JPH0554020B2 - - Google Patents

Info

Publication number
JPH0554020B2
JPH0554020B2 JP59134935A JP13493584A JPH0554020B2 JP H0554020 B2 JPH0554020 B2 JP H0554020B2 JP 59134935 A JP59134935 A JP 59134935A JP 13493584 A JP13493584 A JP 13493584A JP H0554020 B2 JPH0554020 B2 JP H0554020B2
Authority
JP
Japan
Prior art keywords
refrigeration cycle
capacity
air conditioner
natural circulation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59134935A
Other languages
Japanese (ja)
Other versions
JPS6115033A (en
Inventor
Masahiro Yoshida
Koichiro Tamakoshi
Yasuo Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP59134935A priority Critical patent/JPS6115033A/en
Publication of JPS6115033A publication Critical patent/JPS6115033A/en
Publication of JPH0554020B2 publication Critical patent/JPH0554020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は空気調和装置、詳しくは、冷房対象域
に設けた第1蒸発器と、これより高所に設けた第
1凝縮器とを接続して成る自然循環式冷凍サイク
ルと、前記第1蒸発器に並設する第2蒸発器、前
記第1凝縮器に並設する第2蒸縮器、減圧手段及
び圧縮機とから成る圧縮冷凍サイクルとを備える
空気調和装置に関する。 (従来技術) この種空気調和装置は実公昭57−54527号公報
(実開昭55−67966号公報)にも記載されているよ
うに、電算機室等のように年間を通じて冷房負荷
がある区域を空気調和するのに、動力消費の節約
の目的で従来から使用されている。 このものを第7図に基づいて概略説明すると、
室内ユニツトAに設ける第1蒸発器60と、前記
室内ユニツトAより高所に配設する室外ユニツト
Bに内装する第1凝縮器61とを接続して成る自
然循環式冷凍サイクルNと、前記第1蒸発器60
に並設して設ける第2蒸発器62、前記第1凝縮
器61に並設して設ける第2凝縮器63、圧縮機
64、減圧手段65とからなる圧縮冷凍サイクル
Cとを設け、冷房負荷の大きさにより、低負荷時
には前記自然循環式冷凍サイクルのみの単独運転
を、また、高負荷時には前記両冷凍サイクルの併
用運転を行うごとくなしていたのである。 尚、66,67はそれぞれフアン、68は開閉
弁である。 (本発明が解決しようとする問題点) ところが、上記従来のものは、自然循環式冷凍
サイクル及び圧縮冷凍サイクルの何れも能力低減
手段をもたず、負荷の高低変化に対して、自然循
環式冷凍サイクルの単独運転か、若しくは、該自
然循環式冷凍サイクルと前記圧縮冷凍サイクルと
の併用運転かの2様の運転パターンの何れかしか
選択できなかつた。このため、空気調和装置の起
動時に、冷房負荷に適合した空気調和装置の運転
ができない不具合があり、また、空気調和装置の
通常運転時に、空気調和装置の全能力と前記冷房
負荷との間に大きなアンバランスが生じ易く、こ
の結果、冷房対象域の温度調節、とりわけ前記室
内ユニツトAから吹きだす吹出空気温度の制御が
きめこまかく行えない不具合があつた。 (問題点を解決するための手段) しかして、本発明は、冷房対象域に設けた第1
蒸発器2,3と、これより高所に設けた第1凝縮
器5とを接続して成る自然循環式冷凍サイクルN
と、前記第1蒸発器2,3に並設する第2蒸発器
11,11、前記第1凝縮器5に並設する第2凝
縮器12,12、減圧手段13,13及び圧縮機
9,9とから成る圧縮冷凍サイクルCとを備える
空気調和装置において、前記自然循環式冷凍サイ
クルN及び圧縮冷凍サイクルCにそれぞれ能力低
減手段を設ける一方、前記第1、第2蒸発器2,
3,11,11を流通する空気温度を検出する検
出手段18と、この空気温度を設定する設定手段
22とを設け、前記検出手段18で検出した検出
温度tから前記設定手段22で設定した設定温度
t0を差し引いた温度差△tに基づいて空気調和装
置の運転を制御する制御手段21を設けるととも
に、該制御手段21は、空気調和装置の起動時に
は、前記温度差△tが零を含む所定範囲内、又は
所定範囲超過、或いは所定範囲未満の何れである
かにより、自然循環式冷凍サイクルNが全能力で
かつ圧縮冷凍サイクルCが第1部分能力で、又は
自然循環式冷凍サイクルNが全能力でかつ圧縮冷
凍サイクルCが第1部分能力よりも高能力の第2
部分能力で、或いは自然循環式冷凍サイクルNが
全能力でかつ圧縮冷凍サイクルCが零能力で空気
調和装置を運転し、さらに空気調和装置の通常運
転時には、一定時間毎に前記温度差△tに基づい
て、空気調和装置の能力を一段増加又は維持或い
は一段低減し、かつこの低減時に圧縮冷凍サイク
ルCの能力低減を自然循環式冷凍サイクルNの能
力低減に対して優先するものとしたのである。 (作用) 本発明は、以上のごとく成したから、空気調和
装置の起動時には、温度差△tが大きいときでも
空気調和装置を全能力でなく、部分能力で運転し
て、たとえば冷房対象域に設置されている電子計
算機の露付きを防止し、温度差△tがマイナスの
ときでも、自然循環式冷凍サイクルNのみを運転
して、自然循環式冷凍サイクルNの起動時の立上
りの緩慢さの影響を少なくでき、また、空気調和
装置の通常運転時には、負荷に応じて自然循環式
冷凍サイクルNと圧縮冷凍サイクルCとの能力を
それぞれ調節することにより、空気調和装置の全
能力を冷房負荷に応じきめこまかく調整でき、従
つて、冷房対象域の室内温度の安定した制御がで
き、しかも、空気調和装置の能力低減時に、自然
循環式冷凍サイクルNの能力低減より圧縮冷凍サ
イクルCの能力低減が優先されるので、動力消費
も小さく抑えられるのである。 (実施例) 以下、本発明の実施例を図面に基づいて説明す
る。 第1、第5図に示したものは、自然循環式冷凍
サイクルNと2系統から成る圧縮冷凍サイクルC
とを備えた空気調和装置で、年間を通じて冷房を
行う電子計算機室を冷房対象域Eとしたものであ
る。 前記自然循環式冷凍サイクルNは、室内ユニツ
ト1に配設される2個の第1蒸発器(以下、1A
蒸発器、1B蒸発器という)2,3と、前記室内
ユニツト1より高所に配設される室外ユニツト4
に配設される第1凝縮器5とからなるものであ
る。詳しくは、前記1A,1B蒸発器2,3を並列
に接続し、この並列回路と前記第1凝縮器5とを
直列に接続して冷媒回路を形成し、更に、前記各
蒸発器2,3の冷媒流入側にそれぞれ電磁開閉弁
(以下、A開閉弁、B開閉弁という)6,7を介
装している。尚、8は受液器である。 かくして、前記A,B開閉弁6,7を開放する
ことにより、前記回路内に封入された冷媒が前記
各蒸発器2,3で吸熱して蒸発し、この冷媒蒸気
が比重の関係で上方に移動し、前記第1凝縮器5
で放熱して凝縮し、自重で前記受液器8を介して
再び前記蒸発器2,3へと順次還流して循環する
のである。また、前記開閉弁6,7の一方、例え
ばA開閉弁6を閉鎖することによつて、前記1A
蒸発器6の作用を停止させて前記自然循環式冷凍
サイクルNの能力をおよそ半減できるようにして
いる。即ち、前記開閉弁6,7により前記冷凍サ
イクルNの能力を低減する能力低減手段を構成し
ているのである。 一方、前記圧縮冷凍サイクルCは全く同じ一対
の圧縮冷凍サイクルC1,C2からなるものであ
つて、各圧縮冷凍サイクルC1,C2は、それぞ
れ容量制御機構(図示せず)をもつ圧縮機9と再
熱器10とを備えたものである。(以下、C1に
ついてのみ説明する。)詳しくは、前記1A,1B
蒸発器2,3の風下側にそれぞれ並設する第2蒸
発器11と、前記第1凝縮器5の風下側に並設す
る第2凝縮器12と、前記圧縮機9と、膨張弁か
ら成る減圧手段13とを順次接続して主回路を形
成すると共に、前記圧縮機9の吐出側と前記減圧
手段13の出口側との間に、電磁開閉弁15、前
記再熱器10、キヤピラリーチユーブ14を順次
介装する再熱回路を設けている。 また、前記圧縮機9は2気筒のレシプロ形圧縮
機で、前記2気筒のうち1気筒を前記容量制御機
構によつてアンロードすることにより、100%運
転と50%運転とが行えるようにしている。前記容
量制御機構は前記圧縮機9の吐出圧と吸入圧とを
3方弁20を介して選択的に作用させることによ
つて、ロード、アンロードの切り換えが行えるよ
うにしている。 また、前記再熱器10は前記開閉弁15を開に
することにより作用し、圧縮冷凍サイクルC1の
能力を低下できるようにしている。なお、第1図
中、16はアキユムレータ、17は受液器であ
る。 しかして、前記冷凍サイクルC1,C2からな
る前記圧縮冷凍サイクルCは、各冷凍サイクルC
1,C2における前記圧縮機9の発停、容量制御
機構及び再熱器10の作用、停止の組み合わせに
より、能力を第1表に記載するごとく6段階の低
減ができ合計7段階に制御することができるよう
にしている。
(Industrial Application Field) The present invention relates to an air conditioner, and more specifically, a natural circulation type refrigeration system comprising a first evaporator installed in an area to be cooled and a first condenser installed higher than the first evaporator. and a compression refrigeration cycle comprising a second evaporator installed in parallel with the first evaporator, a second evaporator installed in parallel with the first condenser, a pressure reducing means, and a compressor. . (Prior art) As described in Japanese Utility Model Publication No. 57-54527 (Japanese Utility Model Publication No. 55-67966), this type of air conditioner is used in areas where there is a cooling load throughout the year, such as computer rooms. It has been traditionally used for air conditioning to save power consumption. This will be briefly explained based on Fig. 7.
A natural circulation refrigeration cycle N is formed by connecting a first evaporator 60 installed in the indoor unit A and a first condenser 61 installed in the outdoor unit B installed higher than the indoor unit A; 1 evaporator 60
A compression refrigeration cycle C consisting of a second evaporator 62 provided in parallel with the first condenser 61, a second condenser 63 provided in parallel with the first condenser 61, a compressor 64, and a pressure reducing means 65 is provided. Due to the size of the refrigeration system, only the natural circulation refrigeration cycle was operated independently during low loads, and both refrigeration cycles were operated together during high loads. Note that 66 and 67 are fans, respectively, and 68 is an on-off valve. (Problems to be Solved by the Present Invention) However, in the above-mentioned conventional refrigeration cycle, neither the natural circulation type refrigeration cycle nor the compression refrigeration cycle has a capacity reduction means, and the natural circulation type Only one of two operation patterns could be selected: independent operation of the refrigeration cycle or combined operation of the natural circulation refrigeration cycle and the compression refrigeration cycle. For this reason, when the air conditioner is started, there is a problem that the air conditioner cannot be operated in accordance with the cooling load, and when the air conditioner is in normal operation, there is a gap between the full capacity of the air conditioner and the cooling load. A large imbalance tends to occur, and as a result, there is a problem in that the temperature of the area to be cooled, especially the temperature of the air blown out from the indoor unit A, cannot be precisely controlled. (Means for Solving the Problems) Therefore, the present invention provides a first
A natural circulation refrigeration cycle N consisting of evaporators 2 and 3 and a first condenser 5 installed at a higher location than the evaporators 2 and 3.
and second evaporators 11, 11 installed in parallel with the first evaporators 2, 3, second condensers 12, 12 installed in parallel with the first condenser 5, pressure reducing means 13, 13, and a compressor 9, 9, the natural circulation type refrigeration cycle N and the compression refrigeration cycle C are each provided with capacity reducing means, and the first and second evaporators 2,
3, 11, and 11, and a setting means 22 for setting this air temperature, and the setting set by the setting means 22 from the detected temperature t detected by the detection means 18. temperature
A control means 21 is provided for controlling the operation of the air conditioner based on the temperature difference Δt obtained by subtracting t0 , and the control means 21 controls the temperature difference Δt to be a predetermined value including zero when starting the air conditioner. Depending on whether it is within the range, exceeds the predetermined range, or is below the predetermined range, the natural circulation refrigeration cycle N is at full capacity and the compression refrigeration cycle C is at the first partial capacity, or the natural circulation refrigeration cycle N is at full capacity. capacity and the compression refrigeration cycle C has a higher capacity than the first partial capacity.
The air conditioner is operated at partial capacity, or the natural circulation refrigeration cycle N is at full capacity and the compression refrigeration cycle C is at zero capacity, and furthermore, during normal operation of the air conditioner, the temperature difference Δt is adjusted at regular intervals. Based on this, the capacity of the air conditioner is increased, maintained, or reduced by one level, and at the time of this reduction, the reduction in the capacity of the compression refrigeration cycle C is given priority over the reduction in the capacity of the natural circulation refrigeration cycle N. (Function) Since the present invention has been achieved as described above, when starting the air conditioner, even when the temperature difference Δt is large, the air conditioner is operated not at full capacity but at partial capacity, for example in the area to be cooled. This prevents dew build-up on the installed computer, and even when the temperature difference △t is negative, only the natural circulation refrigeration cycle N is operated to reduce the slow start-up of the natural circulation refrigeration cycle N. In addition, during normal operation of the air conditioner, by adjusting the capacity of the natural circulation refrigeration cycle N and the compression refrigeration cycle C according to the load, the full capacity of the air conditioner can be used to meet the cooling load. It can be finely adjusted depending on the situation, and therefore stable control of the indoor temperature in the area to be cooled is possible.Moreover, when the capacity of the air conditioner is reduced, the capacity reduction of the compression refrigeration cycle C is prioritized over the capacity reduction of the natural circulation refrigeration cycle N. As a result, power consumption can also be kept low. (Example) Hereinafter, an example of the present invention will be described based on the drawings. The ones shown in Figures 1 and 5 are a natural circulation refrigeration cycle N and a compression refrigeration cycle C consisting of two systems.
The cooling target area E is an air conditioner equipped with a computer room that is cooled throughout the year. The natural circulation refrigeration cycle N includes two first evaporators (hereinafter referred to as 1A) disposed in the indoor unit 1.
(1B evaporator) 2, 3, and an outdoor unit 4 located at a higher location than the indoor unit 1.
The first condenser 5 is disposed in the first condenser 5. Specifically, the 1A and 1B evaporators 2 and 3 are connected in parallel, this parallel circuit and the first condenser 5 are connected in series to form a refrigerant circuit, and each of the evaporators 2 and 3 is connected in series. Electromagnetic on-off valves (hereinafter referred to as A on-off valve and B on-off valve) 6 and 7 are interposed on the refrigerant inflow side of the refrigerant, respectively. Note that 8 is a liquid receiver. Thus, by opening the A and B on-off valves 6 and 7, the refrigerant sealed in the circuit absorbs heat and evaporates in each of the evaporators 2 and 3, and this refrigerant vapor flows upward due to its specific gravity. move the first condenser 5
It radiates heat and condenses, and then returns to the evaporators 2 and 3 through the liquid receiver 8 under its own weight and is circulated. Further, by closing one of the on-off valves 6 and 7, for example, the A on-off valve 6, the 1A
By stopping the operation of the evaporator 6, the capacity of the natural circulation type refrigeration cycle N can be approximately halved. That is, the opening/closing valves 6 and 7 constitute a capacity reducing means for reducing the capacity of the refrigeration cycle N. On the other hand, the compression refrigeration cycle C consists of a pair of identical compression refrigeration cycles C1 and C2, and each compression refrigeration cycle C1 and C2 has a compressor 9 and a recycler, respectively, each having a capacity control mechanism (not shown). It is equipped with a heating device 10. (Hereinafter, only C1 will be explained.) For details, see 1A and 1B above.
Consisting of a second evaporator 11 arranged in parallel on the leeward side of the evaporators 2 and 3, a second condenser 12 arranged in parallel on the leeward side of the first condenser 5, the compressor 9, and an expansion valve. A main circuit is formed by sequentially connecting the pressure reducing means 13 and an electromagnetic on-off valve 15, the reheater 10, and a capillary reach tube between the discharge side of the compressor 9 and the outlet side of the pressure reducing means 13. A reheat circuit is provided in which 14 are sequentially inserted. Further, the compressor 9 is a two-cylinder reciprocating compressor, and by unloading one of the two cylinders by the capacity control mechanism, 100% operation and 50% operation can be performed. There is. The capacity control mechanism selectively applies the discharge pressure and suction pressure of the compressor 9 via the three-way valve 20, thereby switching between loading and unloading. Further, the reheater 10 operates by opening the on-off valve 15, so that the capacity of the compression refrigeration cycle C1 can be reduced. In addition, in FIG. 1, 16 is an accumulator and 17 is a liquid receiver. Therefore, the compression refrigeration cycle C consisting of the refrigeration cycles C1 and C2 is different from each refrigeration cycle C.
1. By combining the starting and stopping of the compressor 9 in C2, the operation and stopping of the capacity control mechanism and the reheater 10, the capacity can be reduced in six stages as shown in Table 1, and the capacity can be controlled in a total of seven stages. We are making it possible to do so.

【表】 尚、表中、圧縮機の項における◎印は100%運
転を、○印は50%運転を、●印は停止を示してい
る。また、再熱器の項において☆印は作用時を、
★印は停止時を示している。 以上のごとく、前記圧縮冷凍サイクルCにおい
ては、後記する前記圧縮機9のモータの駆動制御
用の開閉器、前記容量制御機構と3方弁20、及
び、再熱回路により能力低減手段を構成している
のである。 また、第1,5図中で、19は室内フアン、2
5は室外フアン、18は前記室内フアン19の吹
出空気温度を検出するサーミスターからなる検出
手段、26は前記室内フアン19の吹出空気を前
記冷房対象域に送るダクトである。 以上のごとく、上記空気調和装置はそれぞれ能
力低減手段をもつ自然循環式冷凍サイクルと圧縮
冷凍サイクルとから成つており、前記各能力低減
手段を組合わせて制御することにより、第2表に
示すごとく9通りの能力制御が行えるごとく成し
ている。
[Table] In the table, in the compressor section, ◎ indicates 100% operation, ○ indicates 50% operation, and ● indicates stop. Also, in the reheater section, the ☆ mark indicates the operating time.
The mark ★ indicates the time of stop. As described above, in the compression refrigeration cycle C, the capacity reduction means is constituted by the switch for controlling the drive of the motor of the compressor 9, the capacity control mechanism and the three-way valve 20, and the reheat circuit, which will be described later. -ing In addition, in Figures 1 and 5, 19 is an indoor fan, 2
5 is an outdoor fan; 18 is a detection means consisting of a thermistor for detecting the temperature of the air blown from the indoor fan 19; and 26 is a duct that sends the air blown from the indoor fan 19 to the area to be cooled. As mentioned above, the air conditioner is composed of a natural circulation refrigeration cycle and a compression refrigeration cycle, each of which has a capacity reduction means, and by controlling the capacity reduction means in combination, as shown in Table 2. It is designed so that it can be controlled in nine ways.

【表】 尚、蒸発器の項における□印は蒸発器の作用時
を、■印は停止時をそれぞれ示している。 次に、前記空気調和装置の運転制御を行う制御
系について第2図に基づいて説明する。 前記運転制御はマイクロコンピユータから成る
制御手段21を用いて行うものであつて、該制御
手段21の入力側に前記吹出空気温度を検出する
前記検出手段18と、前記吹出空気温度を設定す
る設定手段22とを接続している。また、23は
運転スイツチである。尚、該設定手段22は可変
抵抗器などから成るものである。 また、前記制御手段21の出力側には、前記
1A,1B蒸発器2,3を制御する前記A,B開閉
弁6,7と、前記各圧縮機9,9の容量制御機構
を操作する前記各3方弁20,20と、前記各再
熱器10を制御する前記各開閉弁15,15と、
前記圧縮機9,9のモータM,Mを発停制御する
各開閉器24,24とを接続している。尚、図示
していないが、前記制御手段21の出力側には室
内、室外フアン19,25のモータを発停制御す
る開閉器も接続している。 以下、前記空気調和装置の運転制御について説
明する(冷房運転)。 この運転制御は前記制御手段21に予め組込ま
れたプログラムに基づき行うもので、前記吹出空
気の検出温度tから設定温度t0を差し引いた温度
差(△t=t−t0)に基づいて前記した能力の段
階を一段増加させたり、一段低減させたりして前
記吹出空気温度を前記設定温度t0に制御するごと
くなしている。 まず、前記制御の基準となる前記温度差△tの
領域区分を第4図に基づいて説明する。 領域は下記する5段階に区分している。 領域a……△t≦−2.5℃ 領域b……−2.5℃<△t≦−1.0℃ 領域c……|△t|<1.0℃ 領域d……1.0℃≦△t<2.5℃ 領域e……2.5℃≦△t 以下、運転制御を第3図のフローチヤートに基
づいて説明する。 イ 起動時 運転スイツチ23を閉成すると、まず前記室内
フアン19、室外フアン25が駆動する。さら
に、第3図には図示していないが、前記温度差△
tに応じて前記制御手段21が能力段階を第2表
に示す第2段、第4段、第5段の何れかから起動
させる。 即ち、空気調和装置の起動は通常冷房対象域E
にある電子計算機の起動に合わせて行なうもので
あるが、この起動時には前記電子計算機の発熱量
が少ないので、あまり冷たい風を送ると電子計算
機の露付きの問題を生じるのであり、そこで、起
動時の温度差△tが2.5℃以上の大きな領域eに
あつても、能力をあまり高い段階とせず、前記し
た第5段から始める如くなしているのである。ま
た、前記温度差△tがマイナス2.5℃以下のa、
即ち負荷がない場合でも、前記自然循環式冷凍サ
イクルNの起動時の立上りの緩慢さを考慮して、
予め前記冷凍サイクルNを定常運転状態までもつ
ていくべく、第2段から始動するようにしてい
る。更に、温度差△tが零を含むマイナス2.5℃
からプラス2.5℃の領域b,c,d内である場合
は第4段から始動するようにしているのである。 ロ 通常運転時 前記制御手段21により一定時間毎、たとえば
3分毎に前記検出温度tと前記設定温度t0とを比
較して、前記温度差△tに応じて能力段階を制御
するのである。具体的には、 前記比較時点における前記温度差△tが前記
設定温度t0を含む領域(c、ホールド領域)に
属する場合には、この時点における前記空気調
和装置の能力段階を維持するごとくなすのであ
る。 同じく前記温度差△tが領域b,aに属する
場合には、前記能力段階を一段低減して前記吹
出空気温度を前記設定温度t0に近づけるごとく
なすのである。 同じく前記温度差△tが領域d,eに属する
場合には、前記能力段階を一段増加して前記吹
出空気温度を前記設定温度t0に近づけるごとく
なすのである。 以上のごとく、前記温度差△tに基づく能力段
階の調節が行われると、下記する場合を除き、3
分後の次の比較時点までその能力段階を保持し、
3分の経過と同時に再び前記温度差△tに基づき
能力段階の調節を行うのである。 しかして、前記比較時間間隔の3分間の間に前
記温度差△tが領域aに突入した場合は、その時
点で能力段階を一段低減するのであり、逆に前記
温度差△tが領域eに突入した場合には、同じく
その時点で能力段階を一段増加するのであり、ま
た、前記温度差△tが領域b,c,dにある場合
は前記したごとく能力段階を保持するのである。 ハ 再起動時 冷房負荷の減少により、能力段階が第2表に示
す第0段まで低下し、自然循環式冷凍サイクル
N、圧縮冷凍サイクルCの両方が停止し、その後
に負荷の上昇により空気調和装置を再起動させる
場合は、自動循環式冷凍サイクルNの能力の立ち
上がりの緩慢さを考慮して、一方の圧縮冷凍サイ
クルC1の運転を含む前記能力段階の第3段から
再起動させるのである。 (第3図には図示せず) 以上のごとく、自然循環式冷凍サイクルNの能
力を2段階に調節可能とすると共に、前記圧縮冷
凍サイクルCの能力を7段階に調節可能とし、か
つ、これらの能力制御を第2表に示したごとく
種々に組合わせて9段階行うようにしたから、空
気調和装置の起動時には、温度差△tが大きいと
きでも空気調和装置を部分能力で運転して、冷房
対象域に設置されている電子計算機等の露付きを
防止し、温度差△tがマイナスのときでも、自然
循環式冷凍サイクルNのみを運転して、自然循環
式冷凍サイクルNの起動時の立上りの緩慢さの影
響を少なくし、また、空気調和装置の通常運転時
には、冷房対象域の冷房負荷に応じて前記空気調
和装置の能力をきめこまかく調節できるのであ
り、この結果、前記吹出空気温度の制御をより精
密に行え、従つて、冷房対象域の温度制御も安定
して行えるのである。その上、冷房負荷の低下時
には、能力段階第9〜第3段迄の間、及びこの第
3段とそれ以下の第2〜第1段との間のように、
前記圧縮冷凍サイクルCの能力を前記自然循環式
冷凍サイクルNの能力に対して常に優先させて低
減させるようにしたから、前記したごとく吹出空
気温度のきめこまかな制御が行えながら、しか
も、動力消費も少なく抑えられるのである。 また、本実施例においては、前記圧縮冷凍サイ
クルCの能力低減においても、前記能力段階第7
段から第6段、及び第4段から3段への移行時の
ように、前記再熱器10の作用による能力低減よ
り前記圧縮機9,9の容量制御による能力低減を
優先させて、より動力消費が少なくなるようにし
ている。 また、前記運転制御回路において第6図に示す
ように、サーミスターから成る前記検出手段18
と前記設定手段22とを接続する多段サーモスタ
ツト30を設け、該サーモスタツト30を4本の
信号線40,41,42,43を介して前記制御
手段21における中央演算処理装置(CPU)の
入力側に接続するようにしてもよい。この場合の
前記温度差△tの領域と前記各信号線の出力する
信号の組合わせとはそれぞれ第3表に示す通りで
ある。
[Table] In the evaporator section, the □ mark indicates when the evaporator is in operation, and the ■ mark indicates when it is stopped. Next, a control system for controlling the operation of the air conditioner will be explained based on FIG. 2. The operation control is performed by using a control means 21 consisting of a microcomputer, and the control means 21 has the detection means 18 for detecting the temperature of the blown air and the setting means for setting the temperature of the blown air on the input side of the control means 21. 22 is connected. Further, 23 is an operation switch. Incidentally, the setting means 22 is composed of a variable resistor or the like. Further, on the output side of the control means 21, the
The A and B on-off valves 6 and 7 that control the 1A and 1B evaporators 2 and 3, the three-way valves 20 and 20 that operate the capacity control mechanisms of the compressors 9 and 9, and the reheating each of the on-off valves 15, 15 for controlling the device 10;
It is connected to respective switches 24, 24 which control on/off of the motors M, M of the compressors 9, 9. Although not shown, a switch for controlling the start and stop of the motors of the indoor and outdoor fans 19 and 25 is also connected to the output side of the control means 21. Hereinafter, the operation control of the air conditioner will be explained (cooling operation). This operation control is performed based on a program pre-installed in the control means 21, and is based on the temperature difference (Δt=t- t0 ) obtained by subtracting the set temperature t0 from the detected temperature t of the blown air. The temperature of the blown air is controlled to the set temperature t 0 by increasing or decreasing the capacity level by one step. First, the area classification of the temperature difference Δt, which serves as the reference for the control, will be explained based on FIG. 4. The area is divided into the following five stages. Area a...△t≦-2.5℃ Area b...-2.5℃<△t≦-1.0℃ Area c...|△t|<1.0℃ Area d...1.0℃≦△t<2.5℃ Area e... ...2.5°C≦△t The operation control will be explained below based on the flowchart of FIG. 3. B. At startup When the operation switch 23 is closed, the indoor fan 19 and outdoor fan 25 are first driven. Furthermore, although not shown in FIG. 3, the temperature difference △
In response to t, the control means 21 activates the performance stage from one of the second stage, fourth stage, and fifth stage shown in Table 2. In other words, the air conditioner is normally started in the cooling target area E.
This is done in conjunction with the startup of a computer, but since the amount of heat generated by the computer is low at this time, blowing too much cold air will cause problems with condensation on the computer. Even if the temperature difference Δt is in the large region e of 2.5° C. or more, the performance is not set to a very high stage, but starts from the fifth stage described above. In addition, a where the temperature difference Δt is −2.5°C or less,
That is, even when there is no load, taking into account the slow start-up of the natural circulation refrigeration cycle N,
In order to bring the refrigeration cycle N to a steady operating state in advance, the second stage is started. Furthermore, the temperature difference △t is -2.5℃ including zero.
If the temperature is within ranges b, c, and d of +2.5°C, the engine is started from the fourth stage. (b) During normal operation The control means 21 compares the detected temperature t and the set temperature t 0 at regular intervals, for example, every 3 minutes, and controls the performance level according to the temperature difference Δt. Specifically, if the temperature difference Δt at the comparison point belongs to a region (c, hold region) including the set temperature t 0 , the air conditioner is maintained at its capacity level at this point. It is. Similarly, when the temperature difference Δt belongs to regions b and a, the capacity step is reduced one step to bring the blown air temperature closer to the set temperature t 0 . Similarly, when the temperature difference Δt belongs to regions d and e, the capacity step is increased by one step so that the blown air temperature approaches the set temperature t 0 . As described above, when the capacity level is adjusted based on the temperature difference Δt, except for the following cases, 3
retain that capability level until the next comparison point in minutes,
Simultaneously with the elapse of 3 minutes, the capacity level is adjusted again based on the temperature difference Δt. Therefore, if the temperature difference △t enters the area a during the 3 minutes of the comparison time interval, the capacity level is reduced by one step at that point, and conversely, the temperature difference △t enters the area e. In the case of entering, the capacity level is similarly increased by one step at that point, and if the temperature difference Δt is in areas b, c, and d, the capacity level is maintained as described above. C. At restart: Due to a decrease in the cooling load, the capacity stage drops to the 0th stage shown in Table 2, and both the natural circulation refrigeration cycle N and the compression refrigeration cycle C stop, and then, due to the increase in load, the air conditioning When restarting the apparatus, taking into consideration the slow rise in capacity of the automatic circulation type refrigeration cycle N, the restart is performed from the third stage of the capacity stage, which includes the operation of one compression refrigeration cycle C1. (Not shown in FIG. 3) As described above, the capacity of the natural circulation refrigeration cycle N can be adjusted in two stages, and the capacity of the compression refrigeration cycle C can be adjusted in seven stages, and these Since the capacity control is performed in nine stages in various combinations as shown in Table 2, when starting the air conditioner, even when the temperature difference Δt is large, the air conditioner is operated at partial capacity. This prevents dew build-up on computers, etc. installed in the area to be cooled, and even when the temperature difference △t is negative, only the natural circulation refrigeration cycle N is operated, so that when the natural circulation refrigeration cycle N is started, This reduces the influence of slow start-up, and during normal operation of the air conditioner, the capacity of the air conditioner can be finely adjusted according to the cooling load in the area to be cooled. Control can be performed more precisely, and therefore temperature control of the area to be cooled can also be performed stably. Moreover, when the cooling load decreases, as between the 9th to 3rd capacity stage, and between this 3rd stage and the 2nd to 1st stages below,
Since the capacity of the compression refrigeration cycle C is always prioritized and reduced over the capacity of the natural circulation refrigeration cycle N, the temperature of the blown air can be finely controlled as described above, while power consumption is also reduced. It can be kept to a minimum. In addition, in this embodiment, even in the capacity reduction of the compression refrigeration cycle C, the capacity stage 7
As in the transition from the stage to the sixth stage and from the fourth stage to the third stage, priority is given to the capacity reduction by the capacity control of the compressors 9, 9 over the capacity reduction by the action of the reheater 10, and the This reduces power consumption. Further, in the operation control circuit, as shown in FIG. 6, the detection means 18 consisting of a thermistor
A multi-stage thermostat 30 is provided which connects the thermostat 30 to the setting means 22, and the thermostat 30 is connected to the input of the central processing unit (CPU) in the control means 21 through four signal lines 40, 41, 42, 43. It may also be connected to the side. In this case, the range of the temperature difference Δt and the combinations of signals output from each of the signal lines are shown in Table 3.

【表】 また、能力を制御する基準とする空気温度は前
記吹出空気温度に限ることなく、前記室内ユニツ
ト1の吸込み空気温度でもよい。 (発明の効果) 以上のごとく、本発明は自然循環式冷凍サイク
ルN及び圧縮冷凍サイクルCにそれぞれ能力低減
手段を設ける一方、前記第1、第2蒸発器2,
3,11,11を流通する空気温度を検出する検
出手段18と、この空気温度を設定する設定手段
22とを設け、前記検出手段18で検出した検出
温度tから前記設定手段22で設定した設定温度
t0を差し引いた温度差△tに基づいて空気調和装
置の運転を制御する制御手段21を設けるととも
に、該制御手段21は、空気調和装置の起動時に
は、前記温度差△tが零を含む所定範囲内、又は
所定範囲超過、或いは所定範囲未満の何れである
かにより、自然循環式冷凍サイクルNが全能力で
かつ圧縮冷凍サイクルCが第1部分能力で、又は
自然循環式冷凍サイクルNが全能力でかつ圧縮冷
凍サイクルCが第1部分能力よりも高能力の第2
部分能力で、或いは自然循環式冷凍サイクルNが
全能力でかつ圧縮冷凍サイクルCが零能力で空気
調和装置を運転し、さらに空気調和装置の通常運
転時には、一定時間毎に前記温度差△tに基づい
て、空気調和装置の能力を一段増加又は維持或い
は一段低減し、かつこの低減時に圧縮冷凍サイク
ルCの能力低減を自然循環式冷凍サイクルNの能
力低減に対して優先するものとしたから、空気調
和装置の起動時には、電子計算機等の露付きを防
止でき、かつ自然循環式冷凍サイクルNの起動時
の立上りの緩慢さの影響を少なくでき、また、空
気調和装置の通常運転時には、空気調和装置の能
力を冷房負荷に応じてきめこまかく調整でき、か
つ消費動力も小さく抑えることができるのであ
る。
[Table] Furthermore, the air temperature used as a reference for controlling the capacity is not limited to the above-mentioned outlet air temperature, but may also be the intake air temperature of the above-mentioned indoor unit 1. (Effects of the Invention) As described above, the present invention provides capacity reducing means for each of the natural circulation refrigeration cycle N and the compression refrigeration cycle C, and the first and second evaporators 2,
3, 11, and 11, and a setting means 22 for setting this air temperature, and the setting set by the setting means 22 from the detected temperature t detected by the detection means 18. temperature
A control means 21 is provided for controlling the operation of the air conditioner based on the temperature difference Δt obtained by subtracting t0 , and the control means 21 controls the temperature difference Δt to be a predetermined value including zero when starting the air conditioner. Depending on whether it is within the range, exceeds the predetermined range, or is below the predetermined range, the natural circulation refrigeration cycle N is at full capacity and the compression refrigeration cycle C is at the first partial capacity, or the natural circulation refrigeration cycle N is at full capacity. capacity and the compression refrigeration cycle C has a higher capacity than the first partial capacity.
The air conditioner is operated at partial capacity, or the natural circulation refrigeration cycle N is at full capacity and the compression refrigeration cycle C is at zero capacity, and furthermore, during normal operation of the air conditioner, the temperature difference Δt is adjusted at regular intervals. Based on this, the capacity of the air conditioner is increased, maintained, or reduced by one level, and when this reduction is made, the reduction in the capacity of the compression refrigeration cycle C is given priority over the reduction in the capacity of the natural circulation refrigeration cycle N. When starting up the air conditioner, it is possible to prevent dew from condensing on electronic computers, etc., and to reduce the effects of the slow startup of the natural circulation refrigeration cycle N. The capacity of the air conditioner can be finely adjusted according to the cooling load, and the power consumption can also be kept low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の冷媒回路図、第2図
は同実施例の制御系を示す電気回路図、第3図は
同実施例の運転パターンを示すフローチヤート、
第4図は同実施例の制御の基準となる温度差領域
を示す説明図、第5図は同実施例の室内ユニツト
の内部を示す説明図、第6図は他の実施例の制御
系を示す電気回路図、第7図は従来例を示す説明
図である。 2,3……第1蒸発器、5……第1凝縮器、
9,9……圧縮機、11,11……第2蒸発器、
12,12……第2凝縮器、13,13……減圧
手段、18……検出手段、21……制御手段、2
2……設定手段、C……圧縮冷凍サイクル、N…
…自然循環式冷凍サイクル。
Fig. 1 is a refrigerant circuit diagram of an embodiment of the present invention, Fig. 2 is an electric circuit diagram showing a control system of the embodiment, and Fig. 3 is a flowchart showing an operation pattern of the embodiment.
Fig. 4 is an explanatory diagram showing the temperature difference region that is the reference for control in the same embodiment, Fig. 5 is an explanatory diagram showing the inside of the indoor unit of the same embodiment, and Fig. 6 is an explanatory diagram showing the control system of another embodiment. The electric circuit diagram shown in FIG. 7 is an explanatory diagram showing a conventional example. 2, 3...first evaporator, 5...first condenser,
9,9...compressor, 11,11...second evaporator,
12, 12... Second condenser, 13, 13... Pressure reduction means, 18... Detection means, 21... Control means, 2
2...setting means, C...compression refrigeration cycle, N...
...Natural circulation refrigeration cycle.

Claims (1)

【特許請求の範囲】[Claims] 1 冷房対象域に設けた第1蒸発器2,3と、こ
れより高所に設けた第1凝縮器5とを接続して成
る自然循環式冷凍サイクルNと、前記第1蒸発器
2,3に並設する第2蒸発器11,11、前記第
1凝縮器5に並設する第2凝縮器12,12、減
圧手段13,13及び圧縮機9,9とから成る圧
縮冷凍サイクルCとを備える空気調和装置におい
て、前記自然循環式冷凍サイクルN及び圧縮冷凍
サイクルCにそれぞれ能力低減手段を設ける一
方、前記第1、第2蒸発器2,3,11,11を
流通する空気温度を検出する検出手段18と、こ
の空気温度を設定する設定手段22とを設け、前
記検出手段18で検出した検出温度tから前記設
定手段22で設定した設定温度t0を差し引いた温
度差△tに基づいて空気調和装置の運転を制御す
る制御手段21を設けるとともに、該制御手段2
1は、空気調和装置の起動時には、前記温度差△
tが零を含む所定範囲内、又は所定範囲超過、或
いは所定範囲未満の何れであるかにより、自然循
環式冷凍サイクルNが全能力でかつ圧縮冷凍サイ
クルCが第1部分能力で、又は自然循環式冷凍サ
イクルNが全能力でかつ圧縮冷凍サイクルCが第
1部分能力よりも高能力の第2部分能力で、或い
は自然循環式冷凍サイクルNが全能力でかつ圧縮
冷凍サイクルCが零能力で空気調和装置を運転
し、さらに空気調和装置の通常運転時には、一定
時間毎に前記温度差△tに基づいて、空気調和装
置の能力を一段増加又は維持或いは一段低減し、
かつこの低減時に圧縮冷凍サイクルCの能力低減
を自然循環式冷凍サイクルNの能力低減に対して
優先するものであることを特徴とする空気調和装
置。
1. A natural circulation refrigeration cycle N formed by connecting first evaporators 2 and 3 provided in a cooling target area and a first condenser 5 provided at a higher location, and the first evaporators 2 and 3 A compression refrigeration cycle C consisting of second evaporators 11, 11 installed in parallel with the first condenser 5, second condensers 12, 12 installed in parallel with the first condenser 5, pressure reducing means 13, 13, and compressors 9, 9. In the air conditioner, the natural circulation refrigeration cycle N and the compression refrigeration cycle C are each provided with capacity reducing means, and the temperature of the air flowing through the first and second evaporators 2, 3, 11, and 11 is detected. A detection means 18 and a setting means 22 for setting the air temperature are provided, and based on the temperature difference Δt obtained by subtracting the set temperature t 0 set by the setting means 22 from the detected temperature t detected by the detection means 18. A control means 21 for controlling the operation of the air conditioner is provided, and the control means 2
1, when the air conditioner is started, the temperature difference △
Depending on whether t is within a predetermined range including zero, exceeds a predetermined range, or is less than a predetermined range, natural circulation refrigeration cycle N is at full capacity and compression refrigeration cycle C is at first partial capacity, or natural circulation The formula refrigeration cycle N is at full capacity and the compression refrigeration cycle C is at a second partial capacity that is higher than the first partial capacity, or the natural circulation refrigeration cycle N is at full capacity and the compression refrigeration cycle C is at zero capacity and air operating the air conditioner, and further increasing, maintaining, or reducing the capacity of the air conditioner by one step based on the temperature difference Δt at regular intervals during normal operation of the air conditioner;
An air conditioner characterized in that, during this reduction, priority is given to reducing the capacity of the compression refrigeration cycle C over reducing the capacity of the natural circulation refrigeration cycle N.
JP59134935A 1984-06-28 1984-06-28 Air conditoning device Granted JPS6115033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134935A JPS6115033A (en) 1984-06-28 1984-06-28 Air conditoning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134935A JPS6115033A (en) 1984-06-28 1984-06-28 Air conditoning device

Publications (2)

Publication Number Publication Date
JPS6115033A JPS6115033A (en) 1986-01-23
JPH0554020B2 true JPH0554020B2 (en) 1993-08-11

Family

ID=15139995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134935A Granted JPS6115033A (en) 1984-06-28 1984-06-28 Air conditoning device

Country Status (1)

Country Link
JP (1) JPS6115033A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE505455C2 (en) * 1993-12-22 1997-09-01 Ericsson Telefon Ab L M Cooling system for air with two parallel cooling circuits

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102044A (en) * 1981-12-11 1983-06-17 Hitachi Ltd Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914555U (en) * 1972-05-11 1974-02-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102044A (en) * 1981-12-11 1983-06-17 Hitachi Ltd Air conditioner

Also Published As

Publication number Publication date
JPS6115033A (en) 1986-01-23

Similar Documents

Publication Publication Date Title
JP2504437B2 (en) air conditioner
KR920007811B1 (en) Air conditioner
US11609033B2 (en) Condenser fan control system
US11333416B2 (en) Vapor compression system with compressor control based on temperature and humidity feedback
KR0161217B1 (en) A controlling method of multi-airconditioner
JP3235882B2 (en) Air conditioner
JP4074422B2 (en) Air conditioner and its control method
JPH0554020B2 (en)
JPH02223757A (en) Air conditioner
JP3225738B2 (en) Air conditioner
JP3306455B2 (en) Air conditioner
JP2598080B2 (en) Air conditioner
JP2508528Y2 (en) Air conditioner
JP2004144351A (en) Control method of multi-room type air conditioner
CN212278706U (en) Constant temperature dehumidification refrigerating plant
US20230107874A1 (en) Air conditioner
JP2582441B2 (en) Air conditioner
US20220042723A1 (en) Heating, ventilation, and air conditioning system with primary and secondary heat transfer loops
JPH0439578B2 (en)
JPH02223756A (en) Air conditioner
JPH04236072A (en) Air-conditioning device
CN115751514A (en) Air conditioning system and reheating and dehumidifying control method of air conditioning system
JPH08313097A (en) Air conditioner
JPS6323456B2 (en)
JP2023000853A (en) air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term