate of 5% or less when the liquid organic compound is extracted and removed. 10 100 parts by weight of crystalline thermoplastic resin (A), 50 to 200 parts by weight of inorganic fibrous filler (B) whose L/D is 15 or more, where L is the length and D is the diameter, and (A) A liquid organic compound (C) that is compatible with (A) above the melting temperature of (A), does not substantially volatilize during the molding process, and has substantial fluidity in the range of room temperature to molding temperature is added to (A) and (B). ) the sum of
A homogeneous resin composition consisting of 20 to 150 parts by weight when expressed as 100 parts by weight is molded by injection molding or extrusion molding, and then the molded product is used as a material that is a good solvent for (C) and (A). 1. A method for producing a resin molded product, which comprises forming fine communicating pores in the molded product by extracting and removing (C) with a solvent that is a poor solvent for the resin. 11. The size of the pore diameter of the communicating pores formed by solid-liquid separation from a uniform resin composition by controlling the mold temperature and/or the temperature of the atmosphere through which the molten resin passes during the injection molding process or extrusion molding process. 11. The method for manufacturing a resin molded article according to claim 10, which comprises controlling the following: 12 The crystalline thermoplastic resin is polyethylene, polypropylene, poly4-methylpentene-1, polybutene-1, polyamide, polyester, polyvinylidene chloride, polycarbonate, polyacetal, polysulfone, tetrafluoroethylene-
At least one selected from the group of ethylene copolymers
Claim 10~ which is a species or two or more species.
The method for producing a resin molded article according to any one of Item 11. 13. According to any one of claims 10 to 12, the inorganic fibrous filler is at least one or two or more selected from the group of potassium titanate, potassium metasilicate, and magnesium oxide. A method of manufacturing a resin molded product. 14 The initial boiling point or boiling point of the liquid organic compound is 180℃
Claim 10 characterized by the above
The method for producing a resin molded article according to any one of Items 1 to 13. 15 The liquid organic compound is liquid paraffin, liquid polybutene, naphthenic oil, phthalate ester, phosphate ester, fatty acid ester, alkyl epoxy stearate, epoxidized soybean oil, 4.
5 epoxytetrahydroxyphthalate diisodecyl, chlorinated paraffin, polyester plasticizer,
The method for producing a resin molded article according to any one of claims 10 to 14, wherein the resin molding is at least one or two or more selected from the group of polyethylene glycol and perfluorocarbon. 16 Claim 1, wherein the solvent is at least one or two or more selected from the group of halogenated hydrocarbons, ketones, cyclohexanone, water, and kerosene.
The method for producing a resin molded article according to any one of Items 0 to 15. 17. The method for producing a resin molded article according to any one of claims 10 to 16, wherein the molded article has a wall thickness of 0.05 to 0.5 mm and a porosity of 5 to 50%. 18. The method for producing a resin molded product according to any one of claims 10 to 17, wherein the maximum pore diameter of the communicating pores is 15 μm or less. 19. The method for producing a resin molded article according to any one of claims 10 to 18, wherein the dimensional shrinkage rate when the organic compound is extracted and removed from the resin molded article is 5% or less.
JP22075885A 1985-10-03 1985-10-03 Resin molding and its production Granted JPS6281431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22075885A JPS6281431A (en) 1985-10-03 1985-10-03 Resin molding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22075885A JPS6281431A (en) 1985-10-03 1985-10-03 Resin molding and its production

Publications (2)

Publication Number Publication Date
JPS6281431A JPS6281431A (en) 1987-04-14
JPH0554856B2 true JPH0554856B2 (en) 1993-08-13

Family

ID=16756081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22075885A Granted JPS6281431A (en) 1985-10-03 1985-10-03 Resin molding and its production

Country Status (1)

Country Link
JP (1) JPS6281431A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW539705B (en) 2000-06-30 2003-07-01 Tonen Sekiyukagaku Kk Process for preparing heat curable resin micro-porous film
JP4562074B2 (en) * 2004-09-14 2010-10-13 日東電工株式会社 Battery separator manufacturing method
JP4858457B2 (en) * 2008-01-31 2012-01-18 東レ株式会社 Method for producing a molded product mainly composed of polyacetal resin
JP5961943B2 (en) * 2011-08-17 2016-08-03 東レ株式会社 Porous hollow fiber membrane mainly composed of polyacetal and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316077A (en) * 1976-07-29 1978-02-14 Nippon Oil Co Ltd Method of producing porous film
JPS5335122A (en) * 1976-09-14 1978-04-01 Toshiba Corp Oiling electric machine tank
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
JPS58179243A (en) * 1982-04-13 1983-10-20 Teijin Ltd Production of porous polyester formed product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316077A (en) * 1976-07-29 1978-02-14 Nippon Oil Co Ltd Method of producing porous film
JPS5335122A (en) * 1976-09-14 1978-04-01 Toshiba Corp Oiling electric machine tank
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
JPS58179243A (en) * 1982-04-13 1983-10-20 Teijin Ltd Production of porous polyester formed product

Also Published As

Publication number Publication date
JPS6281431A (en) 1987-04-14

Similar Documents

Publication Publication Date Title
JP3979521B2 (en) Heat-resistant microporous membrane
JP2757918B2 (en) Microporous article and method for producing the same
KR920005672B1 (en) Microporous sheet material method of making and articles made therewith
US4539256A (en) Microporous sheet material, method of making and articles made therewith
JP4033246B2 (en) Method for producing highly permeable polyolefin microporous membrane
US4100238A (en) Process for producing permeable membranes
US5183607A (en) Polymer membranes for separation process
JPH0450339B2 (en)
JPS6211506A (en) Hollow fiber
JPH01101340A (en) Oriented microporous article
AU8037198A (en) Porous polyvinylidene fluoride resin membrane and process for preparing the same
JPWO1999021914A6 (en) Method for producing high permeability polyolefin microporous membrane
WO1999047182A1 (en) Time release fragrance sachet, method of using same and method of fabricating same
WO2002089955A1 (en) Preparation of microporous films from immiscible blends via melt processing and stretching
US3936394A (en) Polymer adsorbents and method for manufacture thereof
WO2001066625A1 (en) Co-continuous interconnecting channel morphology polymer having controlled gas transmission rate through the polymer
JPS62201642A (en) Carrier for adsorptive substance and its production
JPH0554856B2 (en)
JPS61114701A (en) Flat film type permeable membrane and preparation thereof
EP1963408A1 (en) Microporous film of semicrystalline polymer and method for preparing the same
JP3432264B2 (en) Microporous membrane
JPH06184349A (en) Interconnected porous body and its production
JPH0235918A (en) Polypropylene porous hollow yarn membrane and its manufacture
JP4645792B2 (en) Method for producing porous filter
JPH062841B2 (en) Porous permeable polyethylene film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees