JPH0554611B2 - - Google Patents

Info

Publication number
JPH0554611B2
JPH0554611B2 JP59162812A JP16281284A JPH0554611B2 JP H0554611 B2 JPH0554611 B2 JP H0554611B2 JP 59162812 A JP59162812 A JP 59162812A JP 16281284 A JP16281284 A JP 16281284A JP H0554611 B2 JPH0554611 B2 JP H0554611B2
Authority
JP
Japan
Prior art keywords
gas
measured
tracer
pipe
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59162812A
Other languages
Japanese (ja)
Other versions
JPS6141922A (en
Inventor
Futahiko Nakagawa
Shuichi Taniguchi
Masatoshi Ichinomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16281284A priority Critical patent/JPS6141922A/en
Publication of JPS6141922A publication Critical patent/JPS6141922A/en
Publication of JPH0554611B2 publication Critical patent/JPH0554611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、トレーサガスを用いて配管内を流れ
る気体の流量を測定する場合、配管内のトレーサ
ガスと気体との混合ガスの採集の際における濃度
変動に由来した測定誤差を抑えることを技術内容
とする。 (従来の技術) 従来、配管内を流れる気体の流量を測定する方
法として、六フツ化イオウ(SF6)ガス等の気体
をトレーサガスとして利用するものが知られてい
る。 この方法は、配管内を流れる被測定気体(以下
気体とする)の流量を測定する場合、まず配管の
上流側にトレーサガスをほぼ一定の流量で注入
し、下流側において気体とトレーサガスとの混合
ガスを採集し、その濃度(ル又は体積濃度)を
ECD(Electron Capture Detector)付ガスクロ
マトグラフ等の分析計で測定し、下記(1)式により
気体の流量を求めるものである。 X=Y(Co−C)/C−C′・α ……(1) X :気体の流量 V :トレーサガスの流入流量 C′:気体中に最初から含まれているトレーサガ
スと同一のガスの濃度 Co:注入したトレーサガスの純度(濃度) C :気体とトレーサガスとの混合ガス中のト
レーサガスの濃度測定値 α :単位換算係数 (発明が解決しようとする問題点) 従来、このトレーサガスを用いる流量測定方法
は、配管の長さが十分にある場合にのみ適合して
いた。例えば、製鉄所等のように、ガスの輸送に
大径管を多用する工場においては、配管の長さを
十分に確保できない場合も多く、配管の長さが不
十分なことに由来して、精度の確保が難しいた
め、トレーサガスを用いる測定は不可能と考えら
れていた。また、配管の長さが十分にある場合で
も、トレーサガスの注入後に混合ガスを採集する
下流の位置において、気体とトレーサガスとが満
遍なく混合しているのかの確認は、行つていなか
つた。したがつて、トレーサガスの注入位置と、
混合ガスの採集位置との距離が短い場合には、ト
レーサガスと気体とが十分に混合していない状態
のガスを採集することになり、正確な流量を測定
することはできなかつた。また、トレーサガスの
注入位置と、混合ガスの採集位置とが十分に離れ
ている場合においても、トレーサガスと気体とが
十分に混合しているのかを確認していないため、
得た流量測定値は信頼性を欠いたものであつた。 (問題点を解決するための手段) 本発明は前記問題点を解決するために、被測定
気体配管の上流側にトレーサガスを注入し、下流
側で被測定気体とトレーサガスとの混合ガスを採
集し、この混合ガス中のトレーサガスの濃度によ
り被測定気体の流量を測定するに際し、混合ガス
を、前記被測定気体配管の直径上の複数個所から
同じ流量の下で同時に採集し、採集した混合ガス
の濃度を夫々測定し、各測定値間のばらつきが許
容範囲内に落ち着いた後の測定値を採用し、被測
定気体の流量を求めるようにしたものである。 さらに本発明の測定方法について詳しく説明す
る。 トレーサガスを用いる流量測定方法における混
合ガスの採集について第1図を参照して説明す
る。尚、この混合ガスの採集に先立ち、第2図に
示すように、配管Pを矢印A方向に流れる気体G
の流量を測定するため、上流側でトレーサガスT
を注入してあり、下流側で気体Gとトレーサガス
Tとの混合ガスMGを採集している。 混合ガスMGを採集する位置においては、配管
Pの周壁の一部を開口し、この開口部の外側にサ
ポート部材2を固定して配管Pの密封性を図つて
いる。サポート部材2には、3本の採集管1a,
1b,1cを挿入後、固定してある。これらの採
集管1a,1b,1cを配管Pの直径上の3箇所
に配置し、例えば採集管1aは配管Pの下部を流
れる混合ガスMGを、同様に、採集管1bは配管
Pの中央部、採集管1cは配管Pの上部を流れる
混合ガスMGを採集できる構成としている。ま
た、サポート部材2の上方に開閉用のコツク3
a,3b,3cが設けてあり、これらコツク3
a,3b,3cから混合ガスMGの導管4a,4
b,4cが延びている。また導管4a,4b,4
cには諸装置を接続しているが、接続する諸装置
は同様のものであるため、導管4aの系を例とし
て説明する。導管4aの中間部には、混合ガス
MGの流量をほぼ一定に保つ定流量装置5aを設
けてある。定流量装置5aは、混合ガスMGの採
集に当り、夫々の採集管1a,1b,1cからの
採集を同一条件で行うために設け、混合ガスMG
中のトレーサガスTの濃度の測定精度を高くする
ものである。さらに、6aは三方弁、7aは放散
管であり、三方弁6aの下部には接続具8aを介
してパツク9aが接続している。尚、パツク9a
は、混合ガスMGの成分を維持しておくためのも
のであり、アルミ製のパツク等が適している。 次に、配管P内の気体Gの流量を測定する場合
の手順について説明する。 まず、コツク3a,3b,3cを開き、三方弁
6a,6b,6cを放散管7a,7b,7c側に
解放しておく。また、パツク9a,9b,9c
は、接続具8a,8b,8cにより導管4a,4
b,4cに接続しておく。この状態において、配
管Pの上流側から一定の注入流量でトレーサガス
Tの注入を開始する。次に、トレーサガスTが気
体Gに混合して、配管Pの下流の採集位置付近に
到達したと推定できる時点が経過したならば、三
方弁6a,6b,6cを、夫々同時にパツク9
a,9b,9c側に切換え、混合ガスMGを夫々
のパツク9a,9b,9c内に採集する。所要量
の採集が完了したならば、接続具8a,8b,8
cを導管4a,4b,4cから外す。このように
して採集したパツク9a,9b,9c内の混合ガ
スMGを、ECD付ガスクロマトグラフ等の分析器
により分析を行い、混合ガスMG中のトレーサガ
スTの濃度を測定する。そして、同時に採集した
グループ内での各測定濃度値のばらつきが、トレ
ーサガスの分析を行う分析器の精度の範囲内であ
れば、トレーサガスTが満足な状態で混合してい
ると仮定できそのときの濃度の平均値に基づき、
前記式(1)を用いて気体Gの流量を算出する。ま
た、同時に採集したグループ内における各測定濃
度のばらつきが所定の許容の範囲にない場合に
は、ばらつきが所定範囲に落ち着くまで、混合ガ
スMGの同時採集、濃度分析を繰返し行う。尚、
ばらつきが所定範囲内に落ち着かない場合は、混
合ガスMGの採集位置がトレーサガスTの注入位
置に近過ぎるのが原因であり、(可能ならば)採
集位置をさらに下流側へ移動すればよい。 このようにトレーサガスTの気体Gとの混合を
確認した後に、引き続き気体Gの流量を測定する
場合は、前記の場合と同様に、配管P内の直径上
の複数個所において同時に混合ガスMGを採集
し、採集したグループ内の濃度の平均値を用いれ
ばよい。あるいは、採集管1a,1b,1cのう
ち、最も平均値に近い濃度を検出できた採集管を
選び、この採集管からの混合ガスMGの測定濃度
を代表値として使用しても良い。ただし、代表値
を使用する場合は、数回に1度は夫々の採集管か
らの同時採集を行い、混合状態を確認することが
望ましい。 尚、混合ガスMGは、配管P内における自身の
圧力によつてパツク内へ採集されるが、配管P内
部が負圧であれば、導管の途中に吸引ポンプを設
けてもよい。 (作用) 例えば、被測定気体を空気(高炉送風)、コー
クス炉ガス、高炉ガス、排ガス(焼結)、Mガス
等とした場合、O2,M2等の被測定気体の比重に
近い比重の気体をトレーサガスとして用いると、
短時間、つまり短い距離で混合するため、配管が
短い場合にも測定を行うことができるが、これら
の気体に対する分析器の感度が十分でないため、
多量に注入しなくてはならず、少量で抑えるには
分析感度の高いSF6ガスを使用すればよい。しか
し、SF6ガスは、空気を1としたときの比重が
5.04もあり、SF6ガスの注入位置と混合ガスの採
集位置との距離が短い場合には、比重の小さい被
測定気体との混合を十分に行えないことが予想で
きる。つまり、配管内にSF6ガスが偏在している
ことが考えられる。したがつて、配管の直径上複
数個所において混合ガスの採集を行い、その濃度
を測定すれば、トレーサガスの混合状態を確認で
きる。 (実施例〕 以下、本発明の実施例について説明する。 内径2000mmのコークスガス配管の上流側におい
て、SF6ガスを流量8Nl/minで注入し、注入位
置の100m下流においてコークスガスとSF6ガス
との混合ガスを採集した。配管内の採集位置は、
第1図においてLa,Lb,Lcで示す各採集管端部
と配管内壁面との距離が、夫々La=1800mm、Lb
=1000mm、Lc=200mmとなるように設定した。こ
れら3点において採集した混合ガスをECD付ガ
スクロマトグラフによつて分析した濃度測定値
を、表1に示す。
(Industrial Application Field) When measuring the flow rate of gas flowing in a pipe using a tracer gas, the present invention is capable of measuring the flow rate due to concentration fluctuations during sampling of a mixed gas of the tracer gas and the gas in the pipe. The technical content is to suppress errors. (Prior Art) Conventionally, as a method of measuring the flow rate of gas flowing in a pipe, a method using a gas such as sulfur hexafluoride (SF 6 ) gas as a tracer gas is known. In this method, when measuring the flow rate of the gas to be measured (hereinafter referred to as gas) flowing inside a pipe, tracer gas is first injected at a nearly constant flow rate into the upstream side of the pipe, and then the gas and tracer gas are combined on the downstream side. Collect a mixed gas and find its concentration (le or volume concentration)
It is measured using an analyzer such as a gas chromatograph with an ECD (Electron Capture Detector), and the gas flow rate is determined using equation (1) below. X=Y(Co-C)/C-C'・α...(1) X: Gas flow rate V: Tracer gas inflow flow rate C': The same gas as the tracer gas originally contained in the gas Concentration Co: Purity (concentration) of injected tracer gas C: Measured concentration of tracer gas in a mixed gas of gas and tracer gas α: Unit conversion factor (problem to be solved by the invention) Conventionally, this tracer Flow measurement methods using gas were only suitable if the piping was long enough. For example, in factories such as steel mills that often use large diameter pipes for gas transportation, it is often not possible to ensure sufficient pipe length; Measurements using tracer gas were thought to be impossible because it was difficult to ensure accuracy. Furthermore, even if the piping is long enough, it has not been confirmed whether the gas and tracer gas are evenly mixed at the downstream position where the mixed gas is collected after the tracer gas is injected. Therefore, the tracer gas injection position,
If the distance to the mixed gas sampling position is short, the tracer gas and gas will be sampled in a state where they are not sufficiently mixed, making it impossible to measure the flow rate accurately. Furthermore, even if the tracer gas injection position and the mixed gas collection position are sufficiently far apart, it is not confirmed whether the tracer gas and the gas are sufficiently mixed.
The flow measurements obtained were unreliable. (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention injects a tracer gas into the upstream side of the gas piping to be measured, and injects a mixed gas of the gas to be measured and the tracer gas on the downstream side. When measuring the flow rate of the gas to be measured based on the concentration of the tracer gas in the mixed gas, the mixed gas was simultaneously collected from multiple locations on the diameter of the gas to be measured pipe under the same flow rate. The concentration of each mixed gas is measured, and the measured values are used after the dispersion between the measured values has settled within an allowable range, and the flow rate of the gas to be measured is determined. Furthermore, the measuring method of the present invention will be explained in detail. Collecting a mixed gas in a flow rate measurement method using a tracer gas will be explained with reference to FIG. In addition, prior to collecting this mixed gas, as shown in FIG.
To measure the flow rate of the tracer gas T
is injected, and a mixed gas MG of gas G and tracer gas T is collected on the downstream side. At the position where the mixed gas MG is collected, a part of the peripheral wall of the pipe P is opened, and the support member 2 is fixed outside this opening to ensure the sealing performance of the pipe P. The support member 2 includes three collection tubes 1a,
After inserting 1b and 1c, they are fixed. These collection pipes 1a, 1b, and 1c are arranged at three locations on the diameter of the pipe P. For example, the collection pipe 1a collects the mixed gas MG flowing at the bottom of the pipe P, and similarly, the collection pipe 1b collects the mixed gas MG flowing at the center of the pipe P. , the collection pipe 1c is configured to be able to collect the mixed gas MG flowing above the pipe P. In addition, a pot 3 for opening and closing is provided above the support member 2.
a, 3b, 3c are provided, and these Kotoku 3
Mixed gas MG conduits 4a, 4 from a, 3b, 3c
b, 4c are extending. Also, the conduits 4a, 4b, 4
Various devices are connected to the conduit 4a, but since the devices connected are similar, the system of the conduit 4a will be explained as an example. A mixed gas is placed in the middle part of the conduit 4a.
A constant flow device 5a is provided to keep the flow rate of MG substantially constant. The constant flow device 5a is provided to collect the mixed gas MG from the respective collection pipes 1a, 1b, and 1c under the same conditions.
This improves the accuracy of measuring the concentration of tracer gas T inside. Furthermore, 6a is a three-way valve, 7a is a dissipation pipe, and a pack 9a is connected to the lower part of the three-way valve 6a via a connector 8a. In addition, pack 9a
is for maintaining the components of the mixed gas MG, and an aluminum pack is suitable. Next, a procedure for measuring the flow rate of the gas G in the pipe P will be described. First, the pots 3a, 3b, and 3c are opened, and the three-way valves 6a, 6b, and 6c are opened to the diffusion pipes 7a, 7b, and 7c. Also, packs 9a, 9b, 9c
The conduits 4a, 4 are connected by the connectors 8a, 8b, 8c.
Connect to b and 4c. In this state, injection of the tracer gas T is started from the upstream side of the pipe P at a constant injection flow rate. Next, when the time point has passed when it can be estimated that the tracer gas T has mixed with the gas G and reached the vicinity of the sampling position downstream of the pipe P, the three-way valves 6a, 6b, and 6c are simultaneously turned off to the pack 9.
Switching to the a, 9b, and 9c sides, the mixed gas MG is collected into the respective packs 9a, 9b, and 9c. Once the required amount has been collected, connect the connectors 8a, 8b, 8
c from the conduits 4a, 4b, and 4c. The mixed gas MG in the packs 9a, 9b, and 9c thus collected is analyzed by an analyzer such as a gas chromatograph with an ECD, and the concentration of the tracer gas T in the mixed gas MG is measured. If the dispersion of each measured concentration value within the group collected at the same time is within the accuracy range of the analyzer that analyzes the tracer gas, it can be assumed that the tracer gas T is mixed in a satisfactory state. Based on the average concentration at
The flow rate of gas G is calculated using the above equation (1). Furthermore, if the variation in each measured concentration within a group of simultaneously collected samples is not within a predetermined allowable range, the simultaneous collection of mixed gas MG and concentration analysis are repeated until the variation settles into a predetermined range. still,
If the variation does not settle within a predetermined range, the cause is that the sampling position of the mixed gas MG is too close to the injection position of the tracer gas T, and the sampling position should be moved further downstream (if possible). When measuring the flow rate of gas G after confirming the mixing of tracer gas T with gas G in this way, as in the case above, mix gas MG at multiple points on the diameter of pipe P at the same time. It is sufficient to collect samples and use the average value of the concentration within the sampled group. Alternatively, the collection tube whose concentration is closest to the average value can be detected from among the collection tubes 1a, 1b, and 1c may be selected, and the measured concentration of the mixed gas MG from this collection tube may be used as the representative value. However, when using representative values, it is desirable to simultaneously collect from each collection tube once every few times to check the mixing state. The mixed gas MG is collected into the pack by its own pressure in the pipe P, but if the pressure inside the pipe P is negative, a suction pump may be provided in the middle of the pipe. (Function) For example, when the gas to be measured is air (blast furnace blast), coke oven gas, blast furnace gas, exhaust gas (sintered), M gas, etc., the specific gravity is close to the specific gravity of the gas to be measured such as O 2 or M 2 . When using the gas as a tracer gas,
Due to the short mixing time, i.e. over a short distance, measurements can be taken even with short pipework, but the sensitivity of the analyzer to these gases is not sufficient;
A large amount must be injected, and to keep it in a small amount, SF 6 gas, which has high analytical sensitivity, can be used. However, SF 6 gas has a specific gravity when air is 1.
5.04, and if the distance between the injection position of SF 6 gas and the collection position of the mixed gas is short, it can be expected that sufficient mixing with the gas to be measured, which has a low specific gravity, cannot be achieved. In other words, it is possible that SF 6 gas is unevenly distributed within the pipe. Therefore, by collecting the mixed gas at multiple locations along the diameter of the pipe and measuring its concentration, the mixed state of the tracer gas can be confirmed. (Example) An example of the present invention will be described below. SF 6 gas is injected at a flow rate of 8 Nl/min on the upstream side of a coke gas pipe with an inner diameter of 2000 mm, and coke gas and SF 6 gas are injected 100 m downstream of the injection position. The mixed gas was collected.The sampling location in the pipe was
In Figure 1, the distances between the ends of each collection tube and the inner wall surface of the pipe, shown as La, Lb, and Lc, are respectively La = 1800 mm and Lb.
= 1000mm, Lc = 200mm. Table 1 shows the concentration measurements obtained by analyzing the mixed gas collected at these three points using a gas chromatograph with ECD.

【表】 である。
この実施例の場合、第1表から明らかなよう
に、20分経過後の測定値を用いれば、トレーサガ
ス(SF6ガス)の混合が満足な状態であることが
わかる。したがつて、変動係数が1.0%程度以下
になつた時点から後に採集した混合ガスの濃度測
定値を用いて、上記(1)式等によつて配管内気体の
流量を求めればよい。尚、気体流量の精度を低く
してもよい場合には、変動係数の許容値を大きく
しても差支えないものである。 前記実施例のように、気体配管中にオリフイス
板を設けていない場合は、予め実験により混合ガ
スの分布状態の変動係数と、オリフイス流動計等
による実測の流量測定値との関係を求めておく
か、又は混合ガス中のトレーサガス濃度のばらつ
きの許容値を設定しておく必要がある。 (発明の効果) 以上説明したように本発明によれば、配管の直
径上の複数個所から同時に混合ガスを採集し、採
集した混合ガスの夫々の濃度の間に生じるばらつ
きを確認するようにしたため、被測定気体に対す
るトレーサガスの混合状態を正確に把握すること
ができる。したがつて、濃度測定値の精度が高く
なり、気体流量を正確に測定することができる。
[Table]
In the case of this example, as is clear from Table 1, if the measured value after 20 minutes is used, it can be seen that the mixing of the tracer gas (SF 6 gas) is in a satisfactory state. Therefore, the flow rate of the gas in the pipe may be calculated using the above equation (1) or the like using the measured concentration of the mixed gas collected after the coefficient of variation becomes about 1.0% or less. Note that if the accuracy of the gas flow rate can be lowered, the permissible value of the coefficient of variation may be increased. If an orifice plate is not provided in the gas piping as in the above example, the relationship between the coefficient of variation of the distribution state of the mixed gas and the actual flow rate measurement value using an orifice rheometer, etc. is determined in advance through experiments. Alternatively, it is necessary to set an allowable value for variation in tracer gas concentration in the mixed gas. (Effects of the Invention) As explained above, according to the present invention, mixed gas is simultaneously collected from multiple locations on the diameter of the pipe, and variations occurring between the concentrations of the collected mixed gases are checked. , it is possible to accurately grasp the mixing state of the tracer gas with the gas to be measured. Therefore, the accuracy of the concentration measurement value is increased, and the gas flow rate can be accurately measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による混合ガス採集方法を示す
説明図、第2図はトレーサガスを用いる配管内気
体流量の測定方法の原理を示す説明図である。 G…被測定気体、T…トレーサガス、MG…混
合ガス、P…配管。
FIG. 1 is an explanatory diagram showing a method for collecting a mixed gas according to the present invention, and FIG. 2 is an explanatory diagram showing the principle of a method for measuring a gas flow rate in a pipe using a tracer gas. G...Measurement gas, T...Tracer gas, MG...Mixed gas, P...Piping.

Claims (1)

【特許請求の範囲】 1 被測定気体配管の上流側にトレーサガスを注
入し、下流側で被測定気体とトレーサガスとの混
合ガスを採集し、この混合ガス中のトレーサガス
の濃度により被測定気体の流量を測定するに際
し、 前記混合ガスを、前記被測定気体配管の直径上
の複数個所から同じ流量の下で同時に採集し、採
集した混合ガスの濃度を夫々測定し、各測定値間
のばらつきが許容範囲内に落ち着いた後の測定値
を採用して被測定気体の流量を求めることを特徴
とするトレーサガスを用いる配管内気体流量の測
定方法。
[Scope of Claims] 1. A tracer gas is injected into the upstream side of a piping for the gas to be measured, a mixed gas of the gas to be measured and the tracer gas is collected on the downstream side, and the concentration of the tracer gas in this mixed gas is used to determine the concentration of the gas to be measured. When measuring the gas flow rate, the mixed gas is simultaneously collected from multiple locations on the diameter of the gas pipe to be measured at the same flow rate, the concentration of the collected mixed gas is measured, and the difference between each measurement value is A method for measuring a gas flow rate in a pipe using a tracer gas, characterized in that the flow rate of the gas to be measured is determined by using the measured value after the variation has settled within an allowable range.
JP16281284A 1984-08-03 1984-08-03 Measuring method of gas flow rate in piping using tracer gas Granted JPS6141922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16281284A JPS6141922A (en) 1984-08-03 1984-08-03 Measuring method of gas flow rate in piping using tracer gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16281284A JPS6141922A (en) 1984-08-03 1984-08-03 Measuring method of gas flow rate in piping using tracer gas

Publications (2)

Publication Number Publication Date
JPS6141922A JPS6141922A (en) 1986-02-28
JPH0554611B2 true JPH0554611B2 (en) 1993-08-13

Family

ID=15761688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16281284A Granted JPS6141922A (en) 1984-08-03 1984-08-03 Measuring method of gas flow rate in piping using tracer gas

Country Status (1)

Country Link
JP (1) JPS6141922A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272301A (en) * 1992-03-26 1993-10-19 Ngk Insulators Ltd Turbine rotor and turbine rotor machining method
CN111397840A (en) * 2020-04-17 2020-07-10 朗思科技有限公司 Indoor ventilation frequency rapid detection device based on sulfur hexafluoride tracer gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764111A (en) * 1980-10-07 1982-04-19 Nippon Steel Corp Method for measuring distribution of gaseous flow in blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764111A (en) * 1980-10-07 1982-04-19 Nippon Steel Corp Method for measuring distribution of gaseous flow in blast furnace

Also Published As

Publication number Publication date
JPS6141922A (en) 1986-02-28

Similar Documents

Publication Publication Date Title
CN110308216B (en) Integrated analysis system for trace permanent impurity gas and water in gas and use method thereof
US7340940B2 (en) Particulate deposit avoidance and probe positioning
US8342003B2 (en) Systems and methods for measurement and analysis of pipeline contaminants
JPS62204141A (en) Measuring device for gas dissolved into water
CN105158356A (en) Method for separating helium and hydrogen in oil chromatography of converter transformer
GB2119088A (en) An apparatus for measuring or controlling the separation ratio of a gas
JPH0554611B2 (en)
CN213903428U (en) Non-methane total hydrocarbon analysis device
RU2679912C1 (en) Method for quantitative analysis of a multi-component gas mixture in a technological flow
CN212586315U (en) Carbon isotope separation and enrichment device for hydrocarbon gas components in natural gas
CN209570569U (en) Chemical liquid On-line Product detection device
CN201653847U (en) Oxygen permeability tester for cornea repair material
CN113740552A (en) Sampling system with gas distribution function
CN211627469U (en) Carbon-hydrogen nitrogen element analysis system based on chromatographic separation
JP4455227B2 (en) Method for measuring gas isotope abundance ratio and system therefor
JPS6015543A (en) Efficiency measuring apparatus for filter
JP4300350B2 (en) Exhaust gas measuring device and exhaust gas measuring method
JPS6142212B2 (en)
US3998102A (en) Support system for a gas sampler
CN215953498U (en) Sulphide diluting device
JPS5895537A (en) Method for switching operation of adsorbing tower
US5109714A (en) Method and means for dynamic measurement of rates of adsorption from solutions
EP4317965A1 (en) Assembly and method for supplying a gas stream
Dorsey et al. A Source Sampling Technique for Particulale and Gaseous Fluorides
RU2730954C1 (en) Method of measuring mass concentrations of niobium and tantalum in air of working zone by mass spectrometry with inductively coupled plasma

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term